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Abstract

Multiple hypothesis testing is a significant problem in nearly all neuroimaging
studies. In order to correct for this phenomena, we require a reliable estimate
of the Family-Wise Error Rate (FWER). The well known Bonferroni correction
method, while simple to implement, is quite conservative, and can substantially
under-power a study because it ignores dependencies between test statistics. Per-
mutation testing, on the other hand, is an exact, non-parametric method of es-
timating the FWER for a given α-threshold, but for acceptably low thresholds
the computational burden can be prohibitive. In this paper, we show that permu-
tation testing in fact amounts to populating the columns of a very large matrix
P. By analyzing the spectrum of this matrix, under certain conditions, we see
that P has a low-rank plus a low-variance residual decomposition which makes
it suitable for highly sub–sampled — on the order of 0.5% — matrix comple-
tion methods. Based on this observation, we propose a novel permutation testing
methodology which offers a large speedup, without sacrificing the fidelity of the
estimated FWER. Our evaluations on four different neuroimaging datasets show
that a computational speedup factor of roughly 50× can be achieved while recov-
ering the FWER distribution up to very high accuracy. Further, we show that the
estimated α-threshold is also recovered faithfully, and is stable.

1 Introduction

Suppose we have completed a placebo-controlled clinical trial of a promising new drug for a neu-
rodegenerative disorder such as Alzheimer’s disease (AD) on a small sized cohort. The study is
designed such that in addition to assessing improvements in standard cognitive outcomes (e.g.,
MMSE), the purported treatment effects will also be assessed using Neuroimaging data. The ra-
tionale here is that, even if the drug does induce variations in cognitive symptoms, the brain changes
are observable much earlier in the imaging data. On the imaging front, this analysis checks for
statistically significant differences between brain images of subjects assigned to the two trial arms:
treatment and placebo. Alternatively, consider a second scenario where we have completed a neu-
roimaging research study of a particular controlled factor, such as genotype, and the interest is to
evaluate group-wise differences in the brain images: to identify which regions are affected as a
function of class membership. In either cases, the standard image processing workflow yields for
each subject a 3-D image (or voxel-wise “map”). Depending on the image modality acquired, these
maps are of cerebral gray matter density, longitudinal deformation (local growth or contraction) or
metabolism. It is assumed that these maps have been ‘co-registered’ across different subjects so that
each voxel corresponds to approximately the same anatomical location. [1, 2].
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In order to localize the effect under investigation (i.e., treatment or genotype), we then have to
calculate a very large number (say, v) of univariate voxel-wise statistics – typically up to several
million voxels. For example, consider group-contrast t-statistics (here we will mainly consider t-
statistics, however other test statistics are also applicable, such as the F statistic used in ANOVA
testing, Pearson’s correlation as used in functional imaging studies, or the χ2 test of dependence
between variates, so long as certain conditions described in Section 2.3 are satisfied). In some voxels,
it may turn out that a group-level effect has been indicated, but it is not clear right away what its true
significance level should be, if any. As one might expect, given the number of hypotheses tests v,
multiple testing issues in this setting are quite severe, making it difficult to assess the true Family-
Wise Type I Error Rate (FWER) [3]. If we were to address this issue via Bonferroni correction
[4], the enormous number of separate tests implies that certain weaker signals will almost certainly
never be detected, even if they are real. This directly affects studies of neurodegenerative disorders
in which atrophy proceeds at a very slow rate and the therapeutic effects of a drug is likely to be mild
to moderate anyway. This is a critical bottleneck which makes localizing real, albeit slight, short-
term treatment effects problematic. Already, this restriction will prevent us from using a smaller
sized study (fewer subjects), increasing the cost of pharmaceutical research. In the worst case, an
otherwise real treatment effect of a drug may not survive correction, and the trial may be deemed a
failure.

Bonferroni versus true FWER threshold. Observe that theoretically, there is a case in which the
Bonferroni corrected threshold is close to the true FWER threshold: when point-wise statistics are
i.i.d. If so, then the extremely low Bonferroni corrected α-threshold crossings effectively become
mutually exclusive, which makes the Union Bound (on which Bonferroni correction is based) nearly
tight. However, when variables are highly dependent – and indeed even without smoothing there are
many sources of strong non-Gaussian dependencies between voxels, the true FWER threshold can
be much more relaxed, and it is precisely this phenomenon which drives the search for alternatives to
Bonferroni correction. Thus, many methods have been developed to more accurately and efficiently
estimate or approximate the FWER [5, 6, 7, 8], which is a subject of much interest in statistics [9],
machine learning [10], bioinformatics [11], and neuroimaging [12].

Permutation testing. A commonly used method of directly and non-parametrically estimating the
FWER is Permutation testing [12, 13], which is a method of sampling from the Global (i.e., Family-
Wise) Null distribution. Permutation testing ensures that any relevant dependencies present in the
data carry through to the test statistics, giving an unbiased estimator of the FWER. If we want to
choose a threshold sufficient to exclude all spurious results with probability 1−α, we can construct
a histogram of sample maxima taken from permutation samples, and choose a threshold giving the
1 − α/2 quantile. Unfortunately, reliable FWER estimates derived via permutation testing come
at excessive (and often infeasible) computational cost – often tens of thousands or even millions of
permutation samples are required, each of which requires a complete pass over the entire data set.
This step alone can run from a few days up to many weeks and even longer [14, 15].

Observe that the very same dependencies between voxels, that forced the usage of permutation
testing, indicate that the overwhelming majority of work in computing so many highly correlated
Null statistics is redundant. Note that regardless of their description, strong dependencies of almost
any kind will tend to concentrate most of their co-variation into a low-rank subspace, leaving a
high-rank, low-variance residual [5]. In fact, for Genome wide Association studies (GWAS), many
strategies calculate the ‘effective number’ (Meff ) of independent tests corresponding to the rank of
this subspace [16, 5]. This paper is based on the observation that such a low-rank structure must also
appear in permutation test samples. Using ideas from online low-rank matrix completion [17] we can
sample a few of the Null statistics and reconstruct the remainder as long as we properly account for
the residual. This allows us to sub-sample at extremely low rates, generally< 1%. The contribution
of our work is to significantly speed up permutation testing in neuroimaging, delivering running time
improvements of up to 50×. In other words, our algorithm does the same job as permutation testing,
but takes anywhere from a few minutes up to a few hours, rather than days or weeks. Further, based
on recent work in random matrix theory, we provide an analysis which sheds additional light on
the use of matrix completion methods in this context. To ensure that our conclusions are not an
artifact of a specific dataset, we present strong empirical evidence via evaluations on four separate
neuroimaging datasets of Alzheimer’s disease (AD) and Mild Cognitive Impairment (MCI) patients
as well as cognitively healthy age-matched controls (CN), showing that the proposed method can
recover highly faithful Global Null distributions, while offering substantial speedups.
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2 The Proposed Algorithm

We first cover some basic concepts underlying permutation testing and low rank matrix completion
in more detail, before presenting our algorithm and the associated analysis.

2.1 Permutation testing

Randomly sampled permutation testing [18] is a methodology for drawing samples under the Global
(Family-Wise) Null hypothesis. Recall that although point-wise test statistics have well character-
ized univariate Null distributions, the sample maximum usually has no analytic form due to the
strong correlations across voxels. Permutation is particularly desirable in this setting because it is
free of any distribution assumption whatsoever [12]. The basic idea of permutation testing is very
simple, yet extremely powerful. Suppose we have a set of labeled high dimensional data points,
and a univariate test statistic which measures some interaction between labeled groups for every
dimension (or feature). If we randomly permute the labels and recalculate each test statistic, then
by construction we get a sample from the Global Null distribution. The maximum over all of these
statistics for every permutation sample is then used to construct a histogram, which therefore is a
non-parametric estimate of the distribution of the sample maximum of Null statistics. For a test
statistic derived from the real labels, the FWER corrected p-value is then equal to the fraction of
permutation samples which were more extreme. Note that all of the permutation samples can be
assembled into a matrix P ∈ Rv×T where v is the number of comparisons (voxels for images), and
T is the number of permutation samples.

There is a drawback to this approach, however. Observe that it is in the nature of random sampling
methods that we get many samples from near the mode(s) of the distribution of interest, but fewer
from the tails. Hence, to characterize the threshold for a small portion of the tail of this distribution,
we must draw a very large number of samples just so that the estimate converges. Thus, if we want
an α = 0.01 threshold from the Null sample maximum distribution, we require many thousands of
permutation samples — each requires randomizing the labels and recalculating all test statistics, a
very computationally expensive procedure when v is large. To be certain, we would like to ensure
an especially low FWER by first setting α very low, and then getting a very precise estimate of the
corresponding threshold. The smallest possible p-value we can derive this way is 1/T , so for very
low p-values, T must be very large.

2.2 Low-rank Matrix completion

Low-rank matrix completion [19] seeks to reconstruct missing entries from a matrix, given only a
small fraction of its entries. The problem is ill-posed unless we assume this matrix has a low-rank
column space. If so, then a much smaller number of observations, on the order of r log(v), where
r is the column space’s rank, and v is its ambient dimension [19] is sufficient to recover both an
orthogonal basis for the row space as well as the expansion coefficients for each column, giving the
recovery. By placing an `1-norm penalty on the eigenvalues of the recovered matrix via the nuclear
norm [20, 21] we can ensure that the solution is as low rank as possible. Alternatively, we can
specify a rank r ahead of time, and estimate an orthogonal basis of that rank by following a gradient
along the Grassmannian manifold [22, 17]. Denoting the set of randomly subsampled entries as Ω,
the matrix completion problem is given as,

min
P̃
‖PΩ − P̃Ω‖2F s.t. P̃ = UW; U is orthogonal (1)

where U ∈ Rv×r is the low-rank basis of P, Ω gives the measured entries, and W is the set of
expansion coefficients which reconstructs P̃ in U. Two recent methods operate in an online setting,
i.e., where rows of P arrive one at a time, and both U and W are updated accordingly [22, 17].

2.3 Low rank plus a long tail

Real-world data often have a dominant low-rank component. While the data may not be exactly
characterized by a low-rank basis, the residual will not significantly alter the eigen-spectrum of the
sample covariance in such cases. Having strong correlations is nearly synonymous with having a
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skewed eigen-spectrum, because the flatter the eigen-spectrum becomes, the sparser the resulting
covariance matrix tends to be (the “uncertainty principle” between low-rank and sparse matrices
[23]). This low-rank structure carries through for purely linear statistics (such as sample means).
However, non-linearities in the test statistic calculation, e.g., normalizing by pooled variances, will
contribute a long tail of eigenvalues, and so we require that this long tail will either decay rapidly,
or that it does not overlap with the dominant eigenvalues. For t-statistics, the pooled variances are
unlikely to change very much from one permutation sample to another (barring outliers) — hence
we expect that the spectrum of P will resemble that of the data covariance, with the addition of a
long, exponentially decaying tail. More generally, if the non-linearity does not de-correlate the test
statistics too much, it will preserve the low-rank structure.

If this long tail is indeed dominated by the low-rank structure, then its contribution to P can be
modeled as a low variance Gaussian i.i.d. residual. A Central Limit argument appeals to the number
of independent eigenfunctions that contribute to this residual, and, the orthogonality of eigenfunc-
tions implies that as more of them meaningfully contribute to each entry in the residual, the more
independent those entries become. In other words, if this long tail begins at a low magnitude and
decays slowly, then we can treat it as a Gaussian i.i.d. residual; and if it decays rapidly, then the
residual will perhaps be less Gaussian, but also more negligible. Thus, our development in the next
section makes no direct assumption about these eigenvalues themselves, but rather that the residual
corresponds to a low-variance i.i.d. Gaussian random matrix — its contribution to the covariance of
test statistics will be Wishart distributed, and from that we can characterize its eigenvalues.

2.4 Our Method

It still remains to model the residual numerically. By sub-sampling we can reconstruct the low-rank
portion of P via matrix completion, but in order to obtain the desired sample maximum distribu-
tion we must also recover the residual. Exact recovery of the residual is essentially impossible;
fortunately, for our purposes we need only need its effect on the distribution of the maximum per
permutation test. So, we estimate its variance, (its mean is zero by assumption,) and then randomly
sample from that distribution to recover the unobserved remainder of the matrix.

A large component in the running time of online subspace tracking algorithms is spent in updat-
ing the basis set U; yet, once a good estimate for U has been found this becomes superfluous.
We therefore divide the entire process into two steps: training, and recovery. During the training
phase we conduct a small number of fully sampled permutation tests (100 permutations in our ex-
periments). From these permutation tests, we estimate U using sub-sampled matrix completion
methods [22, 17], making multiple passes over the training set (with fixed sub-sampling rate), until
convergence. In our evaluations, three passes sufficed. Then, we obtain a distribution of the residual
S over the entire training set. Next is the recovery phase, in which we sub-sample a small fraction
of the entries of each successive column t, solve for the reconstruction coefficients W(·, t) in the
basis U by least-squares, and then add random residuals using parameters estimated during training.
After that, we proceed exactly as in a normal permutation testing, to recover the statistics.

Bias-Variance tradeoff. By using a very sparse subsampling method, there is a bias-variance
dilemma in estimating S. That is, if we use the entire matrix P to estimate U, W and S, we
will obtain reliable estimates of S. But, there is an overfitting problem: the least-squares objective
used in fitting W(·, t) to such a small sample of entries is likely to grossly underestimate the vari-
ance of S compared to where we use the entire matrix; (the sub-sampling problem is not nearly as
over-constrained as for the whole matrix). This sampling artifact reduces the apparent variance of S,
and induces a bias in the distribution of the sample maximum, because extreme values are found less
frequently. This sampling artifact has the effect of ‘shifting’ the distribution of the sample maximum
towards 0. We correct for this bias by estimating the amount of the shift during the training phase,
and then shifting the recovered sample max distribution by this estimated amount.

3 Analysis

We now discuss two results which show that as long as the variance of the residual is below a certain
level, we can recover the distribution of the sample maximum. Recall from (1) that for low-rank
matrix completion methods to be applied we must assume that the permutation matrix P can be
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decomposed into a low-rank component plus a high-rank residual matrix S:

P = UW + S, (2)

where U is a v × r orthogonal matrix that spans the r � min(v, t) -dimensional column subspace
of P, and W is the corresponding coefficient matrix. We can then treat the residual S as a random
matrix whose entries are i.i.d. zero-mean Gaussian with variance σ2. We arrive at our first result
by analyzing how the low-rank portion of P’s singular spectrum interlaces with the contribution
coming from the residual by treating P as a low-rank perturbation of a random matrix. If this
low-rank perturbation is sufficient to dominate the eigenvalues of the random matrix, then P can
be recovered with high fidelity at a low sampling rate [22, 17]. Consequently, we can estimate the
distribution of the maximum as well, as shown by our second result.

The following development relies on the observation that the eigenvalues of PPT are the squared
singular values of P. Thus, rather than analyzing the singular value spectrum of P directly, we can
analyze the eigenvalues of PPT using a recent result from [24]. This is important because in order
to ensure recovery of P, we require that its singular value spectrum will approximately retain the
shape of UW’s. More precisely, we require that for some 0 < δ < 1,

|φ̃i − φi| < δφi i = 1, . . . , r; φ̃i < δφr i = r + 1, . . . , v (3)

where φi and φ̃i are the singular values of UW and P respectively. (Recall that in this analysis P
is the perturbation of UW.) Thm. 3.1 relates the rate at which eigenvalues are perturbed, δ, to the
parameterization of S in terms of σ2. The theorem’s principal assumption also relates σ2 inversely
with the number of columns of P, which is just the number of trials t. Note however that the process
may be split up between several matrices Pi, and the results can then be combined. For purposes
of applying this result in practice we may then choose a number of columns t which gives the best
bound. Theorem 3.1 also assumes that the number of trials t is greater than the number of voxels
v, which is a difficult regime to explore empirically. Thus, our numerical evaluations cover the case
where t < v, while Thm 3.1 covers the case where t is larger.

From the definition of P in (2), we have,

PPT = UWWTUT + SST + UWST + SWTUT . (4)

We first analyze the change in eigenvalue structure of SST when perturbed by UWWTUT , (which
has r non-zero eigenvalues). The influence of the cross-terms (UWST and SWTUT ) is addressed
later. Thus, we have the following theorem.

Theorem 3.1. Denote that r non-zero eigenvalues of Q = UWWTUT ∈ Rv×v by λ1 ≥ λ2 ≥
, . . . , λr > 0; and let S be a v × t random matrix such that Si,j ∼ N (0, σ2), with unknown σ2. As
v, t→∞ such that vt � 1, the eigenvalues λ̃i of the perturbed matrix Q + SST will satisfy

|λ̃i − λi| < δλi i = 1, . . . , r; λ̃i < δλr i = r + 1, . . . , v (?)

for some 0 < δ < 1, whenever σ2 < δλr

t

Proof. (Sketch) The proof proceeds by constructing the asymptotic eigenvalues λ̃i (for i = 1, . . . , v),
and later bounding them to satisfy (?). The construction of λ̃i is based on Theorem 2.1 from [24].
Firstly, an asymptotic spectral measure µ of 1

tSS
T is calculated, followed by its Cauchy transform

Gµ(z). UsingGµ(z) and its functional inverseG−1
µ (θ), we get λ̃i in terms of λi, σ2, v and t. Finally,

the constraints in (?) are applied to λ̃i to upper bound σ2. The supplement includes the proof.

Note that the missing cross-terms would not change the result of Theorem 3.1 drastically, because
UW has r non-zero singular values and hence UWST is a low-rank projection of a low-variance
random matrix, and this will clearly be dominated by either of the other terms. Having justified
the model in (2), the following thorem shows that the empirical distribution of the maximum Null
statistic approximates the true distribution.
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Theorem 3.2. Let mt = maxiPi,t be the maximum observed test statistic at permutation trial
t, and similarly let m̂t = maxi P̂i,t be the maximum reconstructed test statistic. Further, let the
maximum reconstruction error be ε, such that |Pi,t − P̂i,t| ≤ ε. Then, for any real number k > 0,
we have,

Pr
[
mt − m̂t − (b− b̂) > kε

]
<

1

k2

where b is the bias term described in Section 2, and b̂ is its estimate from the training phase.

The result is an application of Chebyshev’s bound. The complete proof is given in the supplement.

4 Experimental evaluations

Our experimental evaluations include four separate neuroimaging datasets of Alzheimer’s Disease
(AD) patients, cognitively healthy age-matched controls (CN), and in some cases Mild Cognitive
Impairment (MCI) patients. The first of these is the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset, a nation-wide multi-site study. ADNI is a landmark study sponsored by the NIH,
major pharmaceuticals and others to determine the extent to which multimodal brain imaging can
help predict onset, and monitor progression of AD. The others were collected as part of other studies
of AD and MCI. We refer to these datasets as Dataset A—D. Their demographic characteristics are
as follows: Dataset A: 40 subjects, AD vs. CN, median age : 76; Dataset B: 50 subjects, AD vs.
CN, median age : 68; Dataset C: 55 subjects, CN vs. MCI, median age : 65.16; Dataset D: 70
subjects, CN vs. MCI, median age : 66.24.

Our evaluations focus on three main questions: (i) Can we recover an acceptable approximation
of the maximum statistic Null distribution from an approximation of the permutation test matrix?
(ii) What degree of computational speedup can we expect at various subsampling rates, and how
does this affect the trade-off with approximation error? (iii) How sensitive is the estimated α-level
threshold with respect to the recovered Null distribution? In all our experiments, the rank estimate
for subspace tracking (to construct the low–rank basis U) was taken as the number of subjects.

4.1 Can we recover the Maximum Null?

Our experiments suggest that our model can recover the maximum Null. We use Kullback–Leibler
(KL) divergence and Bhattacharya Distance (BD) to compare the estimated maximum Null from our
model to the true one. We also construct a “Naive–Null”, where the subsampled statistics are pooled
and the Null distribution is constructed with no further processing (i.e., completion). Using this as
a baseline, Fig. 1 shows the KL and BD values obtained from three datasets, at 20 different sub-
sampling rates (ranging from 0.1% to 10%). Note that our model involves a training module where
the approximate ‘bias’ of residuals is estimated. This estimation is prone to noise (for example,
number of training frames). Hence Fig. 1 also shows the error bars pertaining to 5 realizations
on the 20 sampling rates. The first observation from Fig. 1 is that both KL and BD measures of
the recovered Null to the true distribution are < e−5 for sampling rates more than 0.4%. This

(a) Dataset A (b) Dataset B (c) Dataset C

Figure 1: KL (blue) and BD (red) measures between the true max Null distribution (given by the full matrix
P) and that recovered by our method (thick lines), along with the baseline naive subsampling method (dotted
lines). Results for Datasets A, B, C are shown here. Plot for Dataset D is in the extended version of the paper.
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(a) Speedup (at 0.4%) is 45.1 (b) Speedup (at 0.4%) is 45.6 (c) Speedup (at 0.4%) is 48.5

Figure 3: Computation time (in minutes) of our model compared to that of computing the entire matrix P.
Results are for the same three datasets as in Fig. 1. Please find the plot for Dataset D in the extended version of
the paper. The horizontal line (magenta) shows the time taken for computing the full matrix P. The other three
curves include : subsampling (blue), GRASTA recovery (red) and total time taken by our model (black). Plots
correspond to the low sampling regime (< 1%) and note the jump in y–axis (black boxes). For reference, the
speedup factor at 0.4% sampling rate is reported at the bottom of each plot.

suggests that our model recovers both the shape (low BD) and position (low KL) of the null to high
accuracy at extremely low sub-sampling. We also see that above a certain minimum subsampling
rate (∼ 0.3%), the KL and BD do not change drastically as the rate is increased. This is expected
from the theory on matrix completion where after observing a minimum number of data samples,
adding in new samples does not substantially increase information content. Further, the error bars
(although very small in magnitude) of both KL and BD show that the recovery is noisy. We believe
this is due to the approximate estimate of bias from training module.

4.2 What is the computational speedup?

Figure 2: Scatter plot of computational speedup vs.
KL. The plot corresponds to the 20 different samplings
on all 4 datasets (for 5 repeated set of experiments) and
the colormap is from 0.1% to 10% sampling rate. The
x–axis is in log scale.

Our experiments suggest that the speedup is
substantial. Figs. 3 and 2 compare the time
taken to perform the complete permutation test-
ing to that of our model. The three plots in Fig.
3 correspond to the datasets used in Fig. 1, in
that order. Each plot contains 4 curves and rep-
resent the time taken by our model, the corre-
sponding sampling and GRASTA [17] recovery
(plus training) times and the total time to con-
struct the entire matrix P (horizontal line). And
Fig. 2 shows the scatter plot of computational
speedup vs. KL divergence (over 3 repeated set
of experiments on all the datasets and sampling
rates). Our model achieved at least 30 times de-
crease in computation time in the low sampling
regime (< 1%). Around 0.5% − 0.6% sub-
sampling (where the KL and BD are already
< e−5), the computation speed-up factor aver-
aged over all datasets was 45×. This shows that
our model achieved good accuracy (low KL and
BD) together with high computational speed up
in tandem, especially, for 0.4% − 0.7% sampling rates. However note from Fig. 2 that there is
a trade–off between the speedup factor and approximation error (KL or BD). Overall the highest
computational speedup factor achieved at a recovery level of e−5 on KL and BD is around 50x (and
this occured around 0.4% − 0.5% sampling rate, refer to Fig. 2). It was observed that a speedup
factor of upto 55× was obtained for Datasets C and D at 0.3% subsampling, where the KL and BD
were as low as e−5.5 (refer to Fig. 1 and the extended version of the paper).

4.3 How stable is the estimated α-threshold (clinical significance)?

Our experiments suggest that the threshold is stable. Fig. 4 and Table 1 summarize the clin-
ical significance of our model. Fig. 4 show the error in estimating the true max thresh-

7



(a) Datasets A, B (b) Datasets C, D

Figure 4: Error of estimated t statistic thresholds (red) for the 20 different subsampling rates on the four
Datasets. The confidence level is 1− α = 0.95. The y-axis is in log–scale. For reference, the thresholds given
by baseline model (blue) are included. Note that each plot corresponds to two datasets.

old, at 1 − α = 0.95 level of confidence. The x–axis corresponds to the 20 different
sampling rates used and y–axis shows the absolute difference of thresholds in log scale.

Data Sampling 1− α level
name rate 0.95 0.99 0.995 0.999

A
0.3% 0.16 0.11 0.14 0.07
0.5% 0.13 0.08 0.10 0.03

B
0.3% 0.02 0.05 0.03 0.13
0.5% 0.02 0.07 0.08 0.04

C
0.3% 0.04 0.13 0.21 0.20
0.5% 0.01 0.07 0.07 0.05

D
0.3% 0.08 0.10 0.27 0.31
0.5% 0.12 0.13 0.25 0.22

Table 1: Errors of estimated t statistic thresholds on
all datasets at two different subsampling rates.

Observe that for sampling rates higher than 3%,
the mean and maximum differences was 0.04
and 0.18. Note that the binning resolution of
max.statistic used for constructing the Null was
0.01. These results show that not only the
global shape of the maximum Null distribution
is estimated to high accuracy (see Section 4.1)
but also the shape and area in the tail. To sup-
port this observation, we show the absolute dif-
ferences of the estimated thresholds on all the
datasets at 4 different α levels in Table 1. The
errors for 1 − α = 0.95, 0.99 are at most 0.16.
The increase in error for 1 − α > 0.995 is a
sampling artifact and is expected. Note that in
a few cases, the error at 0.5% is slightly higher than that at 0.3% suggesting that the recovery is
noisy (see Sec. 4.1 and the errorbars of Fig. 1). Overall the estimated α-thresholds are both faithful
and stable.

5 Conclusions and future directions

In this paper, we have proposed a novel method of efficiently approximating the permutation testing
matrix by first estimating the major singular vectors, then filling in the missing values via matrix
completion, and finally estimating the distribution of residual values. Experiments on four differ-
ent neuroimaging datasets show that we can recover the distribution of the maximum Null statistic
to a high degree of accuracy, while maintaining a computational speedup factor of roughly 50×.
While our focus has been on neuroimaging problems, we note that multiple testing and False Dis-
covery Rate (FDR) correction are important issues in genomic and RNA analyses, and our contribu-
tion may offer enhanced leverage to existing methodologies which use permutation testing in these
settings[6].

Acknowledgments: We thank Robert Nowak, Grace Wahba, Moo K. Chung and the anonymous reviewers for
their helpful comments, and Jia Xu for helping with a preliminary implementation of the model. This work
was supported in part by NIH R01 AG040396; NSF CAREER grant 1252725; NSF RI 1116584; Wisconsin
Partnership Fund; UW ADRC P50 AG033514; UW ICTR 1UL1RR025011 and a Veterans Administration
Merit Review Grant I01CX000165. Hinrichs is supported by a CIBM post-doctoral fellowship via NLM grant
2T15LM007359. The contents do not represent views of the Dept. of Veterans Affairs or the United States
Government.

8



References
[1] J. Ashburner and K. J. Friston. Voxel-based morphometry–the methods. NeuroImage, 11(6):805–821,

2000.

[2] J. Ashburner and K. J. Friston. Why voxel-based morphometry should be used. NeuroImage, 14(6):1238–
1243, 2001.

[3] P. H. Westfall and S. S. Young. Resampling-based multiple testing: examples and methods for p-value
adjustment, volume 279. Wiley-Interscience, 1993.

[4] J. M. Bland and D. G. Altman. Multiple significance tests: the bonferroni method. British Medical
Journal, 310(6973):170, 1995.

[5] J. Li and L. Ji. Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation
matrix. Heredity, 95(3):221–227, 2005.

[6] J. Storey and R. Tibshirani. Statistical significance for genomewide studies. Proceedings of the National
Academy of Sciences, 100(16):9440–9445, 2003.

[7] H. Finner and V. Gontscharuk. Controlling the familywise error rate with plug-in estimator for the propor-
tion of true null hypotheses. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
71(5):1031–1048, 2009.

[8] J. T. Leek and J. D. Storey. A general framework for multiple testing dependence. Proceedings of the
National Academy of Sciences, 105(48):18718–18723, 2008.

[9] S. Clarke and P. Hall. Robustness of multiple testing procedures against dependence. The Annals of
Statistics, pages 332–358, 2009.

[10] S. Garcı́a, A. Fernández, J. Luengo, and F. Herrera. Advanced nonparametric tests for multiple compar-
isons in the design of experiments in computational intelligence and data mining: Experimental analysis
of power. Information Sciences, 180(10):2044–2064, 2010.

[11] Y. Ge, S. Dudoit, and T. P. Speed. Resampling-based multiple testing for microarray data analysis. Test,
12(1):1–77, 2003.

[12] T. Nichols and S. Hayasaka. Controlling the familywise error rate in functional neuroimaging: a compar-
ative review. Statistical Methods in Medical Research, 12:419–446, 2003.

[13] K. D. Singh, G. R. Barnes, and A. Hillebrand. Group imaging of task-related changes in cortical synchro-
nisation using nonparametric permutation testing. NeuroImage, 19(4):1589–1601, 2003.

[14] D. Pantazis, T. E. Nichols, S. Baillet, and R. M. Leahy. A comparison of random field theory and permu-
tation methods for the statistical analysis of meg data. NeuroImage, 25(2):383–394, 2005.

[15] B. Gaonkar and C. Davatzikos. Analytic estimation of statistical significance maps for support vector
machine based multi-variate image analysis and classification. NeuroImage, 78:270–283, 2013.

[16] J. M. Cheverud. A simple correction for multiple comparisons in interval mapping genome scans. Hered-
ity, 87(1):52–58, 2001.

[17] J. He, L. Balzano, and A. Szlam. Incremental gradient on the grassmannian for online foreground and
background separation in subsampled video. In CVPR, 2012.

[18] M. Dwass. Modified randomization tests for nonparametric hypotheses. The Annals of Mathematical
Statistics, 28(1):181–187, 1957.

[19] E. J. Candès and T. Tao. The power of convex relaxation: Near-optimal matrix completion. IEEE Trans-
actions on Information Theory, 56(5):2053–2080, 2010.

[20] M. Fazel, H. Hindi, and S. Boyd. Rank minimization and applications in system theory. In American
Control Conference, volume 4, 2004.

[21] B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed minimum-rank solutions of linear matrix equations via
nuclear norm minimization. Arxiv Preprint, 2007. arxiv:0706.4138.

[22] L. Balzano, R. Nowak, and B. Recht. Online identification and tracking of subspaces from highly incom-
plete information. Arxiv Preprint, 2007. arxiv:1006.4046.

[23] V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and Willsky A. S. Rank-sparsity incoherence for matrix
decomposition. SIAM Journal on Optimization, 21(2):572–596, 2011.

[24] F. Benaych-Georges and R. R. Nadakuditi. The eigenvalues and eigenvectors of finite, low rank perturba-
tions of large random matrices. Advances in Mathematics, 227(1):494–521, 2011.

9


