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Abstract

We consider the problem of learning good trajectories for manipulation tasks. This
is challenging because the criterion defining a good trajectory varies with users,
tasks and environments. In this paper, we propose a co-active online learning
framework for teaching robots the preferences of its users for object manipulation
tasks. The key novelty of our approach lies in the type of feedback expected from
the user: the human user does not need to demonstrate optimal trajectories as train-
ing data, but merely needs to iteratively provide trajectories that slightly improve
over the trajectory currently proposed by the system. We argue that this co-active
preference feedback can be more easily elicited from the user than demonstrations
of optimal trajectories, which are often challenging and non-intuitive to provide
on high degrees of freedom manipulators. Nevertheless, theoretical regret bounds
of our algorithm match the asymptotic rates of optimal trajectory algorithms. We
demonstrate the generalizability of our algorithm on a variety of grocery check-
out tasks, for whom, the preferences were not only influenced by the object being
manipulated but also by the surrounding environment

1 Introduction

Mobile manipulator robots have arms with high degrees of freedom (DoF), enabling them to perform
household chores (e.g., PR2) or complex assembly-line tasks (e.g., Baxter). In performing these
tasks, a key problem lies in identifying appropriate trajectories. An appropriate trajectory not only
needs to be valid from a geometric standpoint (i.e., feasible and obstacle-free, the criterion that most
path planners focus on), but it also needs to satisfy the user’s preferences.

Such user’s preferences over trajectories vary between users, between tasks, and between the en-
vironments the trajectory is performed in. For example, a household robot should move a glass of
water in an upright position without jerks while maintaining a safe distance from nearby electronic
devices. In another example, a robot checking out a kitchen knife at a grocery store should strictly
move it at a safe distance from nearby humans. Furthermore, straight-line trajectories in Euclidean
space may no longer be the preferred ones. For example, trajectories of heavy items should not
pass over fragile items but rather move around them. These preferences are often hard to describe
and anticipate without knowing where and how the robot is deployed. This makes it infeasible to
manually encode (e.g. [18]]) them in existing path planners (such as [29} 35]]) a priori.

In this work we propose an algorithm for learning user preferences over trajectories through inter-
active feedback from the user in a co-active learning setting [31]. Unlike in other learning settings,
where a human first demonstrates optimal trajectories for a task to the robot, our learning model
does not rely on the user’s ability to demonstrate optimal trajectories a priori. Instead, our learn-
ing algorithm explicitly guides the learning process and merely requires the user to incrementally
improve the robot’s trajectories. From these interactive improvements the robot learns a general
model of the user’s preferences in an online fashion. We show empirically that a small number of
such interactions is sufficient to adapt a robot to a changed task. Since the user does not have to
demonstrate a (near) optimal trajectory to the robot, we argue that our feedback is easier to provide
and more widely applicable. Nevertheless, we will show that it leads to an online learning algorithm
with provable regret bounds that decay at the same rate as if optimal demonstrations were available.

"For more details and a demonstration video, visit: http://pr.cs.cornell.edu/coactive
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Figure 1: Zero-G feedback: Learning trajectory preferences from sub-optimal zero-G feedback. (Left) Robot
plans a bad trajectory (waypoints 1-2-4) with knife close to flower. As feedback, user corrects waypoint 2 and
moves it to waypoint 3. (Right) User providing zero-G feedback on waypoint 2.

In our empirical evaluation, we learn preferences for a high DoF Baxter robot on a variety of grocery
checkout tasks. By designing expressive trajectory features, we show how our algorithm learns
preferences from online user feedback on a broad range of tasks for which object properties are of
particular importance (e.g., manipulating sharp objects with humans in vicinity). We extensively
evaluate our approach on a set of 16 grocery checkout tasks, both in batch experiments as well as
through robotic experiments wherein users provide their preferences on the robot. Our results show
that robot trained using our algorithm not only quickly learns good trajectories on individual tasks,
but also generalizes well to tasks that it has not seen before.

2 Related Work

Teaching a robot to produce desired motions has been a long standing goal and several approaches
have been studied. Most of the past research has focused on mimicking expert’s demonstrations, for
example, autonomous helicopter flights [[I]], ball-in-a-cup experiment [17], planning 2-D paths
[25] 26]], etc. Such a setting (learning from demonstration, LfD) is applicable to scenarios when it is
clear to an expert what constitutes a good trajectory. In many scenarios, especially involving high
DoF manipulators, this is extremely challenging to do El This is because the users have to give
not only the end-effector’s location at each time-step, but also the full configuration of the arm in a
way that is spatially and temporally consistent. In our setting, the user never discloses the optimal
trajectory (or provide optimal feedback) to the robot, but instead, the robot learns preferences from
sub-optimal suggestions on how the trajectory can be improved.

Some later works in LfD provided ways for handling noisy demonstrations, under the assumption
that demonstrations are either near optimal [39] or locally optimal [22]. Providing noisy demonstra-
tions is different from providing relative preferences, which are biased and can be far from optimal.
We compare with an algorithm for noisy LfD learning in our experiments. A recent work lever-
ages user feedback to learn rewards of a Markov decision process. Our approach advances over [37]]
and Calinon et. al. [3] in that it models sub-optimality in user feedback and theoretically converges
to user’s hidden score function. We also capture the necessary contextual information for household
and assembly-line robots, while such context is absent in [5, 37]]. Our application scenario of learn-
ing trajectories for high DoF manipulations performing tasks in presence of different objects and
environmental constraints goes beyond the application scenarios that previous works have consid-
ered. We design appropriate features that consider robot configurations, object-object relations, and
temporal behavior, and use them to learn a score function representing the preferences in trajectories.

User preferences have been studied in the field of human-robot interaction. Sisbot et. al. [33]] and
Mainprice et. al. [23]] planned trajectories satisfying user specified preferences in form of constraints
on the distance of robot from user, the visibility of robot and the user arm comfort. Dragan et. al. [§]
used functional gradients [29] to optimize for legibility of robot trajectories. We differ from these in
that we learn score functions reflecting user preferences from implicit feedback.

3 Learning and Feedback Model

We model the learning problem in the following way. For a given task, the robot is given a context
x that describes the environment, the objects, and any other input relevant to the problem. The robot
has to figure out what is a good trajectory y for this context. Formally, we assume that the user
has a scoring function s*(z,y) that reflects how much he values each trajectory y for context x.
The higher the score, the better the trajectory. Note that this scoring function cannot be observed
directly, nor do we assume that the user can actually provide cardinal valuations according to this

2Consider the following analogy: In search engine results, it is much harder for a user to provide the best
web-pages for each query, but it is easier to provide relative ranking on the search results by clicking.



function. Instead, we merely assume that the user can provide us with preferences that reflect this
scoring function. The robots goal is to learn a function s(z, y; w) (where w are the parameters to be
learned) that approximates the users true scoring function s*(x, y) as closely as possible.

Interaction Model. The learning process proceeds through the following repeated cycle of interac-
tions between robot and user.

Step 1: The robot receives a context x. It then uses a planner to sample a set of trajectories, and
ranks them according to its current approximate scoring function s(z, y; w).

Step 2: The user either lets the robot execute the top-ranked trajectory, or corrects the robot by
providing an improved trajectory §. This provides feedback indicating that s*(z, §) > s*(z,y).
Step 3: The robot now updates the parameter w of s(x, y; w) based on this preference feedback and
returns to step 1.

Regret. The robot’s performance will be measured in terms of regret, REGr =
* Zle[s*(xt,yj ) — s*(x¢,y:)], which compares the robot’s trajectory y; at each time step ¢
against the optimal trajectory y; maximizing the user’s unknown scoring function s*(z,y), y; =
argmaz,s*(z, y). Note that the regret is expressed in terms of the user’s true scoring function s*,
even though this function is never observed. Regret characterizes the performance of the robot over
its whole lifetime, therefore reflecting how well it performs throughout the learning process. As we
will show in the following sections, we employ learning algorithms with theoretical bounds on the
regret for scoring functions that are linear in their parameters, making only minimal assumptions
about the difference in score between s*(z, ) and s*(x, y) in Step 2 of the learning process.

User Feedback and Trajectory Visualization. Since the ability to easily give preference feedback
in Step 2 is crucial for making the robot learning system easy to use for humans, we designed two
feedback mechanisms that enable the user to easily provide improved trajectories.

(a) Re-ranking: We rank trajectories in order of their current predicted scores and visualize the rank-
ing using OpenRave [7]. User observers trajectories sequentially and clicks on the first trajectory
which is better than the top ranked trajectory.

(b) Zero-G: This feedback allow users to improve trajectory waypoints by physically changing the
robot’s arm configuration as shown in Figure[l| To enable effortless steering of robot’s arm to de-
sired configuration we leverage Baxter’s zero-force gravity-compensation mode. Hence we refer
this feedback as zero-G. This feedback is useful (i) for bootstrapping the robot, (ii) for avoiding
local maxima where the top trajectories in the ranked list are all bad but ordered correctly, and (iii)
when the user is satisfied with the top ranked trajectory except for minor errors. A counterpart of this
feedback is keyframe based LfD [2] where an expert demonstrates a sequence of optimal waypoints
instead of the complete trajectory.

Note that in both re-ranking and zero-G feedback, the user never reveals the optimal trajectory to
the algorithm but just provides a slightly improved trajectory.

4 Learning Algorithm

For each task, we model the user’s scoring function s*(z, y) with the following parameterized family

of functions.

s(z,y;w) = w - ¢z, y) e9)
w is a weight vector that needs to be learned, and ¢(-) are features describing trajectory y for context
x. We further decompose the score function in two parts, one only concerned with the objects the
trajectory is interacting with, and the other with the object being manipulated and the environment.

s(z,y;wo,wE) = so(x,y;wo) + sp(x,y;wE) = wo - o(z,y) + we - de(z,y)  (2)
We now describe the features for the two terms, ¢ (+) and ¢g(+) in the following.

4.1 Features Describing Object-Object Interactions

This feature captures the interaction between objects in the environment with the object being ma-
nipulated. We enumerate waypoints of trajectory y as yi, .., yn and objects in the environment as
O ={o1,..,0K }. The robot manipulates the object 6 € O. A few of the trajectory waypoints would
be affected by the other objects in the environment. For example in Figure [2] 01 and o, affect the
waypoint y3 because of proximity. Specifically, we connect an object oy, to a trajectory waypoint if
the minimum distance to collision is less than a threshold or if o, lies below 0. The edge connecting
y; and oy, is denoted as (y;,0x) € £.

Since it is the attributes [[19] of the object that really matter in determining the trajectory quality,
we represent each object with its attributes. Specifically, for every object oy, we consider a vector
of M binary variables [I},..,1M], with each [;* = {0, 1} indicating whether object o) possesses



Figure 2: (Left) A grocery checkout environment with a few objects where the robot was asked to checkout
flowervase on the left to the right. (Middle) There are two ways of moving it, ‘a’ and ‘b’, both are sub-optimal
in that the arm is contorted in ‘a’ but it tilts the vase in ‘b’. Given such constrained scenarios, we need to reason
about such subtle preferences. (Right) We encode preferences concerned with object-object interactions in a
score function expressed over a graph. Here y1, ..., y, are different waypoints in a trajectory. The shaded
nodes corresponds to environment (table node not shown here). Edges denotes interaction between nodes.

property m or not. For example, if the set of possible properties are {heavy, fragile, sharp, hot,
liquid, electronic}, then a laptop and a glass table can have labels [0, 1,0,0,0, 1] and [0, 1,0, 0, 0, 0]
respectively. The binary variables {} and 17 indicates whether oy, and 0 possess property p and ¢ re-
spectivelyﬂ Then, for every (y;, o) edge, we extract following four features ¢, (y;, or): projection
of minimum distance to collision along x, y and z (vertical) axis and a binary variable, that is 1, if
oy lies vertically below o0, 0 otherwise.

We now define the score s (+) over this graph as follows:

M
so(w,yiwo) = > Y Wlwyg - boo(ys, 0n)] 3)
(yj,06)€EE Pg=1
Here, the weight vector w,,, captures interaction between objects with properties p and g. We obtain
wo in eq. () by concatenating vectors w,,,. More formally, if the vector at position i of wo is Wy,
then the vector corresponding to position i of ¢ (z,y) will be Z(yj7ok)€g LAY (oo (Y, 0k)].-

4.2 Trajectory Features

We now describe features, ¢ (z, y), obtained by performing operations on a set of waypoints. They
comprise the following three types of the features:

Robot Arm Configurations. While a robot can reach the same operational space configuration for
its wrist with different configurations of the arm, not all of them are preferred [38]. For example,
the contorted way of holding the flowervase shown in Figure 2] may be fine at that time instant, but
would present problems if our goal is to perform an activity with it, e.g. packing it after checkout.
Furthermore, humans like to anticipate robots move and to gain users’ confidence, robot should
produce predictable and legible robot motion [8].

We compute features capturing robot’s arm configuration using the location of its elbow and wrist,
w.r.t. to its shoulder, in cylindrical coordinate system, (r,6,z). We divide a trajectory into three
parts in time and compute 9 features for each of the parts. These features encode the maximum and
minimum 7, 6 and z values for wrist and elbow in that part of the trajectory, giving us 6 features.
Since at the limits of the manipulator configuration, joint locks may happen, therefore we also add 3
features for the location of robot’s elbow whenever the end-effector attains its maximum 7, 6 and z
values respectively. Therefore obtaining ¢;.opet(+) € R? (3+3+3=9) features for each one-third part
and ¢,.opot(+) € R?7 for the complete trajectory.

Orientation and Temporal Behavior of the Object to be Manipulated. Object orientation during
the trajectory is crucial in deciding its quality. For some tasks, the orientation must be strictly
maintained (e.g., moving a cup full of coffee); and for some others, it may be necessary to change
it in a particular fashion (e.g., pouring activity). Different parts of the trajectory may have different
requirements over time. For example, in the placing task, we may need to bring the object closer to
obstacles and be more careful.

We therefore divide trajectory into three parts in time. For each part we store the cosine of the
object’s maximum deviation, along the vertical axis, from its final orientation at the goal location.
To capture object’s oscillation along trajectory, we obtain a spectrogram for each one-third part for

3In this work, our goal is to relax the assumption of unbiased and close to optimal feedback. We therefore
assume complete knowledge of the environment for our algorithm, and for the algorithms we compare against.
In practice, such knowledge can be extracted using an object attribute labeling algorithm such as in [[19]].



the movement of the object in z, y, z directions as well as for the deviation along vertical axis (e.g.
Figure[3). We then compute the average power spectral density in the low and high frequency part
as eight additional features for each. This gives us 9 (=1+4%*2) features for each one-third part.
Together with one additional feature of object’s maximum deviation along the whole trajectory, we
get gop; (1) € R?8 (=9%3+1).

Object-Environment Interactions. This feature cap-
tures temporal variation of vertical and horizontal dis-
tances of the object o from its surrounding surfaces. In
detail, we divide the trajectory into three equal parts, and
for each part we compute object’s: (i) minimum vertical
distance from the nearest surface below it. (ii) minimum
horizontal distance from the surrounding surfaces; and
(iii) minimum distance from the table, on which the task
is being performed, and (iv) minimum distance from the
goal location. We also take an average, over all the way-
points, of the horizontal and vertical distances between : 7 ! |
the object and the nearest surfaces around itE| To capture Figure 3: (Top) A and bad trajectory
temporal variation of object’s distance from its surround-  for moving a mug. The bad trajectory un-
ing we plot a time-frequency spectrogram of the object’s  dergoes ups-and-downs. (Bottom) Spectro-
vertical distance from the nearest surface below it, from grams for movement in z-direction: (Right)
which we extract six features by dividing it into grids. trajectory, (Left) Bad trajectory.

This feature is expressive enough to differentiate whether

an object just grazes over table’s edge (steep change in vertical distance) versus, it first goes up and
over the table and then moves down (relatively smoother change). Thus, the features obtained from
object-environment interaction are Gopj—eny (-) € R?0 (3*442+6=20).

Final feature vector is obtained by concatenating obj—enwv> Pob; and @ropot, £IVINg us @ g() € R7®,

4.3 Computing Trajectory Rankings

For obtaining the top trajectory (or a top few) for a given task with context x, we would like to
maximize the current scoring function s(x, y; wo, wg).

Y= argmgXS(w,y;WO,wE)- 4)

Note that this poses two challenges. First, trajectory space is continuous and needs to be discretized
to maintain argmax in (@) tractable. Second, for a given set {y(l), ey y(")} of discrete trajectories,
we need to compute (@). Fortunately, the latter problem is easy to solve and simply amounts to sort-
ing the trajectories by their trajectory scores s(z, y D wo,w r). Two effective ways of solving the
former problem is either discretizing the robot’s configuration space or directly sampling trajectories
from the continuous space. Previously both approaches [3| 4, |6, 36] have been studied. However,
for high DoF manipulators sampling based approaches [4, /6] maintains tractability of the problem,
hence we take this approach. More precisely, similar to Berg et al. [4]], we sample trajectories us-
ing rapidly-exploring random tree (RRT) [20]E| Since our primary goal is to learn a score function
on sampled set of trajectories we now describe our learning algorithm and for more literature on
sampling trajectories we refer the readers to [9].

4.4 Learning the Scoring Function

The goal is to learn the parameters wo and wg of the scoring function s(z, y; wo, wg) so that it
can be used to rank trajectories according to the user’s preferences. To do so, we adapt the Pref-
erence Perceptron algorithm [31] as detailed in Algorithm [T} We call this algorithm the Trajectory
Preference Perceptron (TPP). Given a context xy, the top-ranked trajectory y; under the current pa-
rameters wo and wg, and the user’s feedback trajectory y;, the TPP updates the weights in the
direction ¢o (1, 9t) — po (w1, yt) and ¢g (1, Yi) — o1 (71, y:) respectively.

Despite its simplicity and even though the algorithm typically does not receive the optimal tra-
jectory yf = argmax, s*(x¢,y) as feedback, the TPP enjoys guarantees on the regret [31]]. We
merely need to characterize by how much the feedback improves on the presented ranking us-
ing the following definition of expected a-informative feedback: E;[s*(z¢,§:)] > s™(ze,y:) +

“We query PQP collision checker plugin of OpenRave for these distances.

SWhen RRT becomes too slow, we switch to a more efficient bidirectional-RRT. The cost function (or
its approximation) we learn can be fed to trajectory optimizers like CHOMP [29] or optimal planners like
RRT* [15] to produce reasonably good trajectories.



a(s*(z,y7) — s*(x4,y:)) — &. This definition states that the user feedback should have a
score of g that is—in expectation over the users choices—higher than that of y, by a fraction
a € (0,1] of the maximum possible range s*(x¢, %) — s*(x¢,y¢). If this condition is not ful-
filled due to bias in the feedback, the slack variable &; captures the amount of violation. In this
way any feedback can be described by an appropriate combination of o and &. Using these
two parameters, the proof by [31] can be adapted to show that the expected average regret of

the TPP is upper bounded by E[REGr] < O(ﬁ + L ZZ;I &;) after T rounds of feedback.

5 Experiments and Results

. . Algorithm 1 Trajectory Preference Perceptron. (TPP)
We now describe our data set, baseline al-

gorithms and the evaluation metrics we use. Initialize wg )0, wg) 0

Following this, we present quantitative re- fort =1toT do

sults (Section[5.2) and report robotic exper- Sample trajectories {y*), ..., y("1

iments on Baxter (Section[5.3). y, = argmaz,s(z,, ij(Ot)’ wg))

5.1 Experimental Setup O?ttilll)l user f(?;adback Yt

Task and Activity Set for Evaluation. We wo' s wy + do(xe, i) — o (@, ye)
evaluate our approach on 16 pick-and-place wgﬂ) — wg) + ¢p(xe, Gt) — dr(xe, yt)
robotic tasks in a grocery store checkout end for

setting. To assess generalizability of our
approach, for each task we train and test on scenarios with different objects being manipulated,
and/or with a different environment. We evaluate the quality of trajectories after the robot has
grasped the items and while it moves them for checkout. Our work complements previous works on
grasping items [30} 21]], pick and place tasks [11]], and detecting bar code for grocery checkout [16].
We consider following three commonly occurring activities in a grocery store:

1) Manipulation centric: These activities primarily care for the object being manipulated. Hence
the object’s properties and the way robot moves it in the environment is more relevant. Examples
include moving common objects like cereal box, Figure [ (left), or moving fruits and vegetables,
which can be damaged when dropped/pushed into other items.

2) Environment centric: These activities also care for the interactions of the object being manipulated
with the surrounding objects. Our object-object interaction features allow the algorithm to learn
preferences on trajectories for moving fragile objects like glasses and egg cartons, Figure[](middle).
3) Human centric: Sudden movements by the robot put the human in a danger of getting hurt. We
consider activities where a robot manipulates sharp objects, e.g., moving a knife with a human in
vicinity as shown in Figure[d](right). In previous work, such relations were considered in the context
of scene understanding [10 [12]].

Baseline algorithms. We evaluate the algorithms that learn preferences from online feedback, under
two settings: (a) untrained, where the algorithms learn preferences for the new task from scratch
without observing any previous feedback; (b) pre-trained, where the algorithms are pre-trained on
other similar tasks, and then adapt to the new task. We compare the following algorithms:

Geometric: It plans a path, independent of the task, using a BiRRT [20] planner.

Manual: 1t plans a path following certain manually coded preferences.

TPP: This is our algorithm. We evaluate it under both, untrained and pre-trained settings.
Oracle-svm: This algorithm leverages the expert’s labels on trajectories (hence the name Oracle)
and is trained using SVM-rank [[13] in a batch manner. This algorithm is not realizable in practice,
as it requires labeling on the large space of trajectories. We use this only in pre-trained setting
and during prediction it just predicts once and does not learn further.

o MMP-online: This is an online implementation of Maximum margin planning (MMP) [26, 28]
algorithm. MMP attempts to make an expert’s trajectory better than any other trajectory by a

Figure 4: (Left) Manipulation centric: a box of cornflakes doesn’t interact much with surrounding items and is
indifferent to orientation. (Middle) Environment centric: an egg carton is fragile and should preferably be kept
upright and closer to a supporting surface. (Right) Human centric: a knife is sharp and interacts with nearby
soft items and humans. It should strictly be kept at a safe distance from humans.
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margin, and can be interpreted as a special case of our algorithm with 1-informative feedback.
However, adapting MMP to our experiments poses two challenges: (i) we do not have knowledge
of optimal trajectory; and (ii) the state space of the manipulator we consider is too large, and
discretizing makes learning via MMP intractable. We therefore train MMP from online user
feedback observed on a set of trajectories. We further treat the observed feedback as optimal.
At every iteration we train a structural support vector machine (SSVM) [14] using all previous
feedback as training examples, and use the learned weights to predict trajectory scores for the
next iteration. Since we learn on a set of trajectories, the argmax operation in SSVM remains
tractable. We quantify closeness of trajectories by the [o—norm of difference in their feature
representations, and choose the regularization parameter C' for training SSVM in hindsight, to
give an unfair advantage to MMP-online.

Evaluation metrics. In addition to performing a user study on Baxter robot (Section [5.3)), we also
designed a data set to quantitatively evaluate the performance of our online algorithm. An expert
labeled 1300 trajectories on a Likert scale of 1-5 (where 5 is the best) on the basis of subjective
human preferences. Note that these absolute ratings are never provided to our algorithms and are
only used for the quantitative evaluation of different algorithms. We quantify the quality of a ranked
list of trajectories by its normalized discounted cumulative gain (nDCG) [24] at positions 1 and 3.
While nDCG@1 is a suitable metric for autonomous robots that execute the top ranked trajectory,
nDCG @3 is suitable for scenarios where the robot is supervised by humans.

5.2 Results and Discussion

We now present the quantitative results on the data set of 1300 labeled trajectories.

How well does TPP generalize to new tasks? To study generalization of preference feedback
we evaluate performance of TPP-pre-trained (i.e., TPP algorithm under pre-trained setting) on a
set of tasks the algorithm has not seen before. We study generalization when: (a) only the object
being manipulated changes, e.g., an egg carton replaced by tomatoes, (b) only the surrounding
environment changes, e.g., rearranging objects in the environment or changing the start location of
tasks, and (c) when both change. Figure[5|shows nDCG@3 plots averaged over tasks for all types of
activitiesE] TPP-pre-trained starts-off with higher nDCG@3 values than TPP-untrained in all three
cases. Further, as more feedback is received, performance of both algorithms improve to eventually
become (almost) identical. We further observe, generalizing to tasks with both new environment
and object is harder than when only one of them changes.

How does TPP compare to other al- 7able I1: Comparison of different algorithms and study
gorithms? Despite the fact that TPP of features in untrained setting. Table contains average
never observes optimal feedback, it per- nDCG@1(nDCG @3) values over 20 rounds of feedback.

Manipulation  Environment Human

form; better thap baseline algorithms, Algorithms 0D eentric conie  Mean

see Figure[5] It improves over Oracle- Geometric ™ 0.46 <gg§; 0 <8.39; o3t (8:(1); 040 Egg%
- . Manual .61 (0. .77 (0.77 .33 (0.2 .57 (0.57)

SVM in less than 5 feedbacks, which Obj-obj Interaction  0.68 (0.68)  0.80(0.79) 079 (0.73) 0.76 (0.74)

is not updated since it requires expert’s Robotarm config ~ 0.82(0.77)  0.78(0.72) ~ 0.80 (0.69) 0.80(0.73)
Object trajectory ~ 0.85 (0.81)  0.88 (0.84)  0.85 (0.72) 0.86 (0.79)

I?Ibels on test set. and hence it is imprac- Object environment ~ 0.70 (0.69)  0.75(0.74)  0.81 (0.65) 0.75 (0.69)
tical. MMP-online assumes every user T Vb onim 047 nggg; 034 (0.56) 033 (0.30) 045 (0.46)
feedback as optimal, and over iterations

accumulates many contradictory training examples. This also highlights the sensitivity of MMP to
sub-optimal demonstrations. We also compare against planners with manually coded preferences
e.g., keep a flowervase upright. However, some preferences are difficult to specify, e.g., not to move
heavy objects over fragile items. We empirically found the resulting manual algorithm produces
poor trajectories with an average nDCG@3 of 0.57 over all types of activities.

How helpful are different features? Table[I|shows the performance of the TPP algorithm in the un-
trained setting using different features. Individually each feature captures several aspects indicating
goodness of trajectories, and combined together they give the best performance. Object trajectory
features capture preferences related to the orientation of the object. Robot arm configuration and
object environment features capture preferences by detecting undesirable contorted arm configura-
tions and maintaining safe distance from surrounding surfaces, respectively. Object-object features
by themselves can only learn, for example, to move egg carton closer to a supporting surface, but
might still move it with jerks or contorted arms. These features can be combined with other features
to yield more expressive features. Nevertheless, by themselves they perform better than Manual
algorithm. Table[I|also compares TPP and MMP-online under untrained setting.

TPP
Features

8Similar results were obtained with nDCG@ 1 metric. We have not included it due to space constraints.
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Figure 5: Study of generalization with change in object, environment and both. Manual, Oracle-SVM, Pre-
trained MMP-online (—), Untrained MMP-online (— -), Pre-trained TPP (—), Untrained TPP (- -).

5.3 Robotic Experiment: User Study in learning trajectories

We perform a user study of our system on Baxter robot on a variety of tasks of varying difficulties.
Thereby, showing our approach is practically realizable, and that the combination of re-rank and
zero-G feedbacks allows the users to train the robot in few feedbacks.

Experiment setup: In this study, five users (not associated with this work) used our system to
train Baxter for grocery checkout tasks, using zero-G and re-rank feedback. Zero-G was provided
kinesthetically on the robot, while re-rank was elicited in a simulator (on a desktop computer). A set
of 10 tasks of varying difficulty level was presented to users one at a time, and they were instructed
to provide feedback until they were satisfied with the top ranked trajectory. To quantify the quality
of learning each user evaluated their own trajectories (self score), the trajectories learned of the other
users (cross score), and those predicted by Oracle-svm, on a Likert scale of 1-5 (where 5 is the best).
We also recorded the time a user took for each task—from start of training till the user was satisfied.
Results from user study. The study

Table 2: Shows learning statistics for each user averaged over
shows each user on an average took 3 re-

all tasks. The number in parentheses is standard deviation.

rank and 2 zero-G feedbacks to train Bax- #Re-ranking #Zero-G  Average Trajectory Quality
ter (Table Q) Within 5 feedbacks the users User feedback feedback  time (min.) self cross

were able to improve over Oracle-svm, é ?-g E‘I‘(l); ?3 8‘3‘; 1-2 E‘l‘gz Z-g E?g; ‘3“282‘;
Fig.[6] (Left), consistent with our previous 3 2908  2020) 5029 4407 32012
analysis. Re-rank feedback was popular 4 3.2(2.0) 1509 5309 30012 371.0)
for easier tasks, Fig.[|(Right). Howeveras 5 3600) 1921 50023 3503 33(06)
difficulty increased the users relied more 5o

on zero-G feedback, which allows recti- 45 /l

fying erroneous waypoints precisely. An  £39 | \ \ -

average difference of 0.6 between users’ 330 | —a g

self and cross score suggests preferences E;Z %

marginally varied across the users. a5

- . . 0 1/3 2/3 2
In terms of training time, each user took #Feedback/#Total Feedback Task No.

on average 5.5 minutes per-task, which we  Figure 6: (Left) Average quality of the learned trajectory af-

believe is acceptable for most applications' ter every one-third of total feedback. (Right) Bar chart show-
Future research in human computer inter- ing the average number of feedback and time required for

action. visualization and better user inter- cach task. Task difficulty increases from 1 to 10.

face [32] could further reduce this time. Despite its limited size, through user study we show our
algorithm is realizable in practice on high DoF manipulators. We hope this motivates researchers to
build robotic systems capable of learning from non-expert users.

For more details and video, please visit: http://pr.cs.cornell.edu/coactive

6 Conclusion

In this paper we presented a co-active learning framework for training robots to select trajectories
that obey a user’s preferences. Unlike in standard learning from demonstration approaches, our
framework does not require the user to provide optimal trajectories as training data, but can learn
from iterative improvements. Despite only requiring weak feedback, our TPP learning algorithm has
provable regret bounds and empirically performs well. In particular, we propose a set of trajectory
features for which the TPP generalizes well on tasks which the robot has not seen before. In addition
to the batch experiments, robotic experiments confirmed that incremental feedback generation is
indeed feasible and that it leads to good learning results already after only a few iterations.
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