
Efficient Exploration and Value Function
Generalization in Deterministic Systems

Zheng Wen
Stanford University

zhengwen@stanford.edu

Benjamin Van Roy
Stanford University

bvr@stanford.edu

Abstract

We consider the problem of reinforcement learning over episodes of a finite-
horizon deterministic system and as a solution propose optimistic constraint prop-
agation (OCP), an algorithm designed to synthesize efficient exploration and
value function generalization. We establish that when the true value function Q⇤

lies within the hypothesis class Q, OCP selects optimal actions over all but at most
dimE[Q] episodes, where dimE denotes the eluder dimension. We establish fur-
ther efficiency and asymptotic performance guarantees that apply even if Q⇤ does
not lie in Q, for the special case where Q is the span of pre-specified indicator
functions over disjoint sets.

1 Introduction

A growing body of work on efficient reinforcement learning provides algorithms with guarantees
on sample and computational efficiency [13, 6, 2, 22, 4, 9]. This literature highlights the point that
an effective exploration scheme is critical to the design of any efficient reinforcement learning al-
gorithm. In particular, popular exploration schemes such as ✏-greedy, Boltzmann, and knowledge
gradient can require learning times that grow exponentially in the number of states and/or the plan-
ning horizon.

The aforementioned literature focuses on tabula rasa learning; that is, algorithms aim to learn with
little or no prior knowledge about transition probabilities and rewards. Such algorithms require
learning times that grow at least linearly with the number of states. Despite the valuable insights
that have been generated through their design and analysis, these algorithms are of limited practical
import because state spaces in most contexts of practical interest are enormous. There is a need for
algorithms that generalize from past experience in order to learn how to make effective decisions in
reasonable time.

There has been much work on reinforcement learning algorithms that generalize (see, e.g.,
[5, 23, 24, 18] and references therein). Most of these algorithms do not come with statistical or
computational efficiency guarantees, though there are a few noteworthy exceptions, which we now
discuss. A number of results treat policy-based algorithms (see [10, 3] and references therein), in
which the goal is to select high-performers among a pre-specified collection of policies as learn-
ing progresses. Though interesting results have been produced in this line of work, each entails
quite restrictive assumptions or does not make strong guarantees. Another body of work focuses
on model-based algorithms. An algorithm is proposed in [12] that fits a factored model to observed
data and makes decisions based on the fitted model. The authors establish a sample complexity
bound that is polynomial in the number of model parameters rather than the number of states, but
the algorithm is computationally intractable because of the difficulty of solving factored MDPs. A
recent paper [14] proposes a novel algorithm for the case where the true environment is known to
belong to a finite or compact class of models, and shows that its sample complexity is polynomial
in the cardinality of the model class if the model class is finite, or the ✏-covering-number if the

1

model class is compact. Though this result is theoretically interesting, for most model classes of
interest, the ✏-covering-number is enormous since it typically grows exponentially in the number of
free parameters. Another recent paper [17] establishes a regret bound for an algorithm that applies
to problems with continuous state spaces and Hölder-continuous rewards and transition kernels.
Though the results represent an interesting contribution to the literature, a couple features of the
regret bound weaken its practical implications. First, regret grows linearly with the Hölder constant
of the transition kernel, which for most contexts of practical relevance grows exponentially in the
number of state variables. Second, the dependence on time becomes arbitrarily close to linear as the
dimension of the state space grows. Reinforcement learning in linear systems with quadratic cost
is treated in [1]. The method proposed is shown to realize regret that grows with the square root
of time. The result is interesting and the property is desirable, but to the best of our knowledge,
expressions derived for regret in the analysis exhibit an exponential dependence on the number of
state variables, and further, we are not aware of a computationally efficient way of implementing the
proposed method. This work was extended by [8] to address linear systems with sparse structure.
Here, there are efficiency guarantees that scale gracefully with the number of state variables, but
only under sparsity and other technical assumptions.

The most popular approach to generalization in the applied reinforcement learning literature involves
fitting parameterized value functions. Such approaches relate closely to supervised learning in that
they learn functions from state to value, though a difference is that value is influenced by action
and observed only through delayed feedback. One advantage over model learning approaches is
that, given a fitted value function, decisions can be made without solving a potentially intractable
control problem. We see this as a promising direction, though there currently is a lack of theoretical
results that provide attractive bounds on learning time with value function generalization. A relevant
paper along this research line is [15], which studies the efficient reinforcement learning with value
function generalization in the KWIK framework (see [16]), and reduces the efficient reinforcement
learning problem to the efficient KWIK online regression problem. However, the authors do not
show how to solve the general KWIK online regression problem efficiently, and it is not even clear
whether this is possible. Thus, though the result of [15] is interesting, it does not provide a provably
efficient algorithm.

An important challenge that remains is to couple exploration and value function generalization in
a provably effective way, and in particular, to establish sample and computational efficiency guar-
antees that scale gracefully with the planning horizon and model complexity. In this paper, we aim
to make progress in this direction. To start with a simple context, we restrict our attention to deter-
ministic systems that evolve over finite time horizons, and we consider episodic learning, in which
an agent repeatedly interacts with the same system. As a solution to the problem, we propose opti-
mistic constraint propagation (OCP), a computationally efficient reinforcement learning algorithm
designed to synthesize efficient exploration and value function generalization. We establish that
when the true value function Q⇤ lies within the hypothesis class Q, OCP selects optimal actions
over all but at most dimE[Q] episodes. Here, dimE denotes the eluder dimension, which quantifies
complexity of the hypothesis class. A corollary of this result is that regret is bounded by a function
that is constant over time and linear in the problem horizon and eluder dimension.

To put our aforementioned result in perspective, it is useful to relate it to other lines of work.
Consider first the broad area of reinforcement learning algorithms that fit value functions, such
as SARSA [19]. Even with the most commonly used sort of hypothesis class Q, which is made
up of linear combinations of fixed basis functions, and even when the hypothesis class contains the
true value function Q⇤, there are no guarantees that these algorithms will efficiently learn to make
near-optimal decisions. On the other hand, our result implies that OCP attains near-optimal per-
formance in time that scales linearly with the number of basis functions. Now consider the more
specialized context of a deterministic linear system with quadratic cost and a finite time horizon.
The analysis of [1] can be leveraged to produce regret bounds that scale exponentially in the number
of state variables. On the other hand, using a hypothesis space Q consisting of quadratic functions
of state-action pairs, the results of this paper show that OCP behaves near optimally within time that
scales quadratically in the number of state and action variables.

We also establish efficiency and asymptotic performance guarantees that apply to agnostic reinforce-
ment learning, where Q⇤ does not necessarily lie in Q. In particular, we consider the case where Q
is the span of pre-specified indicator functions over disjoint sets. Our results here add to the litera-
ture on agnostic reinforcement learning with such a hypothesis class [21, 25, 7, 26]. Prior work in

2

this area has produced interesting algorithms and insights, as well as bounds on performance loss
associated with potential limits of convergence, but no convergence or efficiency guarantees.

2 Reinforcement Learning in Deterministic Systems

In this paper, we consider an episodic reinforcement learning (RL) problem in which an agent repeat-
edly interacts with a discrete-time finite-horizon deterministic system, and refer to each interaction
as an episode. The system is identified by a sextuple M = (S,A, H, F,R, S), where S is the state
space, A is the action space, H is the horizon, F is a system function, R is a reward function and
S is a sequence of states. If action a 2 A is selected while the system is in state x 2 S at period
t = 0, 1, · · · , H�1, a reward of Rt(x, a) is realized; furthermore, if t < H�1, the state transitions
to Ft(x, a). Each episode terminates at period H � 1, and then a new episode begins. The initial
state of episode j is the jth element of S.

To represent the history of actions and observations over multiple episodes, we will often index
variables by both episode and period. For example, xj,t and aj,t denote the state and action at
period t of episode j, where j = 0, 1, · · · and t = 0, 1, · · · , H � 1. To count the total number of
steps since the agent started learning, we say period t in episode j is time jH + t.

A (deterministic) policy µ = (µ0, . . . , µH�1) is a sequence of functions, each mapping S to A.
For each policy µ, define a value function V µ

t (x) =

PH�1
⌧=t R⌧ (x⌧ , a⌧), where xt = x, x⌧+1 =

F⌧ (x⌧ , a⌧), and a⌧ = µ⌧ (x⌧). The optimal value function is defined by V ⇤
t (x) = supµ V

µ
t (x). A

policy µ⇤ is said to be optimal if V µ⇤
= V ⇤. Throughout this paper, we will restrict attention to

systems M = (S,A, H, F,R, S) that admit optimal policies. Note that this restriction incurs no
loss of generality when the action space is finite.

It is also useful to define an action-contingent optimal value function: Q⇤
t (x, a) = Rt(x, a) +

V ⇤
t+1(Ft(x, a)) for t < H � 1, and Q⇤

H�1(x, a) = RH�1(x, a). Then, a policy µ⇤ is optimal if
µ⇤
t (x) 2 argmaxa2A Q⇤

t (x, a) for all (x, t).

A reinforcement learning algorithm generates each action aj,t based on observations made up to the
tth period of the jth episode, including all states, actions, and rewards observed in previous episodes
and earlier in the current episode, as well as the state space S , action space A, horizon H , and possi-
ble prior information. In each episode, the algorithm realizes reward R(j)

=

PH�1
t=0 Rt (xj,t, aj,t).

Note that R(j) V ⇤
0 (xj,0) for each jth episode. One way to quantify performance of a reinforce-

ment learning algorithm is in terms of the number of episodes JL for which R(j) < V ⇤
0 (xj,0) � ✏,

where ✏ � 0 is a pre-specified performance loss threshold. If the reward function R is bounded,
with |Rt(x, a)| R for all (x, a, t), then this also implies a bound on regret over episodes ex-
perienced prior to time T , defined by Regret(T) =

PbT/Hc�1
j=0 (V ⇤

0 (xj,0) � R(j)
). In particular,

Regret(T) 2RHJL + ✏bT/Hc.

3 Optimistic Constraint Propagation

At a high level, our reinforcement learning algorithm – optimistic constraint propagation (OCP) –
selects actions based on the optimism in the face of uncertainty principle and based on observed
rewards and state transitions propagates constraints backwards through time. Specifically, it takes
as input the state space S , the action space A, the horizon H , and a hypothesis class Q of candi-
dates for Q⇤. The algorithm maintains a sequence of subsets of Q and a sequence of scalar “upper
bounds”, which summarize constraints that past experience suggests for ruling out hypotheses. Each
constraint in this sequence is specified by a state x 2 S , an action a 2 A, a period t = 0, . . . , H�1,
and an interval [L,U] ✓ <, and takes the form {Q 2 Q : L Qt(x, a) U}. The upper bound
of the constraint is U . Given a sequence C = (C1, . . . , C|C|) of such constraints and upper bounds
U = (U1, . . . ,U|C|), a set QC is defined constructively by Algorithm 1. Note that if the constraints
do not conflict then QC = C1 \ · · · \ C|C|. When constraints do conflict, priority is assigned first
based on upper bound, with smaller upper bound preferred, and then, in the event of ties in upper
bound, based on position in the sequence, with more recent experience preferred.

3

Algorithm 1 Constraint Selection
Require: Q, C
QC Q, u minU
while u 1 do

for ⌧ = |C| to 1 do
if U⌧ = u and QC \ C⌧ 6= ? then
QC QC \ C⌧

end if
end for
if {u0 2 U : u0 > u} = ? then

return QC
end if
u min{u0 2 U : u0 > u}

end while

OCP, presented below as Algorithm 2, at each time t computes for the current state xj,t and each
action a the greatest state-action value Qt(xj,t, a) among functions in QC and selects an action that
attains the maximum. In other words, an action is chosen based on the most optimistic feasible out-
come subject to constraints. The subsequent reward and state transition give rise to a new constraint
that is used to update C. Note that the update of C is postponed until one episode is completed.

Algorithm 2 Optimistic Constraint Propagation
Require: S , A, H , Q

Initialize C ?
for episode j = 0, 1, · · · do

Set C0 C
for period t = 0, 1, · · · , H � 1 do

Apply aj,t 2 argmaxa2A supQ2QC Qt(xj,t, a)
if t < H � 1 then
Uj,t supQ2QC (Rt(xj,t, aj,t) + supa2A Qt+1 (xj,t+1, a))
Lj,t infQ2QC (Rt(xj,t, aj,t) + supa2A Qt+1 (xj,t+1, a))

else
Uj,t Rt(xj,t, aj,t)
Lj,t Rt(xj,t, aj,t)

end if
C0 C0 _ {Q 2 Q : Lj,t Qt(xj,t, aj,t) Uj,t}

end for
Update C C0

end for

Note that if Q⇤ 2 Q then each constraint appended to C does not rule out Q⇤, and therefore, the
sequence of sets QC generated as the algorithm progresses is decreasing and contains Q⇤ in its
intersection. In the agnostic case, where Q⇤ may not lie in Q, new constraints can be inconsistent
with previous constraints, in which case selected previous constraints are relaxed as determined by
Algorithm 1.

Let us briefly discuss several contexts of practical relevance and/or theoretical interest in which OCP
can be applied.

• Finite state/action tabula rasa case. With finite state and action spaces, Q⇤ can be repre-
sented as a vector, and without special prior knowledge, it is natural to let Q = <|S|·|A|·H .

• Polytopic prior constraints. Consider the aforementioned example, but suppose that we
have prior knowledge that Q⇤ lies in a particular polytope. Then we can let Q be that
polytope and again apply OCP.

• Linear systems with quadratic cost (LQ). In this classical control model, if S = <n,
A = <m, and R is a positive semidefinite quadratic, then for each t, Q⇤

t is known to be a

4

positive semidefinite quadratic, and it is natural to let Q = QH
0 with Q0 denoting the set of

positive semidefinite quadratics.

• Finite hypothesis class. Consider a context when we have prior knowledge that Q⇤ can
be well approximated by some element in a finite hypothesis class. Then we can let Q be
that finite hypothesis class and apply OCP. This scenario is of particular interest from the
perspective of learning theory. Note that this context entails agnostic learning, which is
accommodated by OCP.

• Linear combination of features. It is often effective to hand-select a set of features
�1, . . . ,�K , each mapping S ⇥ A to <, and, then for each t, aiming to compute weights
✓(t) 2 <K so that

P
k ✓

(t)
k �k approximates Q⇤

t without knowing for sure that Q⇤
t lies

in the span of the features. To apply OCP here, we would let Q = QH
0 with Q0 =

span(�1, . . . ,�K). Note that this context also entails agnostic learning.

• Sigmoid. If it is known that rewards are only received upon transitioning to the terminal
state and take values between 0 and 1, it might be appropriate to use a variation of the
aforementioned feature based model that applies a sigmoidal function to the linear combi-
nation. In particular, we could have Q = QH

0 with Q0 =

�
 (

P
k ✓k�k(·)) : ✓ 2 <K

,

where (z) = ez/(1 + ez).

It is worth mentioning that OCP, as we have defined it, assumes that an action a maximizing
supQ2QC Qt(xj,t, a) exists in each iteration. It is not difficult to modify the algorithm so that it
addresses cases where this is not true. But we have not presented the more general form of OCP in
order to avoid complicating this short paper.

4 Sample Efficiency of Optimistic Constraint Propagation

We now establish results concerning the sample efficiency of OCP. Our results bound the time it
takes OCP to learn, and this must depend on the complexity of the hypothesis class. As such, we
begin by defining the eluder dimension, as introduced in [20], which is the notion of complexity we
will use.

4.1 Eluder Dimension

Let Z = {(x, a, t) : x 2 S, a 2 A, t = 0, . . . , H � 1} be the set of all state-action-period triples,
and let Q denote a nonempty set of functions mapping Z to <. For all (x, a, t) 2 Z and ˜Z ✓ Z ,
(x, a, t) is said to be dependent on ˜Z with respect to Q if any pair of functions Q, ˜Q 2 Q that are
equal on ˜Z are equal at (x, a, t). Further, (x, a, t) is said to be independent of ˜Z with respect to Q
if (x, a, t) is not dependent on ˜Z with respect to Q.

The eluder dimension dimE[Q] of Q is the length of the longest sequence of elements in Z such that
every element is independent of its predecessors. Note that dimE[Q] can be zero or infinity, and it
is straightforward to show that if Q1 ✓ Q2 then dimE[Q1] dimE[Q2]. Based on results of [20],
we can characterize the eluder dimensions of various hypothesis classes presented in the previous
section.

• Finite state/action tabula rasa case. If Q = <|S|·|A|·H , then dimE[Q] = |S| · |A| ·H .

• Polytopic prior constraints. If Q is a polytope of dimension d in <|S|·|A|·H , then
dimE[Q] = d.

• Linear systems with quadratic cost (LQ). If Q0 is the set of positive semidefinite quadrat-
ics with domain <m+n and Q = QH

0 , then dimE[Q] = (m+ n+ 1)(m+ n)H/2.

• Finite hypothesis space. If |Q| <1, then dimE[Q] |Q|� 1.

• Linear combination of features. If Q = QH
0 with Q0 = span(�1, . . . ,�K), then

dimE[Q] KH .

• Sigmoid. If Q = QH
0 with Q0 =

�
 (

P
k ✓k�k(·)) : ✓ 2 <K

, then dimE[Q] KH .

5

4.2 Learning with a Coherent Hypothesis Class

We now present results that apply when OCP is presented with a coherent hypothesis class; that is,
where Q⇤ 2 Q. Our first result establishes that OCP can deliver less than optimal performance in
no more than dimE[Q] episodes.

Theorem 1 For any system M = (S,A, H, F,R, S), if OCP is applied with Q⇤ 2 Q, then |{j :

R(j) < V ⇤
0 (xj,0)}| dimE[Q].

This theorem follows from an “exploration-exploitation lemma”, which asserts that in each episode,
OCP either delivers optimal reward (exploitation) or introduces a constraint that reduces the eluder
dimension of the hypothesis class by one (exploration). Consequently, OCP will experience sub-
optimal performance in at most dimE[Q] episodes. A complete proof is provided in the appendix.
An immediate corollary bounds regret.

Corollary 1 For any R, any system M = (S,A, H, F,R, S) with sup(x,a,t) |Rt(x, a)| R, and
any T , if OCP is applied with Q⇤ 2 Q, then Regret(T) 2RHdimE[Q].

Note the regret bound in Corollary 1 does not depend on time T , thus, it is an O (1) bound. Further-
more, this regret bound is linear in R, H and dimE[Q], and does not directly depend on |S| or |A|.
The following results demonstrate that the bounds of the above theorem and corollary are sharp.

Theorem 2 For any reinforcement learning algorithm that takes as input a state space, an action
space, a horizon, and a hypothesis class, there exists a system M = (S,A, H, F,R, S) and a
hypothesis class Q 3 Q⇤ such that |{j : R(j) < V ⇤

0 (xj,0)}| � dimE[Q].

Theorem 3 For any R � 0 and any reinforcement learning algorithm that takes as input a
state space, an action space, a horizon, and a hypothesis class, there exists a system M =

(S,A, H, F,R, S) with sup(x,a,t) |Rt(x, a)| R and a hypothesis class Q 3 Q⇤ such that
supT Regret(T) � 2RHdimE[Q].

A constructive proof of these lower bounds is provided in the appendix. Following our discussion
in previous sections, we discuss several interesting contexts in which the agent knows a coherent
hypothesis class Q with finite eluder dimension.

• Finite state/action tabula rasa case. If we apply OCP in this case, then it will deliver sub-
optimal performance in at most |S|·|A|·H episodes. Furthermore, if sup(x,a,t) |Rt(x, a)|
R, then for any T , Regret(T) 2R|S||A|H2.

• Polytopic prior constraints. If we apply OCP in this case, then it will deliver sub-optimal
performance in at most d episodes. Furthermore, if sup(x,a,t) |Rt(x, a)| R, then for any
T , Regret(T) 2RHd.

• Linear systems with quadratic cost (LQ). If we apply OCP in this case, then it will deliver
sub-optimal performance in at most (m+ n+ 1)(m+ n)H/2 episodes.

• Finite hypothesis class case. Assume that the agent has prior knowledge that Q⇤ 2 Q,
where Q is a finite hypothesis class. If we apply OCP in this case, then it will deliver sub-
optimal performance in at most |Q|�1 episodes. Furthermore, if sup(x,a,t) |Rt(x, a)| R,
then for any T , Regret(T) 2RH [|Q|� 1].

4.3 Agnostic Learning

As we have discussed in Section 3, OCP can also be applied in agnostic learning cases, where Q⇤

may not lie in Q. For such cases, the performance of OCP should depend on not only the complexity
of Q, but also the distance between Q and Q⇤. We now present results when OCP is applied in a
special agnostic learning case, where Q is the span of pre-specified indicator functions over disjoint
subsets. We henceforth refer to this case as the state aggregation case.

6

Specifically, we assume that for any t = 0, 1, · · · , H � 1, the state-action space at period t, Zt =

{(x, a, t) : x 2 S, a 2 A}, can be partitioned into Kt disjoint subsets Zt,1,Zt,2, · · · ,Zt,Kt
, and

use �t,k to denote the indicator function for partition Zt,k (i.e. �t,k(x, a, t) = 1 if (x, a, t) 2 Zt,k,
and �t,k(x, a, t) = 0 otherwise). We define K =

PH�1
t=0 Kt, and Q as

Q = span

�
�0,1,�0,2, · · · ,�0,K0 ,�1,1, · · · ,�H�1,KH�1

. (4.1)

Note that dimE[Q] = K. We define the distance between Q⇤ and the hypothesis class Q as

⇢ = min

Q2Q
kQ�Q⇤k1 = min

Q2Q
sup

(x,a,t)
|Qt(x, a)�Q⇤

t (x, a)|. (4.2)

The following result establishes that with Q and ⇢ defined above, the performance loss of OCP is
larger than 2⇢H(H + 1) in at most K episodes.

Theorem 4 For any system M = (S,A, H, F,R, S), if OCP is applied with Q defined in Eqn(4.1),
then

|{j : R(j) < V ⇤
0 (xj,0)� 2⇢H(H + 1)}| K,

where K is the number of partitions and ⇢ is defined in Eqn(4.2).

Similar to Theorem 1, this theorem also follows from an “exploration-exploitation lemma”, which
asserts that in each episode, OCP either delivers near-optimal reward (exploitation), or approxi-
mately determines Q⇤

t (x, a)’s for all the (x, a, t)’s in a disjoint subset (exploration). A complete
proof for Theorem 4 is provided in the appendix. An immediate corollary bounds regret.

Corollary 2 For any R � 0, any system M = (S,A, H, F,R, S) with sup(x,a,t) |Rt(x, a)| R,
and any time T , if OCP is applied with Q defined in Eqn(4.1), then Regret(T) 2RKH +2⇢(H +

1)T , where K is the number of partitions and ⇢ is defined in Eqn(4.2).

Note that the regret bound in Corollary 2 is O (T), and the coefficient of the linear term is 2⇢(H+1).
Consequently, if Q⇤ is close to Q, then the regret will increase slowly with T . Furthermore, the
regret bound in Corollary 2 does not directly depend on |S| or |A|.

We further notice that the threshold performance loss in Theorem 4 is O
�
⇢H2

�
. The following

proposition provides a condition under which the performance loss in one episode is O (⇢H).

Proposition 1 For any episode j, if 8t = 0, 1, · · · , H � 1,

QC ✓ {Q 2 Q : Lj,t Qt(xj,t, aj,t) Uj,t} ,

then we have V ⇤
0 (xj,0)�R(j) 6⇢H = O (⇢H).

That is, if all the new constraints in an episode are redundant, then the performance loss in that
episode is O (⇢H). Note that if the condition for Proposition 1 holds in an episode, then QC will
not be modified at the end of that episode. Furthermore, if the system has a fixed initial state and
the condition for Proposition 1 holds in one episode, then it will hold in all the subsequent episodes,
and consequently, the performance losses in all the subsequent episodes are O (⇢H).

5 Computational Efficiency of Optimistic Constraint Propagation

We now briefly discuss the computational complexity of OCP. As typical in the complexity analysis
of optimization algorithms, we assume that basic operations include the arithmetic operations, com-
parisons, and assignment, and measure computational complexity in terms of the number of basic
operations (henceforth referred to as operations) per period.

First, it is worth pointing out that for a general hypothesis class Q and general action space A, the
per period computations of OCP can intractable. This is because:

• Computing supQ2QC Qt(xj,t, a), Uj,t and Lj,t requires solving a possibly intractable op-
timization problems.

7

• Selecting an action that maximizes supQ2QC Qt(xj,t, a) can be intractable.

Further, the number of constraints in C, and with it the number of operations per period, can grow
over time.

However, if |A| is tractably small and Q has some special structures (e.g. Q is a finite set or a
linear subspace or, more generally a polytope), then by discarding some “redundant” constraints in
C, OCP with a variant of Algorithm 1 will be computationally efficient, and the sample efficiency
results developed in Section 4 will still hold. Due to space limitations, we only discuss the scenario
where Q is a polytope of dimension d. Note that the finite state/action tabula rasa case, the linear-
quadratic case, and the case with linear combinations of disjoint indicator functions are all special
cases of this scenario.

Specifically, if Q is a polytope of dimension d (i.e., within a d-dimensional subspace), then any
Q 2 Q can be represented by a weight vector ✓ 2 <d, and Q can be characterized by a set of linear
inequalities of ✓. Furthermore, the new constraints of the form Lj,t Qt(xj,t, aj,t) Uj,t are also
linear inequalities of ✓. Hence, in each episode, QC is characterized by a polyhedron in <d, and
supQ2QC Qt(xj,t, a), Uj,t and Lj,t can be computed by solving linear programming (LP) problems.
If we assume that all the encountered numerical values can be represented with B bits, and LPs
are solved by Karmarkar’s algorithm [11], then the following proposition bounds the computational
complexity.

Proposition 2 If Q is a polytope of dimension d, each numerical value in the problem data
or observed in the course of learning can be represented with B bits, and OCP uses Kar-
markar’s algorithm to solve linear programs, then the computational complexity of OCP is
O
�
[|A|+ |C|] |C|d4.5B

�
operations per period.

The proof of Proposition 2 is provided in the appendix. Notice that the computational complexity
is polynomial in d, B, |C| and |A|, and thus, OCP will be computationally efficient if all these
parameters are tractably small. Note that the bound in Proposition 2 is a worst-case bound, and
the O(d4.5) term is incurred by the need to solve LPs. For some special cases, the computational
complexity is much less. For instance, in the state aggregation case, the computational complexity
is O (|C|+ |A|+ d) operations per period.

As we have discussed above, one can ensure that |C| remains bounded by using variants of Algo-
rithm 1 that discard the redundant constraints and/or update QC more efficiently. Specifically, it is
straightforward to design such constraint selection algorithms if Q is a coherent hypothesis class, or
if Q is the span of pre-specified indicator functions over disjoint sets. Furthermore, if the notion of
redundant constraints is properly defined, the sample efficiency results derived in Section 4 will still
hold.

6 Conclusion

We have proposed a novel reinforcement learning algorithm, called optimistic constraint propagation
(OCP), that synthesizes efficient exploration and value function generalization for reinforcement
learning in deterministic systems. We have shown that OCP is sample efficient if Q⇤ lies in the given
hypothesis class, or if the given hypothesis class is the span of pre-specified indicator functions over
disjoint sets.

It is worth pointing out that for more general reinforcement learning problems, how to design prov-
ably sample efficient algorithms with value function generalization is currently still open. For in-
stance, it is not clear how to establish such algorithms for the general agnostic learning case dis-
cussed in this paper, as well as for reinforcement learning in MDPs. One interesting direction for
future research is to extend OCP, or a variant of it, to these two problems.

References
[1] Yasin Abbasi-Yadkori and Csaba Szepesvári. Regret bounds for the adaptive control of linear

quadratic systems. Journal of Machine Learning Research - Proceedings Track, 19:1–26, 2011.

8

[2] Peter Auer and Ronald Ortner. Logarithmic online regret bounds for undiscounted reinforce-
ment learning. In NIPS, pages 49–56, 2006.

[3] Mohammad Gheshlaghi Azar, Alessandro Lazaric, and Emma Brunskill. Regret bounds for
reinforcement learning with policy advice. CoRR, abs/1305.1027, 2013.

[4] Peter L. Bartlett and Ambuj Tewari. REGAL: A regularization based algorithm for reinforce-
ment learning in weakly communicating MDPs. In Proceedings of the 25th Conference on
Uncertainty in Artificial Intelligence (UAI2009), pages 35–42, June 2009.

[5] Dimitri P. Bertsekas and John Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific,
September 1996.

[6] Ronen I. Brafman and Moshe Tennenholtz. R-max - a general polynomial time algorithm
for near-optimal reinforcement learning. Journal of Machine Learning Research, 3:213–231,
2002.

[7] Geoffrey Gordon. Online fitted reinforcement learning. In Advances in Neural Information
Processing Systems 8, pages 1052–1058. MIT Press, 1995.

[8] Morteza Ibrahimi, Adel Javanmard, and Benjamin Van Roy. Efficient reinforcement learning
for high dimensional linear quadratic systems. In NIPS, 2012.

[9] Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 11:1563–1600, 2010.

[10] Sham Kakade. On the Sample Complexity of Reinforcement Learning. PhD thesis, University
College London, 2003.

[11] Narendra Karmarkar. A new polynomial-time algorithm for linear programming. Combina-
torica, 4(4):373–396, 1984.

[12] Michael J. Kearns and Daphne Koller. Efficient reinforcement learning in factored MDPs. In
IJCAI, pages 740–747, 1999.

[13] Michael J. Kearns and Satinder P. Singh. Near-optimal reinforcement learning in polynomial
time. Machine Learning, 49(2-3):209–232, 2002.

[14] Tor Lattimore, Marcus Hutter, and Peter Sunehag. The sample-complexity of general rein-
forcement learning. In ICML, 2013.

[15] Lihong Li and Michael Littman. Reducing reinforcement learning to kwik online regression.
Annals of Mathematics and Artificial Intelligence, 2010.

[16] Lihong Li, Michael L. Littman, and Thomas J. Walsh. Knows what it knows: a framework for
self-aware learning. In ICML, pages 568–575, 2008.

[17] Ronald Ortner and Daniil Ryabko. Online regret bounds for undiscounted continuous rein-
forcement learning. In NIPS, 2012.

[18] Warren Powell and Ilya Ryzhov. Optimal Learning. John Wiley and Sons, 2011.
[19] G. A. Rummery and M. Niranjan. On-line Q-learning using connectionist systems. Technical

report, 1994.
[20] Daniel Russo and Benjamin Van Roy. Learning to optimize via posterior sampling. CoRR,

abs/1301.2609, 2013.
[21] Satinder P. Singh, Tommi Jaakkola, and Michael I. Jordan. Reinforcement learning with soft

state aggregation. In NIPS, pages 361–368, 1994.
[22] Er L. Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L. Littman. PAC model-

free reinforcement learning. In Proceedings of the 23rd international conference on Machine
learning, pages 881–888, 2006.

[23] Richard Sutton and Andrew Barto. Reinforcement Learning: An Introduction. MIT Press,
March 1998.

[24] Csaba Szepesvári. Algorithms for Reinforcement Learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning. Morgan & Claypool Publishers, 2010.

[25] John N. Tsitsiklis and Benjamin Van Roy. Feature-based methods for large scale dynamic
programming. Machine Learning, 22(1-3):59–94, 1996.

[26] Benjamin Van Roy. Performance loss bounds for approximate value iteration with state aggre-
gation. Math. Oper. Res., 31(2):234–244, 2006.

9

