
Supplemetary Material
Auxiliary-variable Exact Hamiltonian Monte

Carlo Samplers for Binary Distributions

Ari Pakman and Liam Paninski
Department of Statistics

Center for Theoretical Neuroscience
Grossman Center for the Statistics of Mind

Columbia University
New York, NY, 10027

1 Wall-crossing rate in the Gaussian augmentation

In the Gaussian augmentation, the equilibrium distribution of (y,q) in each orthant is

p(y,q|s) ∝ e−
y·y
2 e−

q·q
2 , (1)

and therefore the distribution of

ui = y2i + q2i i = 1, . . . , d. (2)

is χ2
2, chi-squared with two degrees of freedom. Due to conservation of energy, each ui is constant

while the particle stays in an orthant and only changes if it crosses the yi = 0 wall. When the particle
hits the yi = 0 wall, we have ui = q2i (t−i ), and the particle crosses if

ui > −2 log p(−si, s−i) + 2 log p(si, s−i) . (3)

The probability of this event is

P

[
ui > −2 log

(
p(−si, s−i)
p(si, s−i)

)]
=

 1 for p(−si,s−i)
p(si,s−i)

> 1

1− Cχ2
2
(−2 log

(
p(−si,s−i)
p(si,s−i)

)
) for p(−si,s−i)

p(si,s−i)
< 1

(4)

where

Cχ2
2
(x) = 1− e− x2 (5)

is the cdf of χ2
2. Inserting this expression in (4) gives

P

[
ui > −2 log

(
p(−si, s−i)
p(si, s−i)

)]
= min

(
1,
p(−si, s−i)
p(si, s−i)

)
(6)

which is exactly the probability of acceptance in a Metropolis algorithm that samples uniformly a
value for i and makes a proposal of flipping the binary variable si.

2 Comparing the efficiency of binary samplers

We performed a more detailed comparison of the efficiency of the binary HMC sampler with Gaus-
sian and exponential augmentations and the Metropolis sampler. As in Section 4.1, we considered
a 1D Ising model with d = 400 and β = 0.42. The results are in Figure 1 and show that the HMC
sampler with Gaussian augmentation is the most efficient of the three samplers.
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Figure 1: Efficiency comparison for binary samplers. We considered a 1D Ising model with
d = 400 and β = 0.42. In the Gaussian HMC sampler we considered T = (n − 1/2)π with
n = 1, . . . , 13, for Metropolis we recorded the state of the chain after d× (n− 1/2) flip proposals
and for the exponential HMC case we used T ′s corresponding to similar computational costs. For
each n and each sampler we took 3000 samples and recorded the smallest effective sample size
(ESS) among the 400 estimators 〈si〉. We repeated this 10 times and computed the median value
of these smallest ESSs. The plot shows these values divided by the computational cost for each n.
Note that the HMC Gaussian sampler is consistently more efficient.

3 Details of spike-and-slab linear regression with truncated parameters

We want to sample from the distribution

p(w,y|D, a, τ2) ∝ e−
1
2w
′
+(M++τ−2)w++r+·w+e−

w−·w−
2τ2 e−

y·y
2 a|s

+ |(1− a)|s
− | (7)

where the values of s in the rhs are obtained from the signs of y. Since (7) is a piecewise Gaussian
distribution, we can sample from it using the methods of [1]. For this, we introduce momentum
variables qi and gi associated to the coordinates yi and wi and consider the Hamiltonian

H = Hy,q +Hw,g − |s+ | log a− |s− | log(1− a) (8)

Hy,q =
y · y

2
+

q · q
2

(9)

Hw,g =
w′+Σ−1+ w+

2
− r+ ·w+ +

g′+Σ+g+

2
+

w−·w−
2τ2

+
g−· g−
2τ−2

(10)

where we defined
Σ+ =

(
M+ + τ−2

)−1
. (11)

Note that we have chosen a mass matrix for g that depends on the orthant of y, much like the
potential terms for w. This choice leads to decoupled equations of motion for all the coordinates,
with solutions

yi(t) = yi(0) cos(t) + qi(0) sin(t) , (12)
wi(t) = µi + (wi(0)− µi) cos(t) + ẇi(0) sin(t) , (13)

where in each orthant the components of µ are
µ− = 0 , (14)
µ+ = Σ+r+ . (15)
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Each iteration of the sampling algorithm consists of sampling initial values for q and ẇ from

qi(0) ∼ N (0, 1) , (16)

ẇi(0) ∼ N (0, τ2) for si = −1 , (17)
ẇ+(0) ∼ N (0,Σ+) , (18)

and letting the particle move during a time T according to the Hamiltonian (8). As before, the final
coordinates belong to a Markov chain with invariant distribution p(w,y|D, aτ2), and are used as
the initial coordinates of the next iteration. Note that it is more convenient to sample ẇ instead of g
(related by ẇ+ = Σ+g+, ẇ− = τ2g−), because it is the former that appears in (13).

The trajectory of the particle in the (y,w)-space is given by (12)-(13) until some coordinate yj
reaches yj = 0 at time tj , or, if the space of w is truncated, the w coordinates touch the boundary
of their allowed space. Consider the first case and suppose that yj < 0 for t < tj . The conservation
of energy across the yj = 0 boundary implies

q2j (t+j )

2
= ∆j +

q2j (t−j )

2
, (19)

and the energy jump ∆j depends on w and g and is given by

∆j = −Hw,g(s−j , sj = +1) +Hw,g(s−j , sj = −1) + log(a/(1− a)) . (20)

Note that the trajectory of w, g is continuous at t = tj , and (20) only refers to the change in the
functional form of H across the boundary. If (19) gives a positive value for q2j (t+j ), the particle
crosses the yj = 0 boundary, and if not, it bounces back with qj(t+j ) = −qj(t−j ). In the w-truncated
case, when the w coordinates touch the boundary of their allowed space, the velocity ẇ is reflected
off the boundary in an elastic collision, similarly to the truncated Gaussians discussed in [1].
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