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Eberhard Karls Universität Tübingen
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Abstract

While graphs with continuous node attributes arise in many applications, state-
of-the-art graph kernels for comparing continuous-attributed graphs suffer from
a high runtime complexity. For instance, the popular shortest path kernel scales
as O(n4), where n is the number of nodes. In this paper, we present a class of
graph kernels with computational complexity O(n2(m+ log n+ δ2 + d)), where
δ is the graph diameter, m is the number of edges, and d is the dimension of
the node attributes. Due to the sparsity and small diameter of real-world graphs,
these kernels typically scale comfortably to large graphs. In our experiments,
the presented kernels outperform state-of-the-art kernels in terms of speed and
accuracy on classification benchmark datasets.

1 Introduction

Graph-structured data appears in many application domains of machine learning, reaching from
Social Network Analysis to Computational Biology. Comparing graphs to each other is a funda-
mental problem in learning on graphs, and graph kernels have become an efficient and widely-used
method for measuring similarity between graphs. Highly scalable graph kernels have been proposed
for graphs with thousands and millions of nodes, both for graphs without node labels [1] and for
graphs with discrete node labels [2]. Such graphs appear naturally in applications such as natural
language processing, chemoinformatics and bioinformatics. For applications in medical image anal-
ysis, computer vision or even bioinformatics, however, continuous-valued physical measurements
such as shape, relative position or other measured node properties are often important features for
classification. An open challenge, which is receiving increased attention, is to develop a scalable
kernel on graphs with continuous-valued node attributes.

We present the GraphHopper kernel between graphs with real-valued edge lengths and any type of
node attribute, including vectors. This kernel is a convolution kernel counting sub-path similarities.
The computational complexity of this kernel is O(n2(m+ log n+ δ2 + d)), where n and m are the
number of nodes and edges, respectively; δ is the graph diameter; and d is the dimension of the node
attributes. Although δ = n or m = n2 in the worst case, this is rarely the case in real-world graphs,
as is also illustrated by our experiments. We find empirically in Section 3.1 that our GraphHopper
kernel tends to scale quadratically with the number of nodes on real data.
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1.1 Related work

Many popular kernels for structured data are sums of substructure kernels:

k(G,G′) =
∑
s∈S

∑
s′∈S ′

ksub(s, s
′).

Here G and G′ are structured data objects such as strings, trees and graphs with classes S and S ′

of substructures, and ksub is a substructure kernel. Such k are instances of R-convolution kernels [3].

A large variety of kernels exist for structures such as strings [4, 5], finite state transducers [6] and
trees [5, 7]. For graphs in general, kernels can be sorted into categories based on the types of
attributes they can handle. The graphlet kernel [1] compares unlabeled graphs, whereas several
kernels allow node labels from a finite alphabet [2, 8]. While most kernels have a runtime that
is at least O(n3), the Weisfeiler-Lehman kernel [2] uses efficient sorting, hashing and counting
algorithms that take advantage of repeated occurrences of node labels from the finite label alphabet,
and achieves a runtime which is at most quadratic in the number of nodes. Unfortunately, this does
not generalize to graphs with vector-valued node attributes, which are typically all distinct samples
from an infinite alphabet.

The first kernel to take advantage of non-discrete node labels was the random walk kernel [9–11].
It incorporates edge probabilities and geometric node attributes [12], but suffers from tottering [13]
and is empirically slow. Kriege et al. [14] adopt the idea of comparing matched subgraphs, includ-
ing vector-valued attributes on nodes and edges. However, this kernel has a high computational
and memory cost, as we will see in Section 3. Other kernels handling non-discrete attributes use
edit-distance and subtree enumeration [15]. While none of these kernels scale well to large graphs,
the propagation kernel [16] is fast asymptotically and empirically. It translates the problem of
continuous-valued attributes to a problem of discrete-valued labels by hashing node attributes. Nev-
ertheless, its performance depends strongly on the hashing function and in our experiments it is
outperformed in classification accuracy by kernels which do not discretize the attributes.

In problems where continuous-valued node attributes and inter-node distance dG(v, w) along the
graph G are important features, the shortest path kernel [17], defined as

kSP (G,G
′) =

∑
v,w∈V

∑
v′,w′∈V ′

kn(v, v
′) · kl (dG(v, w), dG′(v′, w′)) · kn(w,w′),

performs well in classification. In particular, kSP allows the user to choose any kernels kn and kl on
nodes and shortest path length. However, the asymptotic runtime of kSP is generally O(n4), which
makes it unfeasible for many real-world applications.

1.2 Our contribution

In this paper we present a kernel which also compares shortest paths between node pairs from the two
graphs, but with a different path kernel. Instead of comparing paths via products of kernels on their
lengths and endpoints, we compare paths through kernels on the nodes encountered while ”hopping”
along shortest paths. This particular path kernel allows us to decompose the graph kernel as a
weighted sum of node kernels, initially suggesting a potential runtime as low as O(n2d). The graph
structure is encoded in the node kernel weights, and the main algorithmic challenge becomes to
efficiently compute these weights. This is a combinatorial problem, which we solve with complexity
O(n2(m+ log n+ δ2)). Note, moreover, that the GraphHopper kernel is parameter-free except for
the choice of node kernels.

The paper is organized as follows. In Section 2 we give short formal definitions and proceed to
defining our kernel and investigating its computational properties. Section 3 presents experimental
classification results on different datasets in comparison to state-of-the-art kernels as well as empir-
ical runtime studies, before we conclude with a discussion of our findings in Section 4.

2 Graphs, paths and GraphHoppers

We shall compare undirected graphs G = (V,E) with edge lengths l : E → R+ and node attributes
A : V → X from a set X , which can be any set with a kernel kn; in our data X = Rd. Denote
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n = |V | and m = |E|. A subtree T ⊂ G is a subgraph of G which is a tree. Such subtrees inherit
node attributes and edge lengths from G by restricting the attribute and length maps A and l to the
new node and edge sets, respectively. For a tree T = (V,E, r) with a root node r, let p(v) and c(v)
denote the parent and the children of any v ∈ V .

Given nodes va, vb ∈ V , a path π from va to vb in G is defined as a sequence of nodes
π = [v1, v2, v3, . . . , vn] ,

where v1 = va, vn = vb and [vi, vi+1] ∈ E for all i = 1, . . . , n − 1. Let π(i) = vi denote the ith
node encountered when ”hopping” along the path. Given paths π and π′ from v to w and from w to
u, respectively, let [π, π′] denote their composition, which is a path from v to u. Denote by l(π) the
weighted length of π, given by the sum of lengths l(vi, vi+1) of edges traversed along the path, and
denote by |π| the discrete length of π, defined as the number of nodes in π. The shortest path πab
from va to vb is defined in terms of weighted length; if no edge length function is given, set l(e) = 1
for all e ∈ E as default. The diameter δ(G) of G is the maximal number of nodes in a shortest path
in G, with respect to weighted path length.

In the next few lemmas we shall prove that for a fixed a source node v ∈ V , the directed edges along
shortest paths from v to other nodes of G form a well-defined directed acyclic graph (DAG), that is,
a directed graph with no cycles.

First of all, subpaths of shortest paths πvw with source node v are shortest paths as well:
Lemma 1. [18, Lemma 24.1] If π1n = [v1, . . . , vn] is a shortest path from v1 = v to vn, then the
path π1n(1 : i) consisting of the first i nodes of π1n is a shortest path from v1 = v to vi. �

Given a source node v ∈ G, construct the directed graph Gv = (Vv, Ev) consisting of all nodes Vv
from the connected component of v in G and the set Ev of all directed edges found in any shortest
path from v to any given node w in Gv . Any directed walk from v in Gv is a shortest path in G:
Lemma 2 If π1n is a shortest path from v1 = v to vn and (vn, vn+1) ∈ Ev , then [π1n, [vn, vn+1]]
is a shortest path from v1 = v to vn+1.
Proof. Since (vn, vn+1) ∈ Ev , there is a shortest path π1(n+1) = [v1, . . . , vn, vn+1] from v1 = v to
vn+1. If this path is shorter than [π1n, [vn, vn+1]], then π1(n+1)(1 : n) is a shortest path from v1 = v
to vn by Lemma 1, and it must be shorter than π1n. This is impossible, since π1n is a shortest path.�
Proposition 3 The shortest path graph Gv is a DAG.
Proof. Assume, on the contrary, that Gv contains a cycle c = [v1, . . . , vn] where (vi, vi+1) ∈ Ev
for each i = 1, . . . , n − 1 and v1 = vn. Let πv1 be the shortest path from v to v1. Using Lemma 2
repeatedly, we see that the path [πv1, c] is a shortest path from v to vn = v1, which is impossible
since the new path must be longer than the shortest path πv1. �

2.1 The GraphHopper kernel

We define the GraphHopper kernel as a sum of path kernels kp over the families P,P ′ of shortest
paths in G,G′:

k(G,G′) =
∑

π∈P,π′∈P′

kp(π, π
′),

In this paper, the path kernel kp(π, π′) is a sum of node kernels kn on nodes simultaneously encoun-
tered while simultaneously hopping along paths π and π′ of equal discrete length, that is:

kp(π, π
′) =

{ ∑|π|
j=1 kn (π(j), π

′(j)) if |π| = |π′|,
0 otherwise.

(4)

It is clear from the definition that k(G,G′) decomposes as a sum of node kernels:

k(G,G′) =
∑
v∈V

∑
v′∈V ′

w(v, v′)kn(v, v
′), (5)

where w(v, v′) counts the number of times v and v′ appear at the same hop, or coordinate, i of
shortest paths π, π′ of equal discrete length |π| = |π′|. We can decompose the weight w(v, v′) as

w(v, v′) =

δ∑
j=1

δ∑
i=1

] {(π, π′)|π(i) = v, π′(i) = v′, |π| = |π′| = j} = 〈M(v),M(v′)〉,
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Figure 1: Top: Expansion from the graph G, to the DAG Gṽ , to a larger tree Sṽ . Bottom left:
Recursive computation of the ovṽ . Bottom middle and right: Recursive computation of the dvr in a
rooted tree as in Algorithm 2, and of the dvṽ on a DAG Gṽ as in Algorithm 3.

where M(v) is a δ × δ matrix whose entry [M(v)]ij counts how many times v appears at the ith
coordinate of a shortest path in G of discrete length j, and δ = max{δ(G), δ(G′)}. More precisely,

[M(v)]ij = number of times v appears as the ith node on a shortest path of discrete length j
=
∑
ṽ∈V number of times v appears as ith node on a shortest path from ṽ
of discrete length j

=
∑
ṽ∈V Dṽ(v, j − i+ 1)Oṽ(v, i).

(6)
Here Dṽ is a n× δ matrix whose (v, i)-coordinate counts the number of directed walks with i nodes
starting at v in the shortest path DAG Gṽ . The Oṽ is a n× δ matrix whose (v, i)-coordinate counts
the number of directed walks from ṽ to v in Gṽ with i nodes. Given the matrices Dṽ and Oṽ , we
compute allM(v) by looping through all choices of source node ṽ ∈ V , adding up the contributions
Mṽ to M(v) from each ṽ, as detailed in Algorithm 4.

The vth row of Oṽ , denoted ovṽ , is computed recursively by message-passing from the root, as
detailed in Figure 1 and Algorithm 1. Here, V jṽ consists of the nodes v ∈ V for which the shortest
paths πṽv of highest discrete length have j nodes. Algorithm 1 sends one message of size at most δ
per edge, thus has complexity O(mδ).
To compute the vth row of Dṽ , denoted dvṽ , we draw inspiration from [19] where the vectors dvṽ are
computed easily for trees using a message-passing algorithm as follows. Let T = (V,E, r) be a tree
with a designated root node r. The ith coefficient of dvr counts the number of paths from v in T of
discrete length i, directed from the root. This is just the number of descendants of v at level i below
v in T . Let ⊕ denote left aligned addition of vectors of possibly different length, e.g.

[a, b, c]⊕ [d, e] = [(a+ d), (b+ e), c]. (7)

Using ⊕, the dvr can be expressed recursively:

dvr = [1]
⊕

p(w)=v

[0, dwr ].

Algorithm 1 Message-passing algorithm for computing ovṽ for all v, on Gṽ
1: Initialize: oṽṽ = [1]; ovṽ = [0] ∀ v ∈ V \ {ṽ}.
2: for j = 1 . . . δ do
3: for v ∈ V jṽ do
4: for (v, w) ∈ Eṽ do
5: owṽ = owṽ ⊕ [0, ovṽ]
6: end for
7: end for
8: end for
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Algorithm 2 Recursive computation of dvr for all v on T = (V,E, r).
1: Initialize: dvr = [1] ∀ v ∈ V .
2: for e = (v, c(v)) ∈ E do
3: dvr = dvr ⊕ [0, d

c(v)
r ]

4: end for

Algorithm 3 Recursive computation of dvṽ for all v on Gṽ
1: Initialize: dvṽ = [1] ∀ v ∈ V .
2: for e = (v, c(v)) ∈ EG do
3: dvṽ = dvṽ ⊕ [0, d

c(v)
ṽ ]

4: end for

The dvr for all v ∈ V are computed recursively, sending counters along the edges from the leaf nodes
towards the root, recording the number of descendants of any node at any level, see Algorithm 2 and
Figure 1. The dvr for all v ∈ V are computed in O(nh) time, where h is tree height, since each edge
passes exactly one message of size ≤ h.

On a DAG, computing dvṽ is a little more complex. Note that the DAG Gṽ generated by all shortest
paths from ṽ ∈ V can be expanded into a rooted tree Sṽ by duplicating any node with several
incoming edges, see Figure 1. The tree Sṽ contains, as a path from the root ṽ to one of the nodes
labeled v in Sṽ , any shortest path from ṽ to v in G. However, the number of nodes in Sṽ could, in
theory, be exponential in n, making computation of dvṽ by message-passing on Sṽ intractable. Thus,
we shall compute the dvṽ on the DAG Gṽ rather than on Sṽ . As on trees, the dvṽ in Sṽ are given by
dvṽ = [1] ⊕

⊕
(w,v)∈Eṽ

[0, dwṽ ], where ⊕ is defined in (7). This observation leads to an algorithm in
which each edge e ∈ Eṽ passes exactly one vector of size ≤ δ + 1 in the direction of the root ṽ,
starting at the leaves of the DAG Gṽ and computing updated descendant vectors for each receiving
node. See Algorithm 3 and Figure 1. The complexity of Algorithm 3, which computes dvṽ for all
v ∈ V , is O(|Eṽ|δ) ≤ O(mδ).

2.2 Computational complexity analysis

Given the w(v, v′) and the kn(v, v′) for all v ∈ V and v′ ∈ V ′, the kernel can be computed in
O(n2) time. If we assume that each node kernel kn(v, v′) can be computed in O(d) time (as is the
case with many standard kernels including Gaussian and linear kernels), then all kn(v, v′) can be
precomputed in O(n2d) time. Given the matrices M(v) and M(v′) for all v ∈ V , v′ ∈ V ′, each
w(v, v′) requires O(δ2) time, giving O(n2δ2) complexity for computing all weights w(v, v′).

Note that Algorithm 4 computes M(v) for all v ∈ G simultaneously. Adding the time complexities
of the lines in each iteration of the algorithm as given on the right hand side of the individual lines
in Algorithm 4, the total complexity of one iteration of Algorithm 4 is

O
(
(mn+ n log n) +mδ +mδ + nδ2 + nδ2

)
= O(n(m+ log n+ δ2)),

Algorithm 4 Algorithm simultaneously computing all M(v)

1: Initialize: M(v) = 0 ∈ Rδ×δ for each v ∈ V .
2: for all ṽ ∈ V do
3: compute shortest path DAG Gṽ rooted at ṽ using Dijkstra (O(mn+ n log n))
4: compute Dṽ(v) for each v ∈ V (O(mδ))
5: compute Oṽ(v) for each v ∈ V (O(mδ))
6: for each v ∈ V , compute the δ × δ matrix Mṽ(v) given by

[Mṽ(v)]ij =

{
Dṽ(v, j − i+ 1)Oṽ(v, i) when i ≤ j
0 otherwise, (O(nδ2))

7: update M(v) =M(v) +Mṽ(v) for each v ∈ V (O(nδ2))
8: end for
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giving total complexityO(n2(m+log n+δ2)) for computingM(v) for all v ∈ V using Algorithm 4.
It follows that the total complexity of computing k(G,G′) is

O(n2 + n2d+ n2δ2 + n2δ2 + n2(m+ log n+ δ2)) = O(n2(m+ log n+ d+ δ2)).

When computing the kernel matrix Kij = k(Gi, Gj) for a set {Gi}Ni=1 of graphs with N > m +
n + δ2, note that Algorithm 4 only needs to be run once for every graph Gi. Thus, the average
complexity of computing one kernel value out of all Kij becomes

1

N2

(
NO(n2(m+ log n+ δ2)) +N2O(n2 + n2d+ δ2)

)
≤ O(n2d).

3 Experiments

Classification experiments were made with the proposed GraphHopper kernel and several alterna-
tives: The propagation kernel PROP [16], the connected subgraph matching kernel CSM [14] and
the shortest path kernel SP [17] all use continuous-valued attributes. In addition, we benchmark
against the Weisfeiler-Lehman kernel WL [2], which only uses discrete node attributes. All ker-
nels were implemented in Matlab, except for CSM, where a Java implementation was supplied by
N. Kriege. For the WL kernel, the Matlab implementation available from [20] was used. For the
GraphHopper and SP kernels, shortest paths were computed using the BGL package [21] imple-
mented in C++. The PROP kernel was implemented in two different versions, both using the total
variation hash function, as the Hellinger distance is only directly applicable to positive vector-valued
attributes. For PROP-diff, labels were propagated with the diffusion scheme, whereas in PROP-WL
labels were first discretised via hashing and then the WL kernel [2] update was used. The bin width
of the hash function was set to 10−5 as suggested in [16]. The PROP-diff, PROP-WL and the WL
kernel were each run with 10 iterations. In the CSM kernel, the clique size parameter was set to
k = 5. Our kernel implementations and datasets (with the exception of AIRWAYS) can be found at
http://image.diku.dk/aasa/software.php.

Classification experiments were made on four datasets: ENZYMES, PROTEINS, AIRWAYS and
SYNTHETIC. ENZYMES and PROTEINS are sets of proteins from the BRENDA database [22]
and the dataset of Dobson and Doig [23], respectively. Proteins are represented by graphs as follows.
Nodes represent secondary structure elements (SSEs), which are connected whenever they are neigh-
bors either in the amino acid sequence or in 3D space [24]. Each node has a discrete type attribute
(helix, sheet or turn) and an attribute vector containing physical and chemical measurements includ-
ing length of the SSE in Ångstrøm (Å), distance between the Cα atom of its first and last residue
in Å, its hydrophobicity, van der Waals volume, polarity and polarizability. ENZYMES comes with
the task of classifying the enzymes to one out of 6 EC top-level classes, whereas PROTEINS comes
with the task of classifying into enzymes and non-enzymes. AIRWAYS is a set of airway trees ex-
tracted from CT scans of human lungs [25, 26]. Each node represents an airway branch, attributed
with its length. Edges represent adjacencies between airway bronchi. AIRWAYS comes with the
task of classifying airways into healthy individuals and patients suffering from Chronic Obstructive
Pulmonary Disease (COPD). SYNTHETIC is a set of synthetic graphs based on a random graph G
with 100 nodes and 196 edges, whose nodes are endowed with normally distributed scalar attributes
sampled from N (0, 1). Two classes A and B each with 150 attributed graphs were generated from
G by randomly rewiring edges and permuting node attributes. Each graph in A was generated by
rewiring 5 edges and permuting 10 node attributes, and each graph in B was generated by rewiring
10 edges and permuting 5 node attributes, after which noise from N (0, 0.452) was added to every
node attribute in every graph. Detailed metrics of the datasets are found in Table 1.

Both GraphHopper, SP and CSM depend on freely selected node kernels for continuous attributes,
giving modeling flexibility. For the ENZYMES, AIRWAYS and SYNTHETIC datasets, a Gaussian
node kernel kn(v, v′) = e−λ‖A(v)−A(v′)‖2 was used on the continuous-valued attribute, with λ =
1/d. For the PROTEINS dataset, the node kernel was a product of a Gaussian kernel with λ = 1/d
and a Dirac kernel on the continuous- and discrete-valued node attributes, respectively. For the WL
kernel, discrete node labels were used when available (in ENZYMES and PROTEINS); otherwise
node degree was used as node label.

Classification was done using a support vector machine (SVM) [27]. The SVM slack parameter was
trained using nested cross validation on 90% of the entire dataset, and the classifier was tested on the
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ENZYMES PROTEINS AIRWAYS SYNTHETIC
Number of nodes 32.6 39.1 221 100
Number of edges 46.7 72.8 220 196
Graph diameter 12.8 11.6 21.1 7
Node attribute dimension 18 1 1 1
Dataset size 600 1113 1966 300
Class size 6× 100 663/450 980/986 150/150

Table 1: Data statistics: Average node and edge counts and graph diameter, dataset and class sizes.

Kernel ENZYMES PROTEINS AIRWAYS SYNTHETIC
GraphHopper 69.6± 1.3 (12′10′′) 74.1± 0.5 (2.8 h) 66.8± 0.5 (1 d 7 h) 86.6± 1.0 (12′10′′)
PROP-diff [16] 37.2± 2.2 (13′′) 73.3± 0.4 (26′′) 63.5± 0.5 (4′12′′) 46.1± 1.9 (1′21′′)
PROP-WL [16] 48.5± 1.3 (1′9′′) 73.1± 0.8 (2′40′′) 61.5± 0.6 (8′17′′) 44.5± 1.2 (1′52′′)
SP [17] 71.0± 1.3 (3 d) 75.5± 0.8 (7.7 d) OUT OF TIME 85.4± 2.1 (3.4 d)
CSM [14] 69.4± 0.8 OUT OF MEMORY OUT OF MEMORY OUT OF TIME
WL [2] 48.0± 0.9 (18′′) 75.6± 0.5 (2′51′′) 62.0± 0.6 (7′43′′) 43.3± 2.3 (2′8′′)

Table 2: Mean classification accuracies with standard deviation for all experiments, significantly
best accuracies in bold. OUT OF MEMORY means that 100 GB memory was not enough. OUT
OF TIME indicates that the kernel computation did not finish within 30 days. Runtimes are given in
parentheses; see Section 3.1 for further runtime studies. Above, x′y′′ means x minutes, y seconds.

remaining 10%. This experiment was repeated 10 times. Mean accuracies with standard deviations
are reported in Table 2. For each kernel and dataset, runtime is given in parentheses in Table 2.
Runtimes for the CSM kernel are not included, as this implementation was in another language.

3.1 Runtime experiments

An empirical evaluation of the runtime dependence on the parameters n, m and δ is found in Fig-
ure 2. In the top left panel, average kernel evaluation runtime was measured on datasets of 10 random
graphs with 10, 20, 30, . . . , 500 nodes each, and a density of 0.4. Density is defined as m

n(n−1)/2 ,
i.e. the fraction of edges in the graph compared to the number of edges in the complete graph. In the
top right panel, the number of nodes was kept constant n = 100, while datasets of 10 random graphs
were generated with 110, 120, . . . , 500 edges each. Development of both average kernel evaluation
runtime and graph diameter is shown. In the bottom panels, the relationship between runtime and
graph diameter is shown on subsets of 100 and 200 of the real AIRWAYS and PROTEINS datasets,
respectively, for each diameter.

3.2 Results and discussion
Our experiments on ENZYMES and AIRWAYS clearly demonstrate that there are real-world clas-
sification problems where continuous-valued attributes make a big contribution to classification per-
formance. Our experiments on SYNTHETIC demonstrate how the more discrete types of kernels,
PROP and WL, are unable to classify the graphs. Already on SYNTHETIC, which is a modest-sized
set of modest-sized graphs, CSM and SP are too computationally demanding to be practical, and on
AIRWAYS, which is a larger set of larger trees, they cannot finish in 30 days. The CSM kernel [14]
has asymptotic runtime O(knk+1), where k is a parameter bounding the size of subgraphs consid-
ered by the kernel, and thus in order to study subgraphs of relevant size, its runtime will be at least
as high as the shortest path kernel. Moreover, the CSM kernel requires the computation of a product
graph which, for graphs with hundreds of nodes, can cause memory problems, which we also find in
our experiments. The PROP kernel is fast; however, the reason for the computational efficiency of
PROP is that it is not really a kernel for continuous valued features – it is a kernel for discrete fea-
tures combined with a hashing scheme to discretize continuous-valued features. In our experiments,
these hashing schemes do not prove powerful enough to compete in classification accuracy with the
kernels that really do use the continuous-valued features.

While ENZYMES and AIRWAYS benefit significantly from including continuous attributes, our
experiments on PROTEINS demonstrate that there are also classification problems where the most
important information is just as well summarized in a discrete feature: here our combination of
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Figure 2: Dependence of runtime on n, δ and m on synthetic and real graph datasets.

continuous and discrete node features gives equal classification performance as the more efficient
WL kernel using only discrete attributes.

We proved in Section 3.1 that the GraphHopper kernel has asymptotic runtimeO(n2(d+m+log n+
δ2)), and that the average runtime for one kernel evaluation in a Gram matrix is O(n2d) when the
number of graphs exceedsm+n+δ2. Our experiments in Section 3.1 empirically demonstrate how
runtime depends on the parameters n, m and δ. As m and δ are dependent parameters, the runtime
dependence on m and δ is not straightforward. An increase in the number of edges m typically
leads to an increased graph diameter δ for small m, but for more densely connected graphs, δ will
decrease with increasing m as seen in the top right panel of Figure 2. A consequence of this is
that graph diameter rarely becomes very large compared to m. The same plot also shows that the
runtime increases slowly with increasing m. Our runtime experiments clearly illustrate that while in
the worst case scenario we could have m = n2 or δ = n, this rarely happens in real-world graphs,
which are often sparse and with small diameter. Our experiments also illustrate an average runtime
quadratic in n on large datasets, as expected based on complexity analysis.

4 Conclusion
We have defined the GraphHopper kernel for graphs with any type of node attributes, presented
an efficient algorithm for computing it, and demonstrated that it outperforms state-of-the-art graph
kernels on real and synthetic data in terms of classification accuracy and/or speed. The kernels are
able to take advantage of any kind of node attributes, as they can integrate any user-defined node
kernel. Moreover, the kernel is parameter-free except for the node kernels.

This kernel opens the door to new application domains such as computer vision or medical imaging,
in which kernels that work solely on graphs with discrete attributes were too restrictive so far.
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[10] T. Gärtner, P. Flach, and S. Wrobel. On graph kernels: Hardness results and efficient alternatives. In
Learning Theory and Kernel Machines, volume 2777 of LNCS, pages 129–143, 2003.

[11] S.V.N. Vishwanathan, N.N. Schraudolph, R.I. Kondor, and K.M. Borgwardt. Graph kernels. JMLR,
11:1201–1242, 2010.

[12] F.R. Bach. Graph kernels between point clouds. In ICML, pages 25–32, 2008.
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