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Abstract

Inspired by real-time ad exchanges for online display advertising, we consider the
problem of inferring a buyer’s value distribution for a goodwhen the buyer is
repeatedly interacting with a seller through a posted-price mechanism. We model
the buyer as a strategic agent, whose goal is to maximize her long-term surplus,
and we are interested in mechanisms that maximize the seller’s long-term revenue.
We define the natural notion ofstrategic regret — the lost revenue as measured
against a truthful (non-strategic) buyer. We present seller algorithms that are no-
(strategic)-regret when the buyer discounts her future surplus — i.e. the buyer
prefers showing advertisements to users sooner rather thanlater. We also give a
lower bound on strategic regret that increases as the buyer’s discounting weakens
and shows, in particular, that any seller algorithm will suffer linear strategic regret
if there is no discounting.

1 Introduction

Online display advertising inventory — e.g., space for banner ads on web pages — is often sold via
automated transactions on real-time ad exchanges. When a user visits a web page whose advertising
inventory is managed by an ad exchange, a description of the web page, the user, and other relevant
properties of theimpression, along with areserve price for the impression, is transmitted to bidding
servers operating on behalf of advertisers. These servers process the data about the impression and
respond to the exchange with a bid. The highest bidder wins the right to display an advertisement
on the web page to the user, provided that the bid is above the reserve price. The amount charged
the winner, if there is one, is settled according to a second-price auction. The winner is charged the
maximum of the second-highest bid and the reserve price.

Ad exchanges have been a boon for advertisers, since rich andreal-time data about impressions
allow them to target their bids to only those impressions that they value. However, this precise
targeting has an unfortunate side effect for web page publishers. A nontrivial fraction of ad exchange
auctions involve only asingle bidder. Without competitive pressure from other bidders, the task of
maximizing the publisher’s revenue falls entirely to the reserve price setting mechanism. Second-
price auctions with a single bidder are equivalent toposted-price auctions. The seller offers a price
for a good, and a buyer decides whether to accept or reject theprice (i.e., whether to bid above or
below the reserve price).

In this paper, we consider online learning algorithms for setting prices in posted-price auctions where
the seller repeatedly interacts with thesame buyer over a number of rounds, a common occurrence
in ad exchanges where the same buyer might be interested in buying thousands of user impressions
daily. In each roundt, the seller offers a good to a buyer for pricept. The buyer’s valuevt for the
good is drawn independently from a fixed value distribution.Both vt and the value distribution are
known to the buyer, but neither is observed by the seller. If the buyer accepts pricept, the seller
receives revenuept, and the buyer receivessurplus vt − pt. Since the same buyer participates in
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the auction in each round, the seller has the opportunity tolearn about the buyer’s value distribution
and set prices accordingly. Notice that in worst-case repeated auctions there is no such opportunity
to learn, while standard Bayesian auctions assume knowledge of a value distribution, but avoid
addressing how or why the auctioneer was ever able to estimate this distribution.

Taken as an online learning problem, we can view this as a ‘bandit’ problem [18, 16], since the
revenue for any price not offered is not observed (e.g., evenif a buyer rejects a price, she may
well have accepted a lower price). The seller’s goal is to maximize his expected revenue over all
T rounds. One straightforward way for the seller to set priceswould therefore be to use ano-
regret bandit algorithm, which minimizes the difference between seller’s revenue and the revenue
that would have been earned by offering the best fixed pricep∗ in hindsight for allT rounds; for
a no-regret algorithm (such as UCB [3] or EXP3 [4]), this difference iso(T ). However, we argue
that traditional no-regret algorithms are inadequate for this problem. Consider the motivations of a
buyer interacting with an ad exchange where the prices are set by a no-regret algorithm, and suppose
for simplicity that the buyer has a fixed valuevt = v for all t. The goal of the buyer is to acquire
the most valuable advertising inventory for the least totalcost, i.e., to maximize her total surplus
∑

t v − pt, where the sum is over rounds where the buyer accepts the seller’s price. A naive buyer
might simply accept the seller’s pricept if and only if vt ≥ pt; a buyer who behaves this way
is calledtruthful. Against a truthful buyer any no-regret algorithm will eventually learn to offer
pricespt ≈ v on nearly all rounds. But a more savvy buyer will notice that if she rejects prices in
earlier rounds, then she will tend to see lower prices in later rounds. Indeed, suppose the buyer only
accepts prices below some small amountǫ. Then any no-regret algorithm will learn that offering
prices aboveǫ results in zero revenue, and will eventually offer prices below that threshold on nearly
all rounds. In fact, the smaller the learner’s regret, the faster this convergence occurs. Ifv ≫ ǫ then
the deceptive buyer strategy results in a large gain in totalsurplus for the buyer, and a large loss
in total revenue for the seller, relative to the truthful buyer. While the no-regret guarantee certainly
holds — in hindsight, the best price is indeedǫ — it seems fairly useless.

In this paper, we propose a definition ofstrategic regret that accounts for the buyer’s incentives, and
give algorithms that are no-regret with respect to this definition. In our setting, the seller chooses a
learning algorithm for selecting prices and announces thisalgorithm to the buyer. We assume that
the buyer will examine this algorithm and adopt whatever strategy maximizes her expected surplus
over allT rounds. We define the seller’s strategic regret to be the difference between his expected
revenue and the expected revenue he would have earned if, rather than using his chosen algorithm
to set prices, he had instead offered the best fixed pricep∗ on all roundsand the buyer had been
truthful. As we have seen, this revenue can be much higher than the revenue of the best fixed price
in hindsight (in the example above,p∗ = v). Unless noted otherwise, throughout the remainder of
the paper the term “regret” will refer to strategic regret.

We make one further assumption about buyer behavior, which is based on the observation that in
many important real-world markets — and particularly in online advertising — sellers are far more
willing to wait for revenue than buyers are willing to wait for goods. For example, advertisers are
often interested in showing ads to users who have recently viewed their products online (this practice
is called ‘retargeting’), and the value of these user impressions decays rapidly over time. Or consider
an advertising campaign that is tied to a product launch. A user impression that is purchased long
after the launch (such as the release of a movie) is almost worthless. To model this phenomenon we
multiply the buyer’s surplus in each round by adiscount factor: If the buyer accepts the seller’s price
pt in roundt, she receives surplusγt(vt − pt), where{γt} is a nonincreasing sequence contained in
the interval(0, 1]. We callTγ =

∑T
t=1 γt the buyer’s ‘horizon’, since it is analogous to the seller’s

horizonT . The buyer’s horizon plays a central role in our analysis.

Summary of results: In Sections 4 and 5 we assume that discount rates decrease geometrically:
γt = γt−1 for someγ ∈ (0, 1]. In Section 4 we consider the special case that the buyer has afixed
valuevt = v for all roundst, and give an algorithm with regret at mostO(Tγ

√
T ). In Section 5 we

allow thevt to be drawn from any distribution that satisfies a certain smoothness assumption, and
give an algorithm with regret at most̃O(Tα + T

1/α
γ ) whereα ∈ (0, 1) is a user-selected parameter.

Note that for either algorithm to be no-regret (i.e., for regret to beo(T )), we need thatTγ = o(T ). In
Section 6 we prove that this requirement is necessary for no-regret: any seller algorithm has regret at
leastΩ(Tγ). The lower bound is proved via a reduction to a non-repeated,or ‘single-shot’, auction.
That our regret bounds should depend so crucially onTγ is foreshadowed by the example above, in
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which a deceptive buyer foregoes surplus in early rounds to obtain even more surplus is later rounds.
A buyer with a short horizonTγ will be unable to execute this strategy, as she will not be capable of
bearing the short-term costs required to manipulate the seller.

2 Related work

Kleinberg and Leighton study a posted price repeated auction with goods sold sequentially toT bid-
ders who either all have the same fixed private value, privatevalues drawn from a fixed distribution,
or private values that are chosen by an oblivious adversary (an adversary that acts independently of
observed seller behavior) [15] (see also [7, 8, 14]). Cesa-Bianchi et al. study a related problem of
setting the reserve price in a second price auction with multiple (but not repeated) bidders at each
round [9]. Note that none of these previous works allow for the possibility of a strategic buyer, i.e.
one that acts non-truthfully in order to maximize its surplus. This is because a new buyer is consid-
ered at each time step and if the seller behavior depends onlyon previous buyers, then the setting
immediately becomesstrategyproof.

Contrary to what is studied in these previous theoretical settings, electronic exchanges in practice see
the same buyer appearing in multiple auctions and, thus, thebuyer has incentive to act strategically.
In fact, [12] finds empirical evidence of buyers’ strategic behavior in sponsored search auctions,
which in turn negatively affects the seller’s revenue. In the economics literature, ‘intertemporal price
discrimination’ refers to the practice of using a buyer’s past purchasing behavior to set future prices.
Previous work [1, 13] has shown, as we do in Section 6, that a seller cannot benefit from conditioning
prices on past behavior if the buyer is not myopic and can respond strategically. However, in contrast
to our work, these results assume that the seller knows the buyer’s value distribution.

Our setting can be modeled as a nonzero sum repeated game of incomplete information, and there is
extensive literature on this topic. However, most previouswork has focused only on characterizing
the equilibria of these games. Further, our game has a particular structure that allows us to design
seller algorithms that are much more efficient than generic algorithms for solving repeated games.

Two settings that are distinct from what we consider in this paper, but where mechanism design and
learning are combined, are the multi-armed bandit mechanism design problem [6, 5, 11] and the
incentive compatible regression/classification problem [10, 17]. The former problem is motivated
by sponsored search auctions, where the challenge is to elicit truthful values from multiple bidding
advertisers while also efficiently estimating the click-through rate of the set of ads that are to be
allocated. The latter problem involves learning a discriminative classifier or regression function
in the batch setting with training examples that are labeledby selfish agents. The goal is then to
minimize error with respect to the truthful labels.

Finally, Arora et al. proposed a notion of regret for online learning algorithms, called policy regret,
that accounts for the possibility that the adversary may adapt to the learning algorithm’s behavior
[2]. This resembles the ability, in our setting, of a strategic buyer to adapt to the seller algorithm’s
behavior. However, even this stronger definition of regret is inadequate for our setting. This is
because policy regret is equivalent to standard regret whenthe adversary is oblivious, and as we
explained in the previous section, there is an oblivious buyer strategy such that the seller’s standard
regret is small, but his regret with respect to the best fixed price against a truthful buyer is large.

3 Preliminaries and Model

We consider a posted-price model for a single buyer repeatedly purchasing items from a single seller.
Associated with the buyer is a fixed distributionD over the interval[0, 1], which is known only to
the buyer. On each roundt, the buyer receives a valuevt ∈ V ⊆ [0, 1] from the distributionD. The
seller, without observing this value, then posts a pricept ∈ P ⊆ [0, 1]. Finally, the buyer selects
an allocation decisionat ∈ {0, 1}. On each roundt, the buyer receives aninstantaneous surplus of
at(vt − pt), and the seller receives aninstantaneous revenue of atpt.

We will be primarily interested in designing the seller’slearning algorithm, which we will denoteA.
Let v1:t denote the sequence of values observed on the firstt rounds,(v1, ..., vt), definingp1:t and
a1:t analogously.A is an algorithm that selects each pricept as a (possibly randomized) function
of (p1:t−1, a1:t−1). As is common in mechanism design, we assume that the seller announces his
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choice of algorithmA in advance. The buyer then selects herallocation strategy in response. The
buyer’s allocation strategyB generates allocation decisionsat as a (possibly randomized) function
of (D, v1:t, p1:t, a1:t−1).

Notice that a choice ofA, B andD fixes a distribution over the sequencesa1:T andp1:T . This in
turn defines the seller’s total expected revenue:

SellerRevenue(A,B,D, T ) = E
[

∑T
t=1 atpt

∣

∣ A,B,D
]

.

In the most general setting, we will consider a buyer whose surplus may be discounted through time.
In fact, our lower bounds will demonstrate that a sufficiently decaying discount rate is necessary for
a no-regret learning algorithm. We will imagine therefore that there exists a nonincreasing sequence
{γt ∈ (0, 1]} for the buyer. For a choice ofT , we will define the effective “time-horizon” for the
buyer asTγ =

∑T
t=1 γt. The buyer’s expected total discounted surplus is given by:

BuyerSurplus(A,B,D, T ) = E
[

∑T
t=1 γtat(vt − pt)

∣

∣ A,B,D
]

.

We assume that the seller is faced with a strategic buyer who adapts to the choice ofA. Thus, let
B∗(A,D) be a surplus-maximizing buyer for seller algorithmA and value distribution isD. In other
words, for all strategiesB we have

BuyerSurplus(A,B∗(A,D),D, T ) ≥ BuyerSurplus(A,B,D, T ).

We are now prepared to define the seller’s regret. Letp∗ = argmaxp∈P pPrD[v ≥ p], the revenue-
maximizing choice of price for a seller thatknows the distributionD, and simply posts a price of
p∗ on every round. Against such a pricing strategy, it is in the buyer’s best interest to betruthful,
accepting if and only ifvt ≥ p∗, and the seller would receive a revenue ofTp∗ Prv∼D[v ≥ p∗].
Informally, a no-regret algorithm is able to learnD from previous interactions with the buyer, and
converge to selecting a price close top∗. We therefore define regret as:

Regret(A,D, T ) = Tp∗ Prv∼D[v ≥ p∗]− SellerRevenue(A,B∗(A,D),D, T ).

Finally, we will be interested in algorithms that attaino(T ) regret (meaning the averaged re-
gret goes to zero asT → ∞) for the worst-caseD. In other words, we sayA is no-regret if
supD Regret(A,D, T ) = o(T ). Note that this definition of worst-case regret only assumes that Na-
ture’s behavior (i.e., the value distribution) is worst-case; the buyer’s behavior is always presumed
to be surplus maximizing.

4 Fixed Value Setting

In this section we consider the case of a single unknown fixed buyer value, that isV = {v} for
somev ∈ (0, 1]. We show that in this setting a very simple pricing algorithmwith monotonically
decreasing price offerings is able to achieveO(Tγ

√
T ) when the buyer discount isγt = γt−1. Due

to space constraints many of the proofs for this section appear in Appendix A.

Monotone algorithm: Choose parameterβ ∈ (0, 1), and initializea0 = 1 and
p0 = 1. In each roundt ≥ 1 let pt = β1−at−1pt−1.

In theMonotone algorithm, the seller starts at the maximum price of1, and decreases the price
by a factor ofβ whenever the buyer rejects the price, and otherwise leaves it unchanged. Since
Monotone is deterministic and the buyer’s valuev is fixed, the surplus-maximizing buyer algorithm
B∗(Monotone, v) is characterized by a deterministic allocation sequencea∗1:T ∈ {0, 1}T .1

The following lemma partially characterizes the optimal buyer allocation sequence.

Lemma 1. The sequence a∗1, . . . , a
∗
T is monotonically nondecreasing.

1If there are multiple optimal sequences, the buyer can then choose to randomize over the set of sequences.
In such a case, the worst case distribution (for the seller) is the one that always selects the revenue minimizing
optimal sequence. In that case, leta

∗

1:T denote the revenue-minimizing buyer-optimal sequence.
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In other words, once a buyer decides to start accepting the offered price at a certain time step, she
will keep accepting from that point on. The main idea behind the proof is to show that if there does
exist some time stept′ wherea∗t′ = 1 anda∗t′+1 = 0, then swapping the values so thata∗t′ = 0 and
a∗t′+1 = 1 (as well potentially swapping another pair of values) will result in a sequence with strictly
better surplus, thereby contradicting the optimality ofa∗1:T . The full proof is shown in Section A.1.

Now, to finish characterizing the optimal allocation sequence, we provide the following lemma,
which describes time steps where the buyer has with certainty begun to accept the offered price.

Lemma 2. Let cβ,γ = 1 + (1 − β)Tγ and dβ,γ =
log(

cβ,γ
v )

log(1/β) , then for any t > dβ,γ we have
a∗t+1 = 1.

A detailed proof is presented in Section A.2. These lemmas imply the following regret bound.

Theorem 1. Regret(Monotone, v, T ) ≤ vT
(

1− β
cβ,γ

)

+ vβ
(

dβ,γ

cβ,γ
+ 1

cβ,γ

)

.

Proof. By Lemmas 1 and 2 we receive no revenue until at most round⌈dβ,γ⌉ + 1, and from that
round onwards we receive at least revenueβ⌈dβ,γ⌉ per round. Thus

Regret(Monotone, v, T ) = vT −
T
∑

t=⌈dβ,γ⌉+1

β⌈dβ,γ⌉ ≤ vT − (T − dβ,γ − 1)βdβ,γ+1

Noting thatβdβ,γ = v
cβ,γ

and rearranging proves the theorem.

Tuning the learning parameter simplifies the bound further and provides aO(Tγ

√
T ) regret bound.

Note that this tuning parameter does not assume knowledge ofthe buyer’s discount parameterγ.

Corollary 1. If β =
√
T

1+
√
T

then Regret(Monotone, v, T ) ≤
√
T
(

4vTγ + 2v log
(

1
v

))

+ v .

The computation used to derive this corollary are found in Section A.3. This corollary shows that it
is indeed possible to achieve no-regret against a strategicbuyer with a unknown fixed value as long
asTγ = o(

√
T ). That is, the effective buyer horizon must be more than a constant factor smaller

than the square-root of the game’s finite horizon.

5 Stochastic Value Setting

We next give a seller algorithm that attains no-regret when the set of pricesP is finite, the buyer’s
discount isγt = γt−1, and the buyer’s valuevt for each round is drawn from a fixed distributionD
that satistfies a certain continuity assumption, detailed below.

Phased algorithm: Choose parameterα ∈ (0, 1). DefineTi ≡ 2i andSi ≡
min

(

Ti

|P| , T
α
i

)

. For each phasei = 1, 2, 3, . . . of lengthTi rounds:

Offer each pricep ∈ P for Si rounds, in some fixed order; these are theexplore
rounds. LetAp,i = Number of explore rounds in phasei where pricep was offered
and the buyer accepted. For the remainingTi−|P|Si rounds of phasei, offer price
p̃i = argmaxp∈P p

Ap,i

Si
in each round; these are theexploit rounds.

ThePhased algorithm proceeds across a number of phases. Each phase consists of explore rounds
followed by exploit rounds. During explore rounds, the algorithm selects each price in some fixed
order. During exploit rounds, the algorithm repeatedly selects the price that realized the greatest
revenue during the immediately preceding explore rounds.

First notice that a strategic buyer has no incentive to lie during exploit rounds (i.e. it will accept any
pricept < vt and reject any pricept > vt), since its decisions there do not affect any of its future
prices. Thus, the exploit rounds are the time at which the seller can exploit what it has learned from
the buyer during exploration. Alternatively, if the buyer has successfully manipulated the seller into
offering a low price, we can view the buyer as “exploiting” the seller.
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During explore rounds, on the other hand, the strategic buyer can benefit by telling lies which will
cause it to witness better prices during the corresponding exploit rounds. However, the value of
these lies to the buyer will depend on the fraction of the phase consisting of explore rounds. Taken
to the extreme, if the entire phase consists of explore rounds, the buyer is not interested in lying.
In general, the more explore rounds, the more revenue has to be sacrificed by a buyer that is lying
during the explore rounds. For the myopic buyer, the loss of enough immediate revenue at some
point ceases to justify her potential gains in the future exploit rounds.

Thus, while traditional algorithms like UCB balance exploration and exploitation to ensure confi-
dence in the observed payoffs of sampled arms, ourPhased algorithm explores for two purposes:
to ensure accurate estimates, and to dampen the buyer’s incentive to mislead the seller. The seller’s
balancing act is to explore for long enough to learn the buyer’s value distribution, but leave enough
exploit rounds to benefit from the knowledge.

Continuity of the value distribution The preceding argument required that the distributionD
does not exhibit a certain pathology. There cannot be two pricesp, p′ that are very close but
pPrv∼D[v ≥ p] andp′ Prv∼D[v ≥ p′] are very different. Otherwise, the buyer is largely indif-
ferent to being offered pricesp or p′, but distinguishing between the two prices is essential forthe
seller during exploit rounds. Thus, we assume that the valuedistributionD is K-Lipschitz, which
eliminates this problem: DefiningF (p) ≡ Prv∼D[v ≥ p], we assume there existsK > 0 such that
|F (p) − F (p′)| ≤ K|p − p′| for all p, p′ ∈ [0, 1]. This assumption is quite mild, as ourPhased
algorithm does not need to knowK, and the dependence of the regret rate onK will be logarithmic.
Theorem 2. Assume F (p) ≡ Prv∼D[v ≥ p] is K-Lipschitz. Let ∆ = minp∈P\{p∗} p

∗F (p∗) −
pF (p), where p∗ = argmaxp∈P pF (p). For any parameter α ∈ (0, 1) of the Phased algorithm
there exist constants c1, c2, c3, c4 such that

Regret(Phased,D, T ) ≤ c1|P|Tα + c2
|P|
∆2/α

(log T )1/α

+ c3
|P|
∆1/α

T 1/α
γ (log T + log(K/∆))1/α + c4|P|

= Õ(Tα + T 1/α
γ ).

The complete proof of Theorem 2 is rather technical, and is provided in Appendix B.

To gain further intuition about the upper bounds proved in this section and the previous section, it
helps to parametrize the buyer’s horizonTγ as a function ofT , e.g.Tγ = T c for 0 ≤ c ≤ 1. Writing
it in this fashion, we see that theMonotone algorithm has regret at mostO(T c+ 1

2 ), and thePhased
algorithm has regret at most̃O(T

√
c) if we chooseα =

√
c. The lower bound proved in the next

section states that, in the worst case, any seller algorithmwill incur a regret of at leastΩ(T c).

6 Lower Bound

In this section we state the main lower bound, which establishes a connection between the regret of
any seller algorithm and the buyer’s discounting. Specifically, we prove that the regret of any seller
algorithm isΩ(Tγ). Note that whenT = Tγ — i.e., the buyer does not discount her future surplus
— our lower bound proves that no-regret seller algorithms donot exist, and thus it isimpossible for
the seller to take advantage of learned information. For example, consider the seller algorithm that
uniformly selects pricespt from [0, 1]. The optimal buyer algorithm is truthful, accepting ifpt < vt,
as the seller algorithm is non-adaptive, and the buyer does not gain any advantage by being more
strategic. In such a scenario the seller would quickly learna good estimate of the value distribution
D. What is surprising is that a seller cannotuse this information if the buyer does not discount her
future surplus. If the seller attempts to leverage information learned through interactions with the
buyer, the buyer can react accordingly to negate this advantage.

The lower bound further relates regret in the repeated setting to regret in a particular single-shot
game between the buyer and the seller. This demonstrates that, against a non-discounted buyer, the
seller is no better off in the repeated setting than he would be by repeatedly implementing such a
single-shot mechanism (ignoring previous interactions with the buyer). In the following section we
describe the simple single-shot game.
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6.1 Single-Shot Auction

We call the following game thesingle-shot auction. A seller selects a family of distributionsS
indexed byb ∈ [0, 1], where eachSb is a distribution on[0, 1]× {0, 1}. The familyS is revealed to
a buyer with unknown valuev ∈ [0, 1], who then must select a bidb ∈ [0, 1], and then(p, a) ∼ Sb

is drawn from the corresponding distribution.

As usual, the buyer gets a surplus ofa(v − p), while the seller enjoys a revenue ofap. We restrict
the set of seller strategies to distributions that areincentive compatible andrational. S is incentive
compatible if for allb, v ∈ [0, 1],E(p,a)∼Sb

[a(v−p)] ≤ E(p,a)∼Sv
[a(v−p)]. It is rational if for all v,

E(p,a)∼Sv
[a(v−p)] ≥ 0 (i.e. any buyer maximizing expected surplus is actually incentivised to play

the game). Incentive compatible and rational strategies exist: drawingp from a fixed distribution
(i.e. allSb are the same), and lettinga = 1{b ≥ p} suffices.2

We define the regret in the single-shot setting of any incentive-compatible and rational strategyS
with respect to valuev as

SSRegret(S, v) = v − E(p,a)∼Sv
[ap].

The following loose lower bound onSSRegret(S, v) is straightforward, and establishes that a
seller’s revenue cannot be a constant fraction of the buyer’s value for allv. The full proof is provided
in the appendix (Section C.1).

Lemma 3. For any incentive compatible and rational strategy S there exists v ∈ [0, 1] such that
SSRegret(S, v) ≥ 1

12 .

6.2 Repeated Auction

Returning to the repeated setting, our main lower bound willmake use of the following technical
lemma, the full proof of which is provided in the appendix (Section C.1). Informally, the Lemma
states that the surplus enjoyed by an optimal buyer algorithm would only increase if this surplus
were viewed without discounting.

Lemma 4. Let the buyer’s discount sequence {γt} be positive and nonincreasing. For any
seller algorithm A, value distribution D, and surplus-maximizing buyer algorithm B∗(A,D),

E
[

∑T
t=1 γtat(vt − pt)

]

≤ E
[

∑T
t=1 at(vt − pt)

]

Notice if at(vt − pt) ≥ 0 for all t, then the Lemma 4 is trivial. This would occur if the buyer only
ever accepts prices less than its value (at = 1 only if pt ≤ vt). However, Lemma 4 is interesting
in that it holds forany seller algorithmA. It’s easy to imagine a seller algorithm that incentivizes
the buyer to sometimes accept a pricept > vt with the promise that this will generate better prices
in the future (e.g. settingpt′ = 1 and offeringpt = 0 for all t > t′ only if at′ = 1 and otherwise
settingpt = 1 for all t > t′).

Lemmas 3 and 4 let us prove our main lower bound.

Theorem 3. Fix a positive, nonincreasing, discount sequence {γt}. Let A be any seller algorithm
for the repeated setting. There exists a buyer value distribution D such that Regret(A,D, T ) ≥
1
12Tγ . In particular, if Tγ = Ω(T ), no-regret is impossible.

Proof. Let {ab,t, pb,t} be the sequence of prices and allocations generated by playing B∗(A, b)

againstA. For eachb ∈ [0, 1] and p ∈ [0, 1) × {0, 1}, let µb(p, a) = 1
Tγ

∑T
t=1 γt1{ab,t =

a}1{pb,t = p}. Notice thatµb(p, a) > 0 for countably many(p, a) and letΩb = {(p, a) ∈
[0, 1]× {0, 1} : µb(p, a) > 0}. We think ofµb as being a distribution. It’s in fact a random measure
since the{ab,t, pb,t} are themselves random. One could imagine generatingµb by playingB∗(A, b)
againstA and observing the sequence{ab,t, pb,t}. Every time we observe a pricepb,t = p and
allocationab,t = a, we assign 1

Tγ
γt additional mass to(p, a) in µb. This is impossible in practice,

but the random measureµb has a well-defined distribution.

Now consider the following strategyS for the single-shot setting.Sb is induced by drawing aµb,
then drawing(p, a) ∼ µb. Note that for anyb ∈ [0, 1] and any measurable functionf

2This subclass of auctions is evenex post rational.
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E(p,a)∼Sb
[f(a, p)] = Eµb∼Sb

[

E(p,a)∼µb
[f(a, b) | µb]

]

= 1
Tγ

E
[

∑T
t=1 γtf(ab,t, pb,t)

]

.

Thus the strategyS is incentive compatible, since for anyb, v ∈ [0, 1]

E(p,a)∼Sb
[a(v − p)] =

1

Tγ
E

[

T
∑

t=1

γtab,t(v − pb,t)

]

=
1

Tγ
BuyerSurplus(A,B∗(A, b), v, T )

≤ 1

Tγ
BuyerSurplus(A,B∗(A, v), v, T ) =

1

Tγ
E

[

T
∑

t=1

γtav,t(v − pv,t)

]

= E(p,a)∼Sv
[a(v − p)]

where the inequality follows from the fact thatB∗(A, v) is a surplus-maximizing algorithm for a
buyer whose value isv. The strategyS is also rational, since for anyv ∈ [0, 1]

E(p,a)∼Sv
[a(v − p)] =

1

Tγ
E

[

T
∑

t=1

γtav,t(v − pv,t)

]

=
1

Tγ
BuyerSurplus(A,B∗(A, v), v, T ) ≥ 0

where the inequality follows from the fact that a surplus-maximizing buyer algorithm cannot earn
negative surplus, as a buyer can always reject every price and earn zero surplus.

Let rt = 1− γt andTr =
∑T

t=1 rt. Note thatrt ≥ 0. We have the following for anyv ∈ [0, 1]:

TγSSRegret(S, v) = Tγ

(

v − E(p,a)∼Sv
[ap]

)

= Tγ

(

v − 1

Tγ
E

[

T
∑

t=1

γtav,tpv,t

])

= Tγv − E

[

T
∑

t=1

γtav,tpv,t

]

= (T − Tr)v − E

[

T
∑

t=1

(1− rt)av,tpv,t

]

= Tv − E

[

T
∑

t=1

av,tpv,t

]

+ E

[

T
∑

t=1

rtav,tpv,t

]

− Trv

= Regret(A, v, T )+E

[

T
∑

t=1

rtav,tpv,t

]

−Trv = Regret(A, v, T )+E

[

T
∑

t=1

rt(av,tpv,t − v)

]

A closer look at the quantityE
[

∑T
t=1 rt(av,tpv,t − v)

]

, tells us that:E
[

∑T
t=1 rt(av,tpv,t − v)

]

≤

E
[

∑T
t=1 rtav,t(pv,t − v)

]

= −E
[

∑T
t=1(1− γt)av,t(v − pv,t)

]

≤ 0, where the last inequality

follows from Lemma 4. ThereforeTγSSRegret(S, v) ≤ Regret(A, v, T ) and takingD to be the
point-mass on the valuev ∈ [0, 1] which realizes Lemma 3 proves the statement of the theorem.

7 Conclusion

In this work, we have analyzed the performance of revenue maximizing algorithms in the setting of
a repeated posted-price auction with astrategic buyer. We show that if the buyer values inventory in
the present more than in the far future, no-regret (with respect to revenue gained against a truthful
buyer) learning is possible. Furthermore, we provide lowerbounds that show such an assumption
is in fact necessary. These are the first bounds of this type for the presented setting. Future direc-
tions of study include studying buyer behavior under weakerpolynomial discounting rates as well
understanding when existing “off-the-shelf” bandit-algorithm (UCB, or EXP3), perhaps with slight
modifications, are able to perform well against strategic buyers.
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A Upper Bound on the Regret of Monotone

A.1 Proof of Lemma 1

Proof. For any sequencea ∈ {0, 1}T let last(a) be the last roundt whereat = 1 andat+1 = 0,
or last(a) = 0 if there is no such round. Leta∗ = a∗1, . . . , a

∗
T , and assume for contradiction that

last(a∗) > 0. Further, assume without loss of generality thatlast(a∗) ≥ last(ã∗) for every optimal
sequencẽa∗. Let ℓ = last(a∗).

Suppose thata∗t = 0 for all t ≥ ℓ + 1. If v − pℓ ≥ 0 then, sincepℓ+1 = pℓ, letting a∗ℓ+1 = 1
does not decrease the buyer’s total surplus and increaseslast(a∗), violating the assumption that
last(a∗) ≥ last(ã∗) for every optimal sequencẽa∗. On the other hand, ifv − pℓ < 0 then letting
a∗ℓ = 0 increases the buyer’s total surplus, contradicting the optimality of a∗.

Otherwise choose the smallestk ≥ 1 such thata∗ℓ+k = 0, anda∗ℓ+k+1 = 1. Note thatpℓ+k+1 =

βkpℓ andpℓ+k = βℓ−1pℓ. Swapping the values ofa∗ℓ anda∗ℓ+1 does not affect the buyer’s surplus
in rounds other thanℓ and ℓ + 1, and must not increase the buyer’s total surplus, which implies
γℓ−1(v−pℓ) ≥ γℓ(v−βpℓ). Likewise, swapping the values ofa∗ℓ+k anda∗ℓ+k+1 does not affect the
buyer’s surplus in rounds other thanℓ+ k andℓ+ k+1, and increaseslast(a∗), so it must decrease
the buyer’s total surplus, which impliesγℓ+k(v − pℓ+k+1) > γℓ+k−1(v − pℓ+k).

Cancellingγ’s in each inequality, and substituting forpℓ+k andpℓ+k+1 gives the following inequal-
ities:

v − pℓ ≥ γv − γβpℓ andγv − γβkpℓ > v − βk−1pℓ

Adding the two inequalities and rearranging gives us:

βk−1pℓ + γpℓ(β − βk) > pℓ

Dividing through bypℓ gives us:
βk−1 + γ(β − βk) > 1 (1)

Let g(β) = βk−1 + β − βk. Sinceβ − βk is non-negative andγ ≤ 1, g(β) is an upper bound on
the left hand side of equation 1. Giving:

βk−1 + γ(β − βk) ≤ g(β) (2)

However,dgdβ = (k− 1)βk−2+1−kβk−1 = (1−βk−2)+k(βk−2−βk−1), which is non-negative
for anyβ < 1. To see why, note that both terms in the last expression are non-negative whenk > 1
and the entire expression is0 whenk = 1.

Therefore,g(·) is a non-decreasing function and for anyβ < 1, g(β) ≤ g(1) = 1. This fact
combined with Eq. (1) and Eq. (2) imply a contradiction.

A.2 Proof of Lemma 2

Proof. Rearranging the inequalityt > dβ,γ yieldsβt (1 + (1− β)Tγ) < v. Subtractingβt+1 from
both sides, multiplying both sides byγt, and applying the inequality

∑T−t
t′=1 γ

t′−1 ≤∑T
t′=1 γ

t′−1 =
Tγ gives us

γt

(

βt

(

1 + (1− β)
T−t−1
∑

t′=1

γt′−1

)

− βt+1

)

< γt(v − βt+1)

⇔ βt(1− β)

T
∑

t′=t+1

γt′−1 < γt(v − βt+1)

Now substituteβt(1− β) = (v − βt+1)− (v − βt) and gather terms. We have

T
∑

t′=t+2

γt′−1(v − βt+1) <

T
∑

t′=t+1

γt′−1(v − βt) . (3)
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Note that
∑T

t′=t+1 γ
t′−1(v− βt) is the surplus of a monotonic buyer that starts accepting (and thus

continues to accept) the price offered at timet+ 1. The inequality above, which holds for arbitrary
t > dβ,γ , states that the surplus that is gained from starting to accept at roundt + 1 is greater than
the surplus gained from starting to accept at roundt+ 2. Thus, it must be the casea∗t+1 = 1.

A.3 Proof of Corollary 1

Before showing the proof to Corollary 1, we prove the following technical lemma.
Lemma 5. x ≥ log(1 + x) if x ≥ 0 and x ≤ 2 log(1 + x) if 0 ≤ x ≤ 1.

Proof. By Taylor’s theoremex =
∑∞

i=0
xi

i! . Thereforeex ≥ 1 + x if x ≥ 0, and sox ≥ log(1 + x)

if x ≥ 0. Now letan =
∑n

i=1(−1)i+1 xi

i and observe that for any positive even integern

2an = 2x− x2 + 2

n
∑

i=3

(−1)i+1 x
i

i

= x+
(

x− x2
)

+ 2

n
∑

i=3,5,7,...

xi

(

1

i
− x

i+ 1

)

≥ x

where the inequality follows becausex − x2 ≥ 0 if 0 ≤ x ≤ 1 and 1
i − x

i+1 ≥ 0 if x ≤ 1 and
i ≥ 1. Sincelimn→∞ an = log(1 + x) (by Taylor’s theorem) andlimn→∞ an = limn→∞,n evenan
(because all subsequences of a convergent sequence have thesame limit), we have shown2 log(1 +
x) ≥ x for 0 ≤ x ≤ 1.

Now, the proof of Corollary 1.

Proof of Corollary 1. From the expression forβ we have

cβ,γ = 1 +

(

1−
√
T

1 +
√
T

)

Tγ = 1 +
1

(

1 +
√
T
)Tγ =

1 +
√
T + Tγ

(

1 +
√
T
) (4)

which implies

1− β

cβ,γ
= 1−

√
T

1 +
√
T + Tγ

=
1 + Tγ

1 +
√
T + Tγ

.

We also have

dβ,γ =

log

((

1 +
Tγ

(1+
√
T)

)

1
v

)

log
(

1+
√
T√

T

) =

log

(

1 +
Tγ

(1+
√
T)

)

+ log
(

1
v

)

log
(

1 + 1√
T

) .

By Lemma 5 we know thatx ≥ log(1 + x) if x ≥ 0 andx ≤ 2 log(1 + x) if 0 ≤ x ≤ 1. Since
T ≥ 1 we have Tγ

(1+
√
T)

≥ 0 and0 ≤ 1√
T
≤ 1 and therefore

dβ,γ ≤ 2Tγ

√
T

(

1 +
√
T
) + 2

√
T log

(

1

v

)

≤ 2Tγ + 2
√
T log

(

1

v

)

. (5)

From the expression forcβ,γ in Eq. (4) we have 1
cβ,γ

≤ 1. Therefore

dβ,γ
cβ,γ

≤ 2Tγ + 2
√
T log

(

1

v

)

.

Now plug the bounds on1− β
cβ,γ

, dβ,γ

cβ,γ
and 1

cβ,γ
from above into the upper bound from Theorem 1.

Noting thatβ ≤ 1 gives us

Regret(Monotone, v, T ) ≤ vT

(

1 + Tγ

1 +
√
T + Tγ

)

+ vβ

(

2Tγ + 2
√
T log

(

1

v

)

+ 1

)
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≤
√
T

(

4vTγ + 2v log

(

1

v

))

+ v .

B Upper Bound on Regret of Phased

Let λ be a fixed positive constant, whose exact value will be specified later. DefineV +
p,i to be the

number of explore rounds in phasei where pricep was offered and the buyer’s value in the round

was at leastp + λ. Let r̂+p,i = p
V +

p,i

Si
, and note thatE[r̂p,i(λ)] = pF (p + λ). Similarly, defineV −

p,i

to be the number of explore rounds in phasei where pricep was offered and the buyer’s value in the

round was at leastp−λ. Let r̂−p,i = p
V −

p,i

Si
, and note thatE[r̂−p,i] = pF (p−λ). Also, letr̃p,i = p

Ap,i

Si

be theobserved revenue of pricep in explore rounds in phasei.

In thePhased algorithm, the pricẽpi that maximizes̃rp,i is offered in every exploit round of phasei.
So our strategy for proving Theorem 2 will be to show thatp∗ = argmaxp r̃p,i with high probability
for all sufficiently largei. There are essentially only two ways this can fail to happen:Either the
realized buyer values differ greatly from their expectations, or the buyer is untruthful about her
realized values. The first case is unlikely, and the latter case is costly to the buyer, provided the
number of explore rounds in the phase is sufficiently large. We now quantify ‘sufficiently large’. Let
i∗p be the smallest nonnegative integer such thatSi ≥ DT for all i ≥ i∗p, where

DT = max

(

16

∆2
log T,

8

∆
C 1

T

)

andCδ = Tγ(log(1/δ) + log(1/λ)). Note thati∗p is well-defined becauseSi is increasing ini. The
next lemma uses a standard concentration inequality to bound the probability that certain random
variables are close to their expectations.

Lemma 6. Fix price p ∈ P and phase i ≥ i∗p. With probability 1− 2T−1

r̂−p,i ≤ pF (p− λ) +
∆

4
and r̂+p∗,i ≥ p∗F (p∗ + λ)− ∆

4
.

Proof. Note thatr̂−p,i is an average ofSi independent random variables, since the variablespt are
chosen deterministically during the explore phase and eachvt is always drawn independently. Also
note thatE[r̂−p,i] = pF (p− λ). Sincei ≥ i∗p we have

Si ≥
16

∆2
log T =

1

(∆/4)2
log T.

Thus by Hoeffding’s inequalityPr
[

r̂−p,i ≤ pF (p− λ) + ∆
4

]

≥ 1 − T−1. Similarly r̂+p∗,i

is an average ofSi independent random variables andE[r̂+p∗,i] = p∗F (p∗ + λ), and thus
Pr
[

r̂+p∗,i ≥ p∗F (p∗ + λ)− ∆
4

]

≥ 1− T−1. The lemma follows from the union bound.

LetLp,i be the set of explore rounds in phasei where the seller offered pricep and the buyerλ-lied,
i.e., a roundt where either the buyer accepted pricep and her valuevt ≤ p − λ, or rejected pricep
and her valuevt > p+ λ. LetLp,i = |Lp,i|. The next lemma shows that, for any phasei where the
event from the previous lemma occurs, if the observed revenue of the optimal pricep∗ is less than
the observed revenue of another price then the buyer must have told manyλ-lies during phasei.

Lemma 7. Fix price p ∈ P and phase i. If r̃p∗,i < r̃p,i and the event from Lemma 6 occurs then

Lp,i ≥
(

∆−8Kλ
4p

)

Si or Lp∗,i ≥
(

∆−8Kλ
4p∗

)

Si.

Proof. Assume for contradiction thatLp,i <
(

∆−8Kλ
4p

)

Si andLp∗,i <
(

∆−8Kλ
4p∗

)

Si. For any

pricep′ note thatAp′,i − V −
p′,i ≤ Lp′,i andV +

p′,i − Ap′,i ≤ Lp′,i, sinceAp′,i counts the number of
times the buyer accepted pricep′ in phasei. Combining these bounds and applying the definitions
of r̃p,i, r̃p∗,i, r̂

−
p,i andr̂+p∗,i proves

r̃p,i − r̂−p,i <
∆

4
−Kλ, (6)
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r̂+p∗,i − r̃p∗,i <
∆

4
−Kλ. (7)

Now observe

r̃p,i < r̂−p,i +
∆

4
−Kλ Eq. (6)

≤ pF (p− λ) +
∆

2
−Kλ Lemma 6

≤ pF (p) +
∆

2
K-Lipschitz continuity

≤ p∗F (p∗)− ∆

2
Definition of∆

≤ p∗F (p∗ + λ)− ∆

2
+Kλ K-Lipschitz continuity

≤ r̂+p∗,i −
∆

4
+Kλ Lemma 6

< r̃p∗,i Eq. (7)

which contradicts̃rp∗,i < r̃p,i.

Next we show that the number ofλ-lies told by a surplus-maximizing buyer in any phase is bounded
with high probability. This is the main technical lemma.

Lemma 8. Fix price p ∈ P , phase i, and suppose the buyer uses a surplus-maximizing algorithm
B∗(Phased,D). For all δ > 0 we have Pr [Lp,i ≥ Cδ] ≤ δ.

Proof. Let Bi be a buyer algorithm that acts according toB∗(Phased,D) during the firsti − 1
phases, and from phasei onwards acts truthfully in every round, i.e.,at = 1{vt ≥ pt} for all rounds
t in phasesi, i+ 1, . . . , ⌈log2 T ⌉. AssumePr [Lp,i ≥ Cδ] > δ. We will show that this implies

BuyerSurplus(Phased,B∗(Phased,D),D, T ) < BuyerSurplus(Phased,Bi,D, T ),

a contradiction.

Let p∗1, . . . , p
∗
T anda∗1, . . . , a

∗
T be the prices and accept decisions from all rounds when the buyer

algorithm isB∗(Phased,D), and letpi1, . . . , p
i
T andai1, . . . , a

i
T be the price and accept decisions

from all rounds when the buyer algorithm isBi. Recall that the valuesv1, . . . , vT are drawn inde-
pendently of seller or buyer behavior. Lett−i andt+i be the first and last explore rounds in phasei,
respectively. We have

BuyerSurplus(Phased,B∗(Phased,D),D, T )− BuyerSurplus(Phased,Bi,D, T )

= E





t−i −1
∑

t=1

γt−1(a∗t (vt − p∗t )− ait(vt − pit))



+ E





t+i
∑

t=t−i

γt−1(a∗t (vt − p∗t )− ait(vt − pit))





+ E





T
∑

t=t+i +1

γt−1(a∗t (vt − p∗t )− ait(vt − pit))



 (8)

= E





t+i
∑

t=t−i

γt−1(a∗t (vt − p∗t )− ait(vt − pit))



+ E





T
∑

t=t+i +1

γt−1(a∗t (vt − p∗t )− ait(vt − pit))





(9)

= E





t+i
∑

t=t−i

γt−1(a∗t − ait)(vt − pit)



+ E





T
∑

t=t+i +1

γt−1(a∗t (vt − p∗t )− ait(vt − pit))



 (10)
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≤ E





t+i
∑

t=t−i

γt−1(a∗t − ait)(vt − pit)



+ γt+i Tγ (11)

= Pr[Lp,i ≥ Cδ]E





t+i
∑

t=t−i

γt−1(a∗t − ait)(vt − pit)
∣

∣ Lp,i ≥ Cδ





+ Pr[Lp,i < Cδ]E





t+i
∑

t=t−i

γt−1(a∗t − ait)(vt − pit)
∣

∣ Lp,i < Cδ



+ γt+i Tγ

≤ Pr[Lp,i ≥ Cδ]E





∑

t∈Lp,i

γt−1(a∗t − ait)(vt − pit)
∣

∣ Lp,i ≥ Cδ



+ γt+i Tγ (12)

≤ Pr[Lp,i ≥ Cδ]E





∑

t∈Lp,i

γt−1(−λ)
∣

∣ Lp,i ≥ Cδ



+ γt+i Tγ (13)

≤ Pr[Lp,i ≥ Cδ]

t+i
∑

t=t+i −Cδ+1

γt−1(−λ) + γt+i Tγ (14)

< δ

t+i
∑

t=t+i −Cδ+1

γt−1(−λ) + γt+i Tγ (15)

= −δλγt+i −Cδ

(

1− γCδ

1− γ

)

+ γt+i Tγ ≤ γt+i

1− γ

(−δλ

γCδ
+ (1− γ)Tγ

)

≤ 0 (16)

Eq. (8) follows from the definition of surplus and the linearity of expectation. Eq. (9) holds be-
causeB∗(Phased,D) andBi behave identically before phasei. Eq. (10) holds because the prices
offered during explore rounds are independent of the buyer’s algorithm, and thuspit = p∗t for
t ∈ {t−i , . . . , t+i }. The fact thatait = 1{vt ≥ pit} for t ≥ t−i impliesa∗t (vt − p∗t )− ait(vt − pit) ≤ 1
for t ≥ t−i , which yields Eq. (11), and also implies(a∗t − ait)(vt − pit) ≤ 0 for t ≥ t−i , which yields
Eq. (12) (recall thatLp,i ⊆ {t−i , . . . , t+i }). The definition ofλ-lies and the fact thatpit = p∗t for
t ∈ Lp,i implies Eq. (13). Eq. (14) holds becauseγt−1 is decreasing int. Eq. (15) follows from our
assumption thatPr[Lp,i ≥ Cδ] > δ. Eq. (16) follows from the definition ofCδ.

We are ready to prove an upper bound on the regret of thePhased algorithm.

Proof of Theorem 2. Let T explore
i andT exploit

i be the set of explore and exploit rounds of phasei.
Note that for thePhased algorithm the behavior of a buyer during exploit rounds doesnot affect
the prices offered in future rounds. Sincep̃i is the price offered in each exploit round of phasei, a
surplus-maximizing buyer will chooseat = 1{vt ≥ p̃i} in any exploit roundt of phasei. So we
can upper bound the regret of thePhased algorithm in terms of the number of explore rounds and
the probability that̃pi 6= p∗ during exploit rounds. We have

Regret(Phased,D, T ) = E

[

T
∑

t=1

p∗F (p∗)− atpt

]

=
∑

i

∑

t∈T explore
i

E [p∗F (p∗)− atpt] +
∑

i

∑

t∈T exploit
i

E [p∗F (p∗)− atpt]

≤
∑

i

|P|Si +
∑

i

∑

p∈P\{p∗}
Pr [p̃i = p] (Ti − |P|Si)

≤
∑

i

|P|Si +
∑

p∈P\{p∗}

∑

i≤i∗p

Ti +
∑

p∈P\{p∗}

∑

i>i∗p

Pr [p̃i = p]Ti (17)
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where expectations and probabilities are with respect to value distributionD, seller algorithm
Phased, and buyer algorithmB∗(Phased,D). We will now bound each term in Eq. (17). Let
λ = ∆

16K .

Let n = ⌈log2 T ⌉. Recall thatTi = 2i andSi = Tα
i , which implies

∑

i Si =
∑n−1

i=1 2αi. Since
n ≤ log2 T + 1 we have2n ≤ 2T . Thus

∑

i

Si =

n−1
∑

i=1

2αi ≤ (2α)n − 1

2α − 1
=

(2n)α − 1

2α − 1
≤ 2αTα − 1

2α − 1
≤ 2α

2α − 1
Tα. (18)

where the first inequality follows from the formula for a geometric series (this is just the standard
’doubling trick’).

By the definition ofSi andi∗p we haveTi∗p−1 < (DT )
1/α, which impliesTi∗p+1 ≤ 4(DT )

1/α. Also
note that

∑

j≤i Tj ≤ Ti+1 for all i, again becauseTi = 2i. Thus
∑

p∈P\{p∗}

∑

i≤i∗p

Ti ≤
∑

p∈P\{p∗}
4(DT )

1/α (19)

Finally, for anyp 6= p∗ andi > i∗p if p̃i = p thenr̃p∗,i < r̃p,i, which by Lemma 7 implies that either
the event from Lemma 6 does not occur,

Lp,i ≥
∆− 8Kλ

4p
Si, or (20)

Lp∗,i ≥
∆− 8Kλ

4p∗
Si. (21)

Sinceλ = ∆
16K andp, p∗ < 1, Eq. (20) and Eq. (21) respectively imply

Lp,i ≥
∆

8
Si, or (22)

Lp∗,i ≥
∆

8
Si. (23)

The event from Lemma 6 occurs with probability1− 2T−1. And sinceSi ≥ DT ≥ (8/∆)C 1
T

for
all i ≥ i∗p, we have that Eq. (22) and Eq. (23) imply eitherLp,i ≥ C 1

T
or Lp∗,i ≥ C 1

T
, which by

Lemma 8 each occur with probability at mostT−1. Thus by the union boundPr[p̃i = p] ≤ 4T−1,
and therefore

∑

p∈P\{p∗}

∑

i>i∗p

Pr [p̃i = p]Ti ≤ 4|P| (24)

Combining Eqs. (18), (19) and (24) with Eq. (17) yields

Regret(Phased,D, T ) ≤ 2α

2α − 1
|P|Tα +

∑

p∈P\{p∗}
4(DT )

1/α + 4|P|

Plugging in the definitionDT andλ = ∆
16K , we have

Regret(Phased,D, T ) ≤ 2α

2α − 1
|P|Tα +

∑

p∈P\{p∗}
4

(

16

∆2
log T

)1/α

+
∑

p∈P\{p∗}
4

(

8

∆
Tγ(log T + log(16K/∆))

)1/α

+ 8|P|.

and simplifying yields the statement of the theorem.

C Lower Bound Proofs

C.1 Proof of Lemma 3

Proof. Fix a incentive compatible and rational strategyS. Let SellerRevenue(b) = E(p,a)∼Sb
[ap]

be the seller’s expected revenue if the buyer bidsb, and letBuyerSurplus(b, v) = E(p,a)∼Sb
[a(v −
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p)] be the buyer’s expected surplus if she bidsb and her value isv. It suffices to show that there
existsv ∈ [0, 1] such thatv − SellerRevenue(v) ≥ 1

12 .

Before proceeding, we establish some properties ofS. Incentive compatibility ofS ensures that

BuyerSurplus(v, v) ≥ BuyerSurplus(b, v) (25)

for all b, v ∈ [0, 1], and rationality ofS ensures that

BuyerSurplus(v, v) ≥ 0 (26)

for all v ∈ [0, 1]. Also

SellerRevenue(b) + BuyerSurplus(b, v) = E(p,a)∼Sb
[a]v (27)

for all b, v ∈ [0, 1], which follows directly from definitions, and

SellerRevenue(v) ≤ E(p,a)∼Sv
[a]v (28)

for all v ∈ [0, 1], which follows from rationality: By (27) we haveBuyerSurplus(v, v) =
E(p,a)∼Sv

[a]v − SellerRevenue(v), and thus if (28) were false we would have
BuyerSurplus(v, v) < 0, which contradicts (26).

Now observe that for anyb, v ∈ [0, 1]

v − SellerRevenue(v) ≥ E(p,a)∼Sv
[a]v − SellerRevenue(v)

= BuyerSurplus(v, v) (29)

≥ BuyerSurplus(b, v) (30)

= E(p,a)∼Sb
[a(v − p)]

= E(p,a)∼Sb
[a]v − E(p,a)∼Sb

[ap]

= E(p,a)∼Sb
[a]v − SellerRevenue(b)

≥
(

SellerRevenue(b)

b

)

v − SellerRevenue(b) (31)

= (v − b)

(

SellerRevenue(b)

b

)

where (29) follows from (27), (30) follows from (25), and (31) follows from (28). Now letb = 1
4

andv = 1
2 . If v − SellerRevenue(v) ≥ 1

6 we are done. Otherwise the first and last lines from the
above chain of inequalities andv − SellerRevenue(v) < 1

6 imply

SellerRevenue(b)

b
≤ v − SellerRevenue(v)

v − b
<

1

6

1

v − b
=

2

3

which can be rearranged intob− SellerRevenue(b) ≥ 1
3b ≥ 1

12 .

C.2 Proof of Lemma 4

Proof. It will be convenient to define the following (all expectations in these definitions are with
respect toA,D andB∗(A,D)):

rev(t1, t2) = E

[

t2
∑

t=t1

atpt

]

sur(t1, t2) = E

[

t2
∑

t=t1

γtat(vt − pt)

]

udsur(t1, t2) = E

[

t2
∑

t=t1

at(vt − pt)

]

totval(t1, t2) = E

[

t2
∑

t=t1

atvt

]
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where “udsur” stands for “undiscounted surplus” and “totval” stands for “total value”. Note that
by definition

rev(t1, t2) + udsur(t1, t2) = totval(t1, t2). (32)

Also, sinceB∗(A,D) is a surplus-maximizing buyer strategy,sur(t, T ) ≥ 0 for all roundst, because
otherwise the buyer could increase her surplus by followingB∗(A,D) until roundt − 1 and then
selectingat′ = 0 for all roundst′ ≥ t.

We will first prove thatsur(t, T ) ≤ γtudsur(t, T ) for all roundst. The proof will proceed by
induction. For the base case, we havesur(T, T ) = γTudsur(T, T ) by definition. Now assume for
the inductive hypothesis thatsur(t + 1, T ) ≤ γt+1udsur(t + 1, T ). Sincesur(t + 1, T ) ≥ 0 and
γt+1 > 0, by the inductive hypothesis we haveudsur(t+ 1, T ) ≥ 0. Therefore

sur(t, T ) = sur(t, t) + sur(t+ 1, T )

= γtudsur(t, t) + sur(t+ 1, T )

≤ γtudsur(t, t) + γt+1udsur(t+ 1, T ) (33)

≤ γtudsur(t, t) + γtudsur(t+ 1, T ) (34)

= γtudsur(t, T )

where Eq. (33) follows from the inductive hypothesis and Eq.(34) follows becauseudsur(t+1, T ) ≥
0 andγt ≥ γt+1. Thussur(t, T ) ≤ γtudsur(t, T ).

Sincesur(1, T ) ≤ γ1udsur(1, T ) and γ1 ≤ 1, by Eq. (32) we haverev(1, T ) + sur(1, T ) ≤
totval(1, T ), which proves the lemma.
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