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A Proof of Representer Theorem 2

Proof. By Riesz’s Theorem, the linear functional Li(f) can be represented as an inner product
Li(f) = 〈f, zi〉, where zi is a member of the Hilbert space and zi(x) = 〈zi, k(x, ·)〉.
We now claim that the solution of the optimization problem (2) can be represented as

l∑
i=1

αik(xi, ·) +

n∑
i=l+1

αizi(·).

To see this, any function f in the RKHS can be represented as

f(·) =

l∑
i=1

αik(xi, ·) +

n∑
i=l+1

αizi(·) + f⊥(·)

where f⊥(x) is in the orthogonal complement of the span of k(xi, ·) for 1 ≤ i ≤ l and of zi(·) for
l + 1 ≤ i ≤ n. Each of the terms that contains the loss function l2 depends only on f(xk) which
can be written as

f(xk) = 〈f(·), k(xk, ·)〉

=

l∑
i=1

αi〈k(xi, ·), k(xk, ·)〉+

n∑
i=l+1

αi〈zi(·), k(xk, ·)〉+ 〈f⊥(x), k(xk, ·)〉

=

l∑
i=1

αik(xi, xk) +

n∑
i=l+1

αizi(xk).

Hence, each of those terms depends only on the projection of the function onto the span.

Similarly, each of the terms that contain the loss function l1 depends only on the projection of the
function onto the span.

Lk(f) = 〈f, zk〉 =

l∑
i=1

αi〈k(xi, ·), zk〉+

n∑
i=l+1

αi〈zi, zk〉+ 〈f⊥(x), zk〉

=

〈
l∑
i=1

αik(xi, ·) +

n∑
i=l+1

αizi, zk

〉
.

Since all quantities in the loss functions l1 and l2 depend only on the component that lies in the span,
any function that has components in the orthogonal complement has higher cost than its projection
onto the span. Hence the optimal solution must lie in the span of the desired functions.

Finally, note that the squared norm of the function

f(·) =

l∑
i=1

αik(xi, ·) +

n∑
i=l+1

αizi(·)

can be written as α′Kα where Kij = 〈k′i, k′j〉 where k′i = k(xi, ·) if i ≤ l and k′i = zi(·)
otherwise. �

The following more general version of the representer theorem covers this case as well. The proof
is similar to that of Theorem 2.
Theorem 7. Let Li, i = l + 1, . . . , n, be bounded linear functionals in the reproducing kernel
Hilbert space H defined by the kernel k. Let F be the span of a fixed set of basis functions φj ,
j = 1, . . . ,m. The solution of the optimization problem

g = argmin
f=f1+f2,f1∈F,f2∈H

λ

l∑
i=1

l2(yi, f(xi)) + ν

n∑
i=l+1

l1 (Li(f)) +
1

2
‖f2‖2
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for λ, ν > 0 can be expressed as

g(·) =

m∑
j=1

wjφj(·) +

l∑
i=1

αik(xi, ·) +

n∑
i=l+1

αizi(·)

where zi is the representer of Li. Furthermore, the parameters w = (w1, . . . , wm)′ and α =
(α1, . . . , αn)′ can be obtained by minimizing

λ

l∑
i=1

l2(yi, f(xi)) + ν

n∑
i=l+1

l1 (Li(f)) +
1

2
α′Kα

where f =
∑m
j=1 wjφj(·) +

∑l
i=1 αik(xi, ·) +

∑n
i=l+1 αizi(·) and Ki,j = 〈k′i, k′j〉 where k′i =

k(xi, ·) if i ≤ l and k′i = zi(·) otherwise.

B Inner Product of Representers for Local Average

Proof for Theorem 6. By the reproducing kernel property and Cauchy-Schwarz inequality,

|f(x)| = |〈f, k(x, ·)〉| ≤ ‖f‖ · ‖k(x, ·)‖ = ‖f‖ k(x,x)1/2 ≤ C ‖f‖ . (12)

Therefore, |Lxi(f)| =
∣∣∣∣∫

X

f(τ )p(xi − τ )dτ − f(xi)

∣∣∣∣ ≤ ∫
X

|f(τ )|p(xi − τ )dτ + C ‖f‖

≤ C ‖f‖
∫
X

p(xi − τ )dτ + C ‖f‖ = 2C‖f‖. �

B.1 Inner Products of Representers for Local Average Functional

Let p(x) = (θ
√

2π)−nκθ(x,0). Then

〈zxi , k(x, ·)〉 = Lxi(k(x, ·)) =

∫
X

k(x, τ )p(xi − τ )dτ − k(xi,x)

= (2π)n/2σn
∫
X

1

(2π)n/2σn
exp

(
−‖x− τ‖2

2σ2

)
1

(2π)n/2θn
exp

(
−‖xi − τ‖2

2θ2

)
dτ

− k(xi,x)

=
σn

(σ + θ)n
exp

(
− 1

2(σ + θ)2
‖xi − x‖2

)
− exp

(
− 1

2σ2
‖xi − x‖2

)
= (1 + θ/σ)−nκσ+θ(xi,x)− κσ(x,xi).

Similarly,

〈zxi , zxj 〉 = Lxi(zxj ) = (2π)n/2σn
∫
X

[
1

(2π)n/2(σ + θ)n
exp

(
− 1

2(σ + θ)2
‖xj − x‖2

)
− 1

(2π)n/2σn
exp

(
− 1

2σ2
‖xj − x‖2

)]
1

(2π)n/2θn
exp

(
− 1

2θ2
‖xi − τ‖2

)
dτ − zxj (xi)

=
σn

(σ + 2θ)n
exp

(
− 1

2(σ + 2θ)2
‖xi − xj‖2

)
− σn

(σ + θ)n
exp

(
− 1

2(σ + θ)2
‖xi − xj‖2

)
− zxj (xi)

= κσ(xi,xj) + (1 + 2θ/σ)−nκσ+2θ(xi,xj)− 2(1 + θ/σ)−nκσ+θ(xi,xj).
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