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1 Algorithm solving Problem (7)

For the data projection r and noise estimation e, we can get the closed-form solutions for them
respectively, as shown in Algorithm 1.1. In particular, the closed-form solution to a projection to
`1-ball in updating e involves a soft thresholding operator Sλ[·] Hale et al. (2008), which is defined
as:

Sλ[x] ,


x− λ, if x > λ,

x+ λ, if x < −λ,
0, otherwise.

And it is conducted element-wisely on the involved vectors. The optimization iteration is terminated
when the following convergence criterion is met:

max(‖rk+1 − rk‖/‖z‖, ‖ek+1 − ek‖/‖z‖) < ε.

Here ε is set as 1× 10−6 throughout the simulations.

The details of the algorithm are summarized as follows,

Algorithm 1.1 Data Projection
Input: L = [l1, . . . , lr] ∈ Rp×r (input basis), z ∈ Rp, parameters λ1 and λ2.
e← 0.
while not converged do

Update the coefficient r:
r← (LTL+ λ1I)−1LT (z− e).

Update the sparse error e:
e← Sλ2

[z− Lr].

end while
Return L.
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2 Proof of Lemma 1

Lemma 1 [optimality condition of Problem (4)] r? ∈ Rr and e? ∈ Rp is a solution of Problem (4)
if and only if

CΛ(zΛ − e?Λ) = λ2sign(e?Λ),

|CΛc(zΛc − e?Λc)| ≤ λ2, otherwise,

r? = (LTL+ λ1I)−1LT (z− e?),

where C = I−L(LTL+λ1I)−1LT and CΛ denotes the column vectors of matrix C indexed by the
set Λ = {j|e?[j] 6= 0} and Λc denotes the complementary set of Λ. Moreover, the optimal solution
is unique.

Proof. Denote the subgradient of ‖e‖1 as ∂‖e‖1 and it is known that

∂‖e‖1 = {u|ui = sign(ei) if ei 6= 0, and |ei| ≤ 1 otherwise}.
The point (r?, e?) is a global minimum of (5) if and only if the vector zero is in its subgradient at
(r?, e?):

∃u ∈ ∂‖e?‖1 such that e? + Lr? − z + λ2u = 0, (2.1)

−LT z + LTLr? + LTe? + λ1r
? = 0. (2.2)

From (2.2), we have,
r? = (LTL+ λ1I)−1LT (z− e?).

This proves the third inequality in the lemma. Substituting back into (2.1) yields(
I − L(LTL+ λ1I)−1LT

)
(z− e?) = λ2u,where u ∈ ∂‖e?‖1.

Define the matrix
C , I − L(LTL+ λ1I)−1LT .

According to Woodbury matrix identity, we have

C =

(
I +

1

λ1
LTL

)−1

.

Thus C is invertible. We then have

C(z− e?) = λ2u,where u ∈ ∂‖e?‖1.
Let Λ = {j|e?[j] 6= 0} be the index set of nonzero elements of the optimal solution e?. Then we
can show that

CΛ(zΛ − e?Λ) = λ2sign(e?Λ)

Here CΛ denotes submatrix of C consisting of the column vectors of matrix C indexed by Λ. Then
we can solve out that

e?Λ = (CTΛCΛ)−1(CΛzΛ − λsign(e?Λ)),

e?Λc = 0.

Since C is invertible, C is column full rank. Thus CΛ is column full rank and CTΛCΛ is invertible,
the solution e? is unique and thus r? is also unique.

3 Proof of Lemma 2

Lemma 2 Assume the observations z are always bounded. Define

{r?, e?} = arg min
r,e

1

2
‖z− Lr− e‖22 +

λ1

2
‖r‖22 + λ2‖e‖1.

Then, 1) the function ` defined in (4) is continuously differentiable and

∇L`(z, L) = (Lr? + e? − z)r?T ;

2)∇f(L) = Ez[∇L`(z, L)]; and 3)∇Lf(L) is Lipschitz.

2



Proof. To reveal the regularity of the expected loss function f and its derivative ∇f , we need first
to prove the regularity of the loss function ` as stated in the first claim.

Proof of the first claim

Define a function f̃ as

f̃(r, e, z, L) ,
1

2
‖z− Lr− e‖22 +

λ1

2
‖L‖2F +

λ1

2
‖r‖22 + λ2‖e‖1.

Thus the loss function ` can be expressed as

`(z, L) = min
r,e

f̃(r, e, z, L).

The function f̃(r, e, z, L) is continuous, and for all r ∈ Rr, e ∈ Rp, the function f̃(r, e, ·, ·) is
differentiable, and the derivative ∇Lf̃(r, e, ·, ·) = (Lr + e − z)rT is continuous. Furthermore,
according to Lemma 1, f̃(·, ·, z, L) has unique minimizer (r?, e?), thus Lemma 3 directly applies
and we obtain that `(z, L) is differentiable in L and

∇L`(z, L) = ∇Lf̃(r?, e?, z, L) = (Lr? + e? − z)r?T + λ1L.

Thus, we complete the proof of the first claim.

Proof of the second claim

According to the first claim, the function `z,L is continuously differentiable, thus

∇Lf(L) = ∇LEz[`(z, L)] = Ez[∇L`(z, L)].

Equipped with the above two results, we are ready to prove that the derivative∇Lf(L) is Lipschitz.

Proof of the third claim

To prove that ∇f(L) is Lipschitz, we will show that for all bounded observations z, r?(z, ·) and
e?(z, ·) are Lipschitz with constants independent of z. First, the loss function `(z, L) defined in (4)
is continuous in r, e, L, z and has a unique minimum (according to Lemma 1) for fixed z and L,
thus the optimal solutions r? and e? are continuous in L and z.

Consider a matrix L and a sample z, and denote r? and e? as the corresponding optimal solutions.
Denote by Λ the set of the indices such that |CΛ(zΛ−e?Λ)| = λ1 (see Lemma 1). Here the matrix C
is defined as C = I − L(LTL + λ1I)−1LT . Since CΛ is nonsingular, CΛ(zΛ − e?Λ) is continuous
in L and z. Thus we consider a small perturbation of (z, L) in one of their open neighborhood V ,
such that for all (z′, L′) in V , we have if j /∈ Λ,

∣∣C ′j(z′[j]− e?′[j])
∣∣ < λ2 and e?′[j] = 0, where

e?′ = e?(z′, L′). Namely the support set of e? is not changed.

Based on the about continuity, we consider the following function

˜̀(zΛ, LΛ, r, eΛ) ,
1

2
‖zΛ − LΛr− eΛ‖22 +

λ1

2
‖LΛ‖2F +

λ1

2
‖r‖22 + λ2‖eΛ‖1.

Since the Hessian matrix of the function ˜̀(zΛ, LΛ, ·, ·) w.r.t. r, I ⊗ (LTΛLΛ + λ1I), and the Hessian
matrix w.r.t. eΛ, I ⊗ λ2I , are positive definite, we have the function ˜̀(zΛ, LΛ, ·, ·) is strictly convex
and

˜̀(zΛ, LΛ, r
?′, e?Λ

′)− ˜̀(zΛ, LΛ, r
?, e?Λ)

≥ λ1‖r?′ − r?‖22 + λ2‖e?Λ
′ − e?Λ‖22

≥ min(λ1, λ2)(‖r?′ − r?‖22 + ‖e?Λ
′ − e?Λ‖22). (3.1)

We then show that the function ˜̀(z, L, ·, ·)− ˜̀(z′, L′, ·, ·) is Lipschitz continuous.

To this end, we calculate the difference of the above function:(
˜̀(z, L, r, e)− ˜̀(z′, L′, r, e)

)
−
(

˜̀(z, L, r′, e′)− ˜̀(z′, L′, r′, e′)
)

=
1

2

(
‖z− Lr− e‖22 − ‖z′ − L′r− e‖22

)
− 1

2

(
‖z− Lr′ − e′‖22 − ‖z′ − L′r′ − e′‖22

)
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Define a matrix A = [L, I] and a vector b = [r; e], and we have Lr + e = Ab. Then,(
˜̀(z, L, r, e)− ˜̀(z′, L′, r, e)

)
−
(

˜̀(z, L, r′, e′)− ˜̀(z′, L′, r′, e′)
)

=
1

2

(
‖z−Ab‖22 − ‖z′ −A′b‖22

)
− 1

2

(
‖z−Ab′‖22 − ‖z′ −A′b′‖22

)
It is easy to show that the function ‖z−Ab‖22 − ‖z′ −A′b‖22 is Lipschitz with constant as c1‖A−
A′‖F + c2‖z− z′‖2, where c1, c2 are constants independent of A,A′, z, z′. Thus,(

˜̀(z, L, r, e)− ˜̀(z′, L′, r, e)
)
−
(

˜̀(z, L, r′, e′)− ˜̀(z′, L′, r′, e′)
)

≤ (c1‖A−A′‖F + c2‖z− z′‖2) ‖b− b′‖2
= (c1‖L− L′‖F + c2‖z− z′‖2) (‖r− r′‖2 + ‖e− e′‖2)

According to (3.1) in the supplementary material, and considering (r∗′, e∗Λ
′) minimizes the loss

˜̀(z′, L′, ·, ·), we have

min(λ1, λ2)
(
‖r∗′ − r∗‖22 + ‖e∗Λ

′ − e∗Λ‖22
)

≤ ˜̀(zΛ, LΛ, r
∗′, e∗Λ

′)− ˜̀(zΛ, LΛ, r
∗, e∗Λ)

= ˜̀(zΛ, LΛ, r
∗′, e∗Λ

′)− ˜̀(z′Λ, L
′
Λ, r
∗, e∗Λ) + ˜̀(z′Λ, L

′
Λ, r
∗, e∗Λ)− ˜̀(zΛ, LΛ, r

∗, e∗Λ)

≤ ˜̀(zΛ, LΛ, r
∗′, e∗Λ

′)− ˜̀(z′Λ, L
′
Λ, r
∗′, e∗Λ

′) + ˜̀(z′Λ, L
′
Λ, r
∗, e∗Λ)− ˜̀(zΛ, LΛ, r

∗, e∗Λ)

≤ (c1‖LΛ − L′Λ‖F + c2‖zΛ − z′Λ‖2)
(
‖r∗′ − r∗‖2 + ‖e∗Λ

′ − e∗Λ‖2
)
.

Therefore, we have,(
‖r∗′ − r∗‖2 + ‖e∗Λ

′ − e∗Λ‖2
)
≤ 1

min(λ1, λ2)
(c1‖LΛ − L′Λ‖F + c2‖zΛ − z′Λ‖2) .

Combining the second claim, we can conclude the third claim.

4 Proof of Theorem 2

Theorem 2 [Convergence of the surrogate function gt] Let gt denote the surrogate function defined
in (6). Then, gt(Lt) converges almost surely when the solution Lt is given by Algorithm 1.

Proof. We prove the convergence of the sequence gt(Lt) by showing that the stochastic positive
process

ut , gt(Lt) ≥ 0,

is a quasi-martingale Fisk (1965). According to Lemma 4, if the sum of the positive difference of ut
is bounded, ut is a quasi-martingale. And the sum converges almost surely. Thus, we compute the
difference of ut and obtain

ut+1 − ut
= gt+1(Lt+1)− gt(Lt)
= gt+1(Lt+1)− gt+1(Lt) + gt+1(Lt)− gt(Lt)

= gt+1(Lt+1)− gt+1(Lt) +
`(zt+1, Lt)− ft(Lt)

t+ 1
+
ft(Lt)− gt(Lt)

t+ 1
. (4.1)

Here the third equality is from the fact that gt+1(Lt) = 1
t+1`(zt+1, Lt) + t

t+1gt(Lt). Since Lt+1

minimizes gt+1, gt+1(Lt+1)−gt+1(Lt) ≤ 0. Since the surrogate gt upperbounds the empirical cost
ft, gt ≥ ft, we also have ft(Lt)− gt(Lt) ≤ 0. Thus we have

ut+1 − ut ≤
`(zt+1, Lt)− ft(Lt)

t+ 1
.
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We then have

E[ut+1 − ut|Ft] ≤
E[`(zt+1, Lt)|Ft]− ft(Lt)

t+ 1
=
f(Lt)− ft(Lt)

t+ 1
≤ ‖f − ft‖∞

t+ 1
. (4.2)

Here ‖f−ft‖∞ = supf∈F |f−ft| and F = {`(z, L) : Z → R, L ∈ L}. To bound E[
√
t‖f−ft‖∞],

here we use the Lemma 5. It is easy to show that in our case, all the hypotheses are verified, namely,
`(z, ·) is uniformly Lipschitz and bounded (see Lemma 2). Thus Ez[`(z, L)2] exists and is uniformly
bounded. Therefore, Lemma 5 applies and there exists a constant κ > 0 such that

E[
√
t|f − ft|∞] ≤ κ.

Therefore,
E[E[ut+1 − ut|Ft]+] = E {max (E[ut+1 − ut|F ], 0)} ≤ κ

t
3
2

.

Therefore,
E[E[ut+1 − ut|Ft]+] ≤ κ

t
3
2

.

Therefore, defining δt as in Lemma 4:

δt =

{
1, if E[ut+1 − ut|Ft] > 0,

0, otherwise,

we have
∞∑
t=1

E[δt(ut+1 − ut)] =

∞∑
t=1

E[E[ut+1 − ut|Ft]+] ≤
∞∑
t=1

κ

t
3
2

≤ +∞.

Thus, we can apply Lemma 4, which proves that ut = gt converges almost surely and that
∞∑
t=1

|E[ut+1 − ut|Ft]| < +∞ a.s.

Thus we complete the proof.

5 Proof of Theorem 3

Theorem 3 [Difference of the solution Lt] For the two successive solutions obtained from Algo-
rithm 1, we have

‖Lt+1 − Lt‖F = O (1/t) a.s.

Proof. The Hessian matrix of gt(L) is H = I ⊗ (At + λ1I). Here ⊗ denotes the Kronecker
production and At =

∑t
i=1 rir

T
i . The smallest eigenvalue of H is equal to the smallest eigenvalue

of matrix (At+λ1I), which must be larger than λ1 since At is a semi-definite positive matrix. Thus
gt(L) is strictly convex. And we have,

gt(Lt+1)− gt(Lt) ≥ λ1‖Lt+1 − Lt‖2F . (5.1)

Since gt+1(Lt+1) < gt+1(Lt) due to Lt+1 minimizing gt+1, we have

gt(Lt+1)− gt(Lt) ≤ gt(Lt+1)− gt+1(Lt+1) + gt+1(Lt)− gt(Lt) = vt(Lt+1)− vt(Lt).

Here we define vt(L) , gt(L)− gt+1(L). And we have,

∇Lvt(L) = ∇Lgt(Lt)−∇Lgt+1(Lt) =
1

t
(LÃt −Bt)−

1

t+ 1
(LÃt+1 −Bt+1).

Here Ã , A + λ1I as defined in Algorithm 2. Therefore, by utilizing the triangle inequality and
‖AB‖F ≤ ‖A‖F ‖B‖F , we can obtain,

‖∇Lvt(L)‖F =

∥∥∥∥1

t
L

(
Ãt −

t

t+ 1
Ãt+1

)
− 1

t

(
Bt −

t

t+ 1
Bt+1

)∥∥∥∥
F

≤ 1

t

(
‖L‖F

∥∥∥∥∥Ãt − tÃt+1

t+ 1

∥∥∥∥∥
F

+

∥∥∥∥Bt − tBt+1

t+ 1

∥∥∥∥
F

)
.
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Since the basis L is usually bounded ‖L‖F < κ1 (Assumption 1), the function vt(L) is Lipschitz
with constant ct = 1

t

(
κ1‖Ãt − tÃt+1

t+1 ‖F + ‖Bt − tBt+1

t+1 ‖F
)

. Thus, we have

gt(Lt+1)− gt(Lt) ≤ vt(Lt+1)− vt(Lt) ≤ ct‖Lt+1 − Lt‖F .

Substituting into (5.1), we can then obtain that

‖Lt+1 − Lt‖F ≤
ct
λ1
.

Since ct = O(1/t), we have ‖Lt+1 − Lt‖F = O(1/t).

6 Proof of Theorem 4

Theorem 4 [Convergence of f ] Let gt denote the surrogate function defined in (2). Then, 1)
f(Lt) − gt(Lt) converges almost surely to 0; and 2) f(Lt) converges almost surely, when the
solution Lt is given by Algorithm 1.

Proof. From (4.1), we can obtain that

gt(Lt)− ft(Lt)
t+ 1

≤ `(zt+1, Lt)− ft(Lt)
t+ 1

− (gt+1 − gt) ≤
`(zt+1, Lt)− ft(Lt)

t+ 1
+ [gt+1 − gt]−

Taking the conditional expectation on the filtration Ft as in the proof of Theorem 2, we obtain

E
[
gt(Lt)− ft(Lt)

t+ 1
|Ft
]

=
gt(Lt)− ft(Lt)

t+ 1
≤ E

[
`(zt+1, Lt)− ft(Lt)

t+ 1
|Ft
]

+E[[gt+1−gt]−|Ft].

∞∑
t=1

gt(Lt)− ft(Lt)
t+ 1

≤
∞∑
t=1

E
[
`(zt+1, Lt)− ft(Lt)

t+ 1
|Ft
]

+

∞∑
t=1

E[[gt+1 − gt]−|Ft]

≤
∞∑
t=1

|f − ft|
t+ 1

+

∞∑
t=1

E[[gt+1 − gt]−|Ft].

Here [·]− means taking negative part. The second inequality is from (4.2). According to Theorem 2,
the function gt converges almost surely. And we have

∞∑
t=1

|E[[gt+1 − gt]+]|Ft| < +∞ a.s.

By symmetry we can also obtain similarly
∞∑
t=1

|E[[gt+1 − gt]−]|Ft| < +∞ a.s.

According to central limit theorem, we have
√
t|f − ft| converges almost surely when t → ∞.

Therefore
∑∞
t=1

|f−ft|
t+1 converges almost surely. Then we obtain the almost sure convergence of the

positive sum
∞∑
t=1

gt(Lt)− ft(Lt)
t+ 1

≤
∞∑
t=1

|f − ft|
t+ 1

+

∞∑
t=1

|E[ut+1 − ut|Ft]| ≤ ∞.

Since both gt and ft are Lipschitz continuous, there exists a constant κ′ > 0 such that

|gt+1(Lt+1)− ft+1(Lt+1)− (gt(Lt)− ft(Lt))| ≤ κ′‖Lt+1 − Lt‖F .
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According to Theorem 3, ‖Lt+1 − Lt‖F = O(1/t). Thus it is easy to verify that the hypotheses of
Lemma 6 are satisfied. Therefore,

gt(Lt)− ft(Lt) −→
t→+∞

0 a.s.

Since gt(Lt) converges almost surely, this shows that ft(Lt) converges almost surely to the same
limit. Note that we have in addition ‖ft − f‖∞ −→

t→+∞
0 a.s. Therefore,

gt(Lt)− f(Lt) −→
t→+∞

0 a.s.

and f(Lt) converges almost surely.

7 Proof of Theorem 5

Theorem 5 The first order optimal condition for the minimization of the objective function in (6)
is satisfied by Lt, the solution provided by Algorithm 1, when t tends to infinity.

Proof. Since the function gt converges almost surely (see Theorem 2), gt = Tr(LTLÃt/t) −
Tr(LTBt/t), thus the sequences of matrices Ãt/t, Bt/t are bounded. It is possible to extract con-
verging subsequences. Let us assume for a moment that these sequences converge respectively to
two matrices A∞ and B∞. In that case, Lt converges to a matrix L∞. Let U be a matrix in Rp×r.
Since gt upperbounds ft on Rp×r, for all t,

gt(Lt + U) ≥ ft(Lt + U).

Taking the limit when t tends to infinity,

g∞(L∞ + U) ≥ f(L∞ + U).

Let ht > 0 be a sequence that converges to 0. Using a first order Taylor expansion, and using the
fact that∇f is Lipschitz (see Lemma 3) and g∞(L∞) = f(L∞) a.s. (see Theorem 4), we have

f(L∞) + Tr(htL
T∇g∞(L∞)) + o(htL) ≥ f(L∞) + Tr(htL

T∇f(L∞)) + o(htL),

and it follows that

Tr

(
1

‖L‖F
LT∇g∞(L∞)

)
≥ Tr

(
1

‖L‖F
LT∇f(L∞)

)
.

Since the above inequality is true for all L, we have ∇g∞(L∞) = ∇f(L∞). Since the first-order
necessary condition for L∞ being an optimum of g∞ is that ∇g∞ = 0. Thus at L∞, we have
∇f(L∞) = 0. Namely, the first-order optimum condition for f at L∞ is also verified.

8 Proof of Theorem 6

Theorem 6 When the solution L satisfies the first order condition for minimizing the objective
function in (5), the obtained solution L is the optimal solution of the problem (5) if L is full rank.

Proof. The minimization of the objective function in (6),

min
L

lim
n→∞

1

n

n∑
i=1

`(zi, L)

is equivalent to

min
L,R,E

1

2
‖Z − LRT − E‖2F +

λ1

2

(
‖L‖2F + ‖R‖2F

)
+ λ2‖E‖. (8.1)

Here Z = [z1, . . . , zn], R = [rT1 ; . . . ; rTn ] and E = [e1, . . . , en].
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When the first order optimal condition is satisfied, we have

(LRT − Z̃)R+ λ1L = 0, (8.2)

(RLT − Z̃T )L+ λ1R = 0, (8.3)

LRT − Z̃ ∈ λ2∂‖E‖1. (8.4)

Here Z̃ , Z −E. Note that for any invertible matrix Q, the pair (LQ,RQ−1) provides a factoriza-
tion equivalent to (L,R). In particular, any solution (L,R) can be orthogonalized to a (non-unique)
equivalent orthogonal solution L̄ = LQ, R̄ = RQ−1 such that R̄T R̄ = ΛR and L̄T L̄ = ΛL are
diagonal matrices Srebro & Jaakkola (2003). Substituting R̄T R̄ = ΛR and L̄T L̄ = ΛL into (8.2)
and (8.3), we can obtain that ΛL = ΛR = Λ.

Since we can always perform the orthgonalization operation on the obtained solution L and R, we
focus on an orthogonal solution, where RTR = Λ ∈ Rr×r and LTL = Λ ∈ Rr×r . Since L and R
are full rank, the elements in the diagonal of matrix Λ are non-zero.

From (8.2) we can obtain

L = Z̃R(RTR+ λ1I)−1 = Z̃R(Λ + λ1I)−1. (8.5)

Substituting back into (8.3), we have

RΛ− Z̃TL+ λ1R = 0.

Namely,
RΛ− Z̃T Z̃R(Λ + λ1I)−1 + λ1R = 0,

R(Λ + λ1I)2 = Z̃T Z̃R. (8.6)

Define R′ , R(
√

Λ)−1, then we have R′TR′ = (
√

Λ)−1RTR(
√

Λ)−1 = I . Namely, the matrix R′
is an orthogonal matrix. From the above equation, we conclude that

R′
√

Λ(Λ + λ1I)2 = Z̃T Z̃R′
√

Λ.

R′(Λ + λ1I)2 = Z̃T Z̃R′.

Therefore, the columns of the matrix R′ are the eigenvectors of the matrix Z̃T Z̃ . Thus the columns
of the matrix R are the eigenvectors of the matrix Z̃T Z̃ scaled by the square root of the matrix Λ.
And the eigenvalues of the matrix Z̃T Z̃ are the elements in the diagonal of matrix (Λ + λ1I)2.

From (8.5) we have

Z̃Z̃TL = Z̃Z̃T Z̃R(Λ + λ1I)−1 (8.6)
= Z̃R(Λ + λ1I)

(8.5)
= L(Λ + λ1I)2.

Thus similar toR, the columns of matrix L correspond to the eigenvectors of the matrix Z̃Z̃T scaled
by the square root of the matrix Λ.

Performing SVD on the matrix Z̃ provides Z̃ = UΣV T = U1Σ1V
T
1 + U2Σ2V

T
2 . Here UT1 U2 = 0,

V T1 V2 = 0 and Σ1 ∈ Rk×k, Σ2 ∈ R(n−k)×(n−k).

From the above results, we can obtain L = U1

√
Λ and R = V1

√
Λ.

Z̃T Z̃ = V Σ2V T .

Thus
Σ1 = Λ + λ1I.

Since the matrix L is full rank, LTL = Λ is positive definite. Thus Σ1 � λ1I .

The obtained solution X = LRT = U1ΛV T1 = U1(Σ1 − λ1I)V T1 . We can obtain that

Z̃ −X = UΣV T − U1(Σ1 − λ1I)V T1 = λ1U1V
T
1 + U2Σ2V

T
2 = λ1(U1V

T
1 +W ),

where W = U2Σ2V
T
2 /λ1.

Thus, it is easy to verify that

Z̃−X = Z−E−X ∈ ∂λ1‖X‖∗ = {λ1(U1V
T
1 +W )|UT1 W = 0,WV1 = 0, ‖W‖2 ≤ 1}. (8.7)
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Note that the problem in (8.1) is equivalent to the following convex optimization problem,

min
X,E

1

2
‖Z −X − E‖2F + λ1‖X‖∗ + λ2‖E‖1.

The first-order optimal condition is satisfied by the obtained solution as shown in (8.7) and (8.4).
Since the optimization problem is convex, we can conclude that the solution is also global optimal.

9 Technical Lemmas

Lemma 3 [Corollary of Theorem 4.1 from Bonnans & Shapiro (1998) ] Let f : Rp × Rq → R.
Suppose that for all x ∈ Rp the function f(x, ·) is differentiable, and that f and ∇uf(x,u) the
derivative of f(x, ·) are continuous on Rq → R. Let ν(u) be the optimal value function ν(u) =
minx∈C f(x,u), where C is a compact subset of Rp. Then ν(u) is directionally differentiable.
Furthermore, if for u0 ∈ Rq , f(·,u0) has a unique minimizer x0 then ν(u) is differentiable in u0

and ∇uν(u0) = ∇uf(x0,u0).
Definition 1 (Quasi-martingale, Fisk 1965). Let (Ω,F , P ) be a measurable probability space. A
stochastic process {X(t), F (t); t ∈ T} is called a quasi-martingale if there exists a martingale
process {X1(t), F (t); t ∈ T} and a process {X2(t), F (t); t ∈ T} with almost everywhere sample
function of bounded variation on T such that

P ([X(t) = X1(t) +X2(t); t ∈ T ]) = 1,

where [·] denotes the subset of Ω for which the argument is true.

A quasi-martingale process can be decomposed as martingale process plus process of bounded vari-
ation.

Lemma 4 [Sufficient condition of convergence for a stochastic process, Fisk 1965] Let (Ω,F , P )
be a measurable probability space, ut, for t ≥ 0, be the realization of a stochastic process and Ft be
the filtration determined by the past information at time t. Let

δt =

{
1 if E[ut+1 − ut|Ft] > 0,

0 otherwise.

If for all t, ut ≥ 0 and
∑∞
t=1 E[δt(ut+1 − ut)] < ∞, then ut is a quasi-martingale and converges

almost surely. Moreover,
∞∑
t=1

|E[ut+1 − ut|Ft]| < +∞ a.s.

Lemma 5 [Van der Vaart 2000] Let F = fθ : χ→ R, θ ∈ Θ be a set of measurable functions
indexed by a bounded subset Θ of Rd. Suppose that there exists a constant K such that

|fθ1(x)− fθ2(x)| ≤ K‖θ1 − θ2‖2,
for every θ1 and θ2 in Θ and x in χ. Then, F is P-Donsker. For any f in F , let us define Pnf , Pf
and Gnf as

Pnf =
1

n

n∑
i=1

f(Xi), Pf = EX [f(X)],

Gnf =
√
n(Pnf − Pf).

Let us also suppose that for all f , Pf2 < δ2 and ‖f‖∞ < M and that the random elements
X1, X2, . . . are Borel-measurable. Then, we have

EP ‖Gn‖F = O(1),

where ‖Gn‖F = supf∈F |Gnf |.

Lemma 6 [Positive converging sums, Bertsekas 1999] Let an,bn be two real sequences such that
for all n, an ≥ 0, bn ≥ 0,

∑∞
n=1 an = ∞,

∑∞
n=1 anbn < ∞, ∃K > 0 s.t. |bn+1 − bn| < Kan.

Then, limn→∞ bn = 0.
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10 Empirical Evaluation for Robust PCA

To investigate the robustness of the OR-PCA and GRASTA in details. We plot the performance
curve of these two methods under setting where the number of samples n = 1000, the ambient
dimension m = 200, the intrinsic rank r = {10, 18, 26, 34, 42, 50}, and the corruption fraction
ρs varies from 0.01 to 0.49. The performance is plotted in Figure 1. From the results, we can
make following observations: (I) Under the relatively small corruption fraction (e.g., ρs < 0.17
when r = 34), GRASTA performs a little better than OR-PCA. The reason is that the sample size
is relatively small and may be not enough for OR-PCA converging. (II) Under large corruption
fraction, the OR-PCA is much more robust than GRASTA. GRASTA will break down rapidly along
with the corruption increasing. While even for 50% corruption, OR-PCA still offers around 0.5 E.V.
value. The experimental evaluation results clearly demonstrate the robustness advantage of OR-PCA
over GRASTA.
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Figure 1: The performance comparison of the OR-PCA and GRASTA under different values of the
intrinsic rank and the corruption fraction ρs.

11 Robust Subspace Tracking

Besides identifying a static subspace, OR-PCA is also able to solve the subspace tracking prob-
lem Crammer (2006), where the underlying subspace of the observations is time variant, due to
OR-PCA updating the subspace estimation dynamically. In practice, several important problems
can be abstracted as the subspace tracking problem, such as video surveillance with moving cam-
eras, network monitoring. In this subsection, we investigate the performance of online RPCA for
tracking the dynamic subspace which is rotated gradually, and compare its performance with the
batch RPCA method. In particular, we rotate an initial subspace basis U0 ∈ Rp×r along with the
time instance t through Ut = eδtBU0. Here B is a randomly generated skew-symmetric matrix1

and δ is a parameter to control the rotation degree at each time instant. We generate one observed
sample based on each basis Ut, following the data generation scheme as in the above subsection.
The set of generated corrupted samples {z1, . . . , zn} forms the streaming samples, which are from
different subspaces. In this case, the batch RPCA method will fail since it treats all the samples
as from the same subspace. However, the proposed OR-PCA continuously updates the subspace
estimation according to each revealed sample. Therefore, it is able to track the rotating subspace. In
the simulations, we generate n = 1, 000 samples with p = 400, under the setting of the rank r = 40
and outlier fraction ρs = 0.1. We implement the Principal Component Pursuit over all the 1, 000
samples as the baseline, i.e., batch RPCA. Both the OR-PCA and the batch RPCA are implemented

1We use the MATLAB built-in function skewdec to generate the matrix B, and then normalize its elements
to less than 1, i.e., B = B/‖B‖∞.
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10 times under each each setting and the average E.V. and the variance are reported. Smaller δ
means the subspaces change more slowly. The subspace recovery performance is also measured by
E.V. as aforementioned. Note that the groundtruth subspace is different at different time instance.

We first compare the subspace tracking performance of OR-PCA with batch RPCA under the setting
of δ = 1, namely the subspace changes relatively fast. Their performance curves against the number
of samples are plotted in Figure 2. From the results, we can make the following observations: (1) For
the first 40 samples, the performance of OR-PCA increases very fast, from the initial E.V. of 0.1 to
0.5. This is because the initial samples are from similar subspace and can help improve the subspace
estimation well. Then OR-PCA enters a stable state of tracking the subspace and its performance
converges to about 0.55. (2) For the batch RPCA method, because the subspace is changing, its
performance is not stable. For the first 400 samples, the performance keeps increasing. But after
that, its performance breaks down soon. (3) Generally speaking, OR-PCA outperforms the batch
RPCA with a performance margin of at least 10% under the current setting.
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Figure 2: (a) The performance comparison of the online RPCA (blue line) on rotating subspaces
with the batch RPCA (red lines) method. The underlying subspace is rotated with the parameter
δ = 1. (b) The performance of the OR-PCA on tracking rotating subspaces under different values
of the changing speed parameter δ.

Intuitively, the performance of the subspace tracking methods is affected by the speed of the
subspace changing. To investigate the ability of OR-PCA to track subspace with different
changing speed, we conduct the experiments under the different values of the parameter δ =
{0.001, 0.01, 0.1, 1, 10}. The performance curves are shown in Figure 2(b). From the results, we
can observe that the more slowly subspace rotates, the better OR-PCA performs for tracking. When
the changing speed increases, e.g., δ = 10, the performance will drop after achieving the best per-
formance. And finally OR-PCA converges to a relatively low performance.
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