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Abstract

The sparse additive model for text modeling involves the-siiaxp computing,
whose cost is consuming for large scales. Moreover, thevgstson of equal back-
ground across all classes/topics may be too strong. Thisrgeqends to propose
sparse additive model with low rank background (SAM-LRBY aibtains sim-
ple yet efficient estimation. Particularly, employing a Hteumajorization bound,
we approximate log-likelihood into a quadratic lower-bduvithout the log-sum-
exp terms. The constraints of low rank and sparsity are tmeplg embodied by
nuclear norm and;-norm regularizers. Interestingly, we find that the optiariz
tion task of SAM-LRB can be transformed into the same forrmaRabust PCA.
Consequently, parameters of supervised SAM-LRB can beesfflyg learned us-
ing an existing algorithm for Robust PCA based on acceldnateximal gradient.
Besides the supervised case, we extend SAM-LRB to favomarsised and mul-
tifaceted scenarios. Experiments on three real data deratamshe effectiveness
and efficiency of SAM-LRB, compared with a few state-of-t#mt-models.

1 Introduction

Generative models of text have gained large popularity alyeng a large collection of documents
[3,4,[17]. This type of models overwhelmingly rely on the iDiet-Multinomial conjugate pair,
perhaps mainly because its formulation and estimationrégggsitforward and efficient. However,
the ease of parameter estimation may come at a cost: unaebesser-complicated latent struc-
tures and lack of robustness to limited training data. S#wefforts emerged to seek alternative
formulations, taking the correlated topic modéls| [13, 1#]ihstance.

Recently in[[10], the authors listed three main problemé Witrichlet-Multinomial generative mod-
els, namely inference cost, overparameterization, arkddasparsity. Motivated by them, a Sparse
Additive GEnerative model (SAGE) was proposed.in [10] aslterrzative choice of generative mod-
el. Its core idea is that the lexical distribution in log-sp@omes by adding the background distribu-
tion with sparse deviation vectors. Successfully apph\8#gsE, effort [14] discovers geographical
topics in the twitter stream, and paper|[25] detects comtiamin computational linguistics.

However, SAGE still suffers from two problems. First, thieelihood and estimation involve the
sum-of-exponential computing due to the soft-max genaratature, and it would be time consum-
ing for large scales. Second, SAGE assumes one single lmgidjvector across all classes/topics,
or equivalently, there is one background vector for eachsélapic but all background vectors are
constrained to be equal. This assumption might be too siroagme applications, e.g., when lots
of synonyms vary their distributions across different skgtopics.

Motivated to solve the second problem, we are propose to ise enk constrained background.
However, directly assigning the low rank assumption to tigedpace is difficult. We turn to ap-
proximate the data log-likelihood of sparse additive mdgeh quadratic lower-bound based on the



double majorization bound in[6], so that the costly log-sexponential computation, i.e., the first
problem of SAGE, is avoided. We then formulate and derivenieg algorithm to the proposed
SAM-LRB model. Main contributions of this paper can be sunigmea into four-fold as below:

e Propose to use low rank background to extend the equallytradmsd setting in SAGE.

e Approximate the data log-likelihood of sparse additive eida/ a quadratic lower-bound
based on the double majorization bound_in [6], so that theyclogy-sum-exponential com-
putation is avoided.

e Formulate the constrained optimization problem into Lagian relaxations, leading to a
form exactly the same as in Robust PCAI[28]. Consequenth$&RB can be efficiently
learned by employing the accelerated proximal gradierdralym for Robust PCA[20].

e Extend SAM-LRB to favor supervised classification, unsujged topic model and multi-
faceted model; conduct experimental comparisons on reéaltdaalidate SAM-LRB.

2 Supervised Sparse Additive Model with Low Rank Background

2.1 Supervised Sparse Additive Model

Same as in SAGE [10], the core idea of our model is that thedéxiistribution in log-space comes
from adding the background distribution with additionattes. Particularly, we are given doc-
umentsD documents oveM words. For each documedt e [1, D], lety, € [1, K] represent
the class label in the current supervised scenarjoc RJE denote the vector of term counts,
andCyq = ), cqw be the total term count. We assume each class [1, K] has two vectors
br, sx € RM, denoting the background and additive distributions indpgce, respectively. Then
the generative distribution for each wakdin a document] with labely, is a soft-max form:

exp(by,w + Syauw)

- 1)
2 i=1 XDy + 8y4i)
Given® = {B, S} with B = [by,...,bx] andS = [sy, ..., sk, the log-likelihood of data\ is:

K M
L=1ogp(X|®) =" Y L(dk), L(dk)=cj(by+sk)—Calog) exp(bri+ sri). (2)
k=1d:yq=k i=1

Similarly, a testing documertis classified into clasﬁa(dg according taj(d) = arg maxy £(d, k).
In SAGE [10], the authors further assumed that the backgtaattors across all classes are the
same, i.e.b,, = b for Vk, and each additive vectay, is sparse. Although intuitive, the background
equality assumption may be too strong for real applicati®is instance, to express a same/similar
meaning, different classes of documents may choose to fiseedit terms from a tuple of synonyms.
In this case, SAGE would tend to include these terms as thsepalditive part, instead of as the
background. Taking Fig.1 as an illustrative example, tlgedpace distribution (left) is the sum
of the low-rank background3 (middle) and the spars§ (right). Applying SAGE to this type of
data, the equality constrained backgrousdvould fail to capture the low-rank structure, and/or the
additive partS would be not sparse, so that there may be risks of over-fittinghder-fitting.

p(w|yd) = p(w‘yda byd7 S’yd) =

Moreover, since there exists sum-of-exponential termsin() and thus also in its derivatives, the
computing cost becomes huge when the vocabularyMiiglarge. As a result, although performing
well in [10,/14)25], SAGE might still suffer from problems o¥er-constrain and inefficiency.
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2.2 Supervised Sparse Additive Model with Low Rank Backgroud

Motivated to avoid the inefficient computing due to sum-gfewe adopt the double majorization
lower-bound ofZ [6], so that it is well approximated and quadratic wBtandS. Further based on
this lower-bound, we proceed to assume the backgrdBiadross classes is low-rank, in contrast to
the equality constraintin SAGE. An optimization algoritisproposed based on proximal gradient.

2.2.1 Double Majorization Quadratic Lower Bound

In the literature, there have been several existing effomtefficient computing the sum-of-exp ter-
m involved in soft-max|[[bl 15,16]. For instance, based on thevexity of logarithm, one can
obtain a bound-log )", exp(z;) > —¢ >, exp(z;) + log¢ + 1 for any ¢ € R, namely the

| b-1 0g- cvx bound. Moreover, via upper-bounding the Hessian matrig, @am obtain the fol-

lowing local quadratic approximation for a®if; € R, shortly named akb- quad- | oc:

- 1 2 2 Z ( 51 €xp fz
—log ) exp(;) > M(Zl’i—z&) =) (wi—&)* - S~ exp(6) —IOgZeXp &i)-
i=1 i i g

%

In [6], Bouchard proposed the following quadratic lowerhd by double majorization
(I b- quad- dnm) and demonstrated its better approximation compared Wélptevious two:

M M
—log » exp(x;) > —a — % D {mi—a—&+ f(&)(@ — a)® — ] + 2loglexp(&) + 1]}, (3)
= 1=1

with o € R and¢ € RY being auxiliary (variational) variables, and¢) = % - iiggg) . This
bound is closely related to the bound proposed by Jaakkoldamian([5].

Employing Eq.[(B), we obtain a lower-bour, < L to the data log-likelihood in Eq[{2):

K
Ly = Z [—(bk + k) " Ak (by, + si) — By, (br, + sk) — Vx) »

k=1
M

with v = Cy {Otk - %Z [k + & + f(Eri) (0} — &k;) + 2log(exp (&) + 1)] } )

i=1

Ay, = Crdiag[f(€)].  Br = Ci (l_akf €)= > can Cr= Y Ca (4

diya=k d:ya=k

For each class, the two variational variablegy, € R and&;, € RJE, can be updated iteratively as
below for a better approximated lower-bound. Therels(-) denotes the absolute value operator.

1 M M
ag = m [2 -1+ ;(bki + 5%i) f(Eki) | 5 & = abs(by, + sp — ). )

One example of the trajectories during optimizing this Iodeund is illustrated in Fid.]2. Partic-
ularly, the left shows the lower-bound converges quicklgtound truth, usually within 5 rounds
in our experiences. The values of the three lower-bounds mihdomly sampled the variation-
al variables are also sorted and plotted. One can findlthaguad- dmapproximates better or
comparably well even with a random initialization. Please &] for more comparisons.

2.2.2 Supervised SAM-LRB Model and Optimization by Proximal Gradient

Rather than optimizing the data log-likelihood in EQl (Keliin SAGE, we turn to optimize its
lower-bound in Eq.[{4), which is convenient for further gssing the low-rank constraint oB and
the sparsity constraint afi. Concretely, our target is formulated as a constrainedropgition task:

max L, with £;;, specified in Eq.[{4),

s.t. B = [by,...,bk] islowrank S =[s1,...,8K] issparse (6)

Concerning the two constraints, we call the above as sugE8parseAdditive M odel with L ow-
RankBackground, or supervised SAM-LRB for short. Although bothh® two assumptions can



be tackled via formulating a fully generative model, assigrappropriate priors, and delivering
inference in a Bayesian manner similar(to [8], we determinehibose the constrained optimization
form for not only a clearer expression but also a simpler dficient algorithm.

In the literature, there have been several efforts consigdroth low rank and sparse constraints
similar to Eq. [[6), most of which take the use of proximal dgeadl[2,[7]. Papers [20, 28] studied the
problems under the name of Robust Principal Component Aiga{lRPCA), aiming to decouple an
observed matrix as the sum of a low rank matrix and a sparsexm&losely related to RPCA,
our scenario in Eq[{6) can be regarded as a weighted RPCAufation, and the weights are
controlled by variational variables. In[24], the authoregosed an efficient algorithm for problems
that constrain a matrix to be both low rank and sparse simedtasly.

Following these existing works, we adopt the nuclear norimfement the low rank constraint, and
¢1-norm for the sparsity constraint, respectively. Letting partial derivative w.r.t\;, = (by + si)

of £y, equal to zero, the maximum ai;, can be achieved a; = —%A;lﬁk. Since A;, is
positive definite and diagonal, the optimal solutignis well-posed and can be efficiently computed.
Simultaneously considering the equalky = (b + si), the low rank onB and the sparsity o8,
one can rewritten EqL6) into the following Lagrangian form

min S ||A"-B - SIIE + u(lIBIl, +vI8[),  with A = [Af,.... X5, ()
where||-||, ||-]|, and| - | denote the Frobenius norm, nuclear norm @énehorm, respectively.
The Frobenius norm term concerns the accuracy of decoufsting A* into B and S. Lagrange
multipliers ;. andv control the strengths of low rank constraint and sparsitystraint, respectively.

Interestingly, Eq.[{I7) is exactly the same as the objectiiRRCA [20,28]. Papel [20] proposed an
algorithm for RPCA based oaiccel erated proximal gradient (APG-RPCA), showing its advantages
of efficiency and stability over (plain) proximal gradielife choose it, i.e., Algorithm 2 in [20], for
seeking solutions to Ed.](7). The computations involvedRGARPCA include SVD decomposition
and absolute value thresholding, and interested readenefarred to[[20] for more details. The
augmented Lagrangian and alternating direction methq@€[ould be considered as alternatives.

Data: Term counts and labels:;, Cy, yd}fl’:1 of D docs andK classes, sparse thres= 0.05
Result Log-space distributions: low-rank and spars&
Initialization : randomly initialize parametefsB, S}, and variational variableguy, & }x;
while not converge do

if optimize variational variablesthen iteratively update ay, & }r according to Eq[{5);

for k =1,..., K do calculateAd; andg3;, by Eq. [4), and\} = —%A;lﬁk ;
B,S +— APG-RPCAA*,v) by Algorithm 2 in [20], withA* = [A}, ..., A%];
end

Algorithm 1: Supervised SAM-LRB learning algorithm

Consequently, the supervised SAM-LRB algorithm is spetifieAlgorithm[d. Therein, one can
choose to either fix or update the variational varialles, &; }«. If they are fixed, AlgorithniIl
has only one outer iteration with no need to check the comverg. Compared with the supervised
SAGE learning algorithm in Sec. 3 aof [10], our supervised SARB algorithm not only does not
need to compute the sum of exponentials so that computirigsceaved, but also is optimized sim-
ply and efficiently by proximal gradient instead of using Newupdating as in SAGE. Moreover,
adding Laplacian-Exponential prior ghfor sparseness, SAGE updates the conjugate posteriors and
needs to employ a “warm start” technique to avoid being tedpp early stages with inappropriate
initializations, while in contrast SAM-LRB does not havésthisk. Additionally, since the evolution
from SAGE to SAM-LRB is two folded, i.e., the low rank backgra assumption and the convex
relaxation, we find that adopting the convex relaxation aksips SAGE during optimization.

3 Extensions

Analogous to[[10], our SAM-LRB formulation can be also exted to unsupervised topic modeling
scenario with latent variables, and the scenario with riaaiéted class labels.



3.1 Extension 1: Unsupervised Latent Variable Model

We consider how to incorporate SAM-LRB in a latent variabledel of unsupervised text mod-
elling. Following topic models, there is one latent vectbtapic proportions per document and
one latent discrete variable per term. That is, each documhenendowed with a vector of topic
proportionsf,; ~ Dirichlet(p), and each ternw in this document is associated with a latent topic

label z{? ~ Multinomial(84). Then the probability distribution fap is
p(w‘zqg)d)ans) X exp (bz(d)w +Sz(d)w) ’ (8)

which only replaces the known class lalglin Eq. (1) with the unknown topic Iabefu‘”.

We can combine the mean field variational inference for taérichlet allocation (LDA) [4] with
the lower-bound treatment in EqJ (4), leading to the follogviinsupervised lower-bound

K

Ly = Z [—(bi + sk) T Ay (by, + si) — By, (br, + s1) — 7k
k=1

+ 3" [{1og p(8al0)) — (g Q(O))] + > D |(log p(=104) — log Q=)
d d w

M
with v, = C {Oék - % > [ + ki + f(Gri)(0F — ) + 2log(exp(&ri) + 1)] } ;

i=1

A= Cudiog (&), Be= Culy — onf (&) — . ©

where eachw-th item in¢y, is éxw = >, Q(k|d, w)cqw, i.€. the expected count of termin topic
k,andC} = ), ¢rw is the topic’s expected total count throughout all words.

This unsupervised SAM-LRB model formulates a topic modéhwiw rank background and sparse

deviation, which is learned via EM iterations. The E-steppdate posteriorQ(6,) andQ(szd)) is
identical to the standard LDA. Ondedy, B} are computed as above, the M-step to updd@eS}
and variational variablesoy, €}, remains the same as the supervised case in Algofithm 1.

3.2 Extension 2: Multifaceted Modelling

We consider how SAM-LRB can be used to combine multiple &a{multi-dimensional class label-
s), i.e, combining per-word latent topics and documentiadsed pursuing a structural view of labels
and topics. In the literature, multifaceted generative et®tave been studied in [1,121] 23], and they
incorporated latent switching variables that determinetiver each term is generated from a topic
or from a document label. Topic-label interactions can alsdncluded to capture the distributions
of words at the intersections. However in this kind of mogdtie number of parameters becomes
very large for large vocabulary size, many topics, manyli&ble [10], SAGE needs no switching
variables and shows advantageous of model sparsity onfawgited modeling. More recently, paper
[14] employs SAGE and discovers meaningful geographigatsoin the twitter streams.

Applying SAM-LRB to the multifaceted scenario, we still asge the multifaceted variations are
composed of low rank background and sparse deviation. cBkatly, for each topid: € [1, K],
we have the topic backgrourhf) and sparse deviatiom,(cT); for each labelj € [1, J], we have
label backgrouncbg.L) and sparse deviatioa;L); for each topic-label interaction paf¥;, j), we
have only the sparse deviatieé]j). Again, background distributionB(”) = [bgT), ce b(KT)] and
B0 = [bgL), e b(JL)] are assumed of low ranks to capture single view’s distriusimilarity.

Then for a single ternw given the latent topiczf,ji) and the class label;, its generative probability
is obtained by summing the background and sparse compdiogether:

(T)
zfud)w

+sT) 4l 4 sg(jL) +s7) ) ; (10)
Yqw

vad)w Yaw qw ngd) y

p(w|z?, y4, ©) x exp (b
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with parameter® = {B(™), §(1) B §(L) S The log-likelihood’s lower-bound involves
the sum through all topic-label pairs:

K J
Ly = ZZ [*Angkj)\kj - 5;:1')\1@ — Vi)
k=1j=1
+> [(logp(Balp)) — (log Q(Oa))] + D> [<logp(2&d) 104)) — (log Q(z{I) |,
d d w
with Aej 207 + st 4+ b5 4 s sl (11)

In the quadratic form, the values &y ;, 3, and~;; are trivial combination of Eq[{4) and EJ(9),
i.e., weighted by both the observed labels and posteriolaterfit topics. Details are omitted here
due to space limit. The second row remains the same as i JEan@Sstandard LDA.

During the iterative estimation, every iteration includes following steps:

Estimate the posterio@(zﬁﬁ”) andQ(0y);

with (B, ST 8(1) fixed, solve a quadratic program oukt (%), which approximates
the sum ofB(X) andS%). PutA*(X) into Algorithm[d to updateB(%) andS®%);

e With (B, §() 8() fixed, solve a quadratic program ovkt(”), which approximates
the sum ofB(T) andS(™). PutA*(™) into Algorithm[d to updateB(™) andS(™);

with (B, 8(T) B §(1)) fixed, updateS!) by proximal gradient.

4 Experimental Results

In order to test SAM-LRB in different scenarios, this sectimnsiders experiments under three
tasks, namely supervised document classification, unsgiggértopic modeling, and multi-faceted
modeling and classification, respectively.

4.1 Document Classification

We first test our SAM-LRB model in the supervised document @tiad scenario and evaluate
the classification accuracy. Particularly, the superviSAM-LRB is compared with the Dirichlet-
Multinomial model and SAGE. The precision of the Dirichleigp in Dirichlet-Multinomial model
is updated by the Newton optimizatidn [22]. Nonparameteifrdys prior [12] is adopted in SAGE
as a parameter-free sparse prior. Concerning the vardtiariables{«;, &;}; in the quadratic
lower-bound of SAM-LRB, both cases of fixing them and updatimem are considered.

We consider the benchma2®News gr oups datdll, and aim to classify unlabelled newsgroup post-
ings into 20 newsgroups. No stopword filtering is performaut] we randomly pick a vocabulary
of 55,000 terms. In order to test the robustness, we vary theoption of training data. After 5
independent runs by each algorithm, the classificationracis on testing data are plotted in [Fip. 3
in terms of box-plots, where the lateral axis varies thentregj data proportion.
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Figure 3: Classification accuracy @Newsgr oups data. The pro-
portion of training data varies if10%, 30%, 50%}.

Following [10], we use the training/testing sets from http://people.csail.mijrednie/20Newsgroups/



One can find that, SAGE outperforms Dirichlet-Multinomiabdel especially in case of limited
training data, which is consistent to the observations DBj.[IMoreover, with random and fixed
variational variables, the SAM-LRB model performs furthetter or at least comparably well. If
the variational variables are updated to tighten the Idveemd, the performance of SAM-LRB is
substantially the best, with a 16920% relative improvement over SAGE. Table 1 also reports the
average computing time of SAGE and SAM-LRB. We can see thagvoiding the log-sum-exp
calculation, SAM-LRB (fixed) performs more than 7 times éasthan SAGE, while SAM-LRB
(optimized) pays for updating the variational variables.

Table 1: Comparison on average time costs per iteration ifiut@s).

method SAGE SAM-LRB (fixed) SAM-LRB (optimized)
time cost (minutes) 3.8 0.6 3.3

4.2 Unsupervised Topic Modeling

We now apply our unsupervised SAM-LRB model to the benchnMrRS daté. Following the
same preprocessing and evaluation as in[[10, 26], we hawning set of 1986 documents with
237,691 terms, and a testing set of 498 documents with 5Tet&i5.

For consistency, SAM-LRB is still compared with Dirichletultinomial model (variational LDA
model with symmetric Dirichlet prior) and SAGE. For all teesnsupervised models, the number
of latent topics is varied from 10 to 25 and then to 50. Afteswpervised training, the performance
is evaluated by perplexity, the smaller the better. Thegoerances of 5 independent runs by each
method are illustrated in Fifj] 4, again in terms of box-plots
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Figure 4: Perplexity results dd PS data.

As shown, SAGE performs worse than LDA when there are few rurobtopics, perhaps mainly
due to its strong equality assumption on background. Whe@aM-LRB performs better than
both LDA and SAGE in most cases. With one exception happem e topic number equals 50,
SAM-LRB (fixed) performs slightly worse than SAGE, mainlyus&d by inappropriate fixed values
of variational variables. If updated instead, SAM-LRB (opzed) performs promisingly the best.

4.3 Multifaceted Modeling

We then proceed to test the multifaceted modeling by SAM-LBBme as[[10], we choose a
publicly-available dataset of political blogs describitig 2008 U.S. presidential electfbfi1].
Out of the total 6 political blogs, three are from the rightidhree are from left. There are 20,827
documents and a vocabulary size of 8284. Using four blog&&iming, our task is to predict the
ideological perspective of two unlabeled blogs.

On this task, Ahmed and Xing ir[1] used multiview LDA model aghieve accuracy within
65.0% ~ 69.1% depending on different topic number settings. Also, suppector machine pro-
vides a comparable accuracy@$%, while supervised LDA[B] performs undesirably on this task
In [10], SAGE is repeated 5 times for each of multiple topionuers, and achieves its best median

2http:/iwww.cs.nyu.eduiroweis/data.html
3http://sailing.cs.cmu.edu/socialmedia/blog2008.html



result 69.6% atf = 30. Using SAM-LRB (optimized), the median results out of 5 rfioseach
topic number are shown in Tadlé 2. Interestingly, SAM-LRBdes a similarly state-of-the-art
result, while achieving it akl’ = 20. The different preferences on topic numbers between SAGE an
SAM-LRB may mainly come from their different assumptionsh@tkground lexical distributions.

Table 2: Classification accuracy pol i ti cal bl ogs data by SAM-LRB (optimized).

# topic (K) 10 20 30 40 50
accuracy (%) median outof 5runs 67.39.8 69.1 68.3 68.1

5 Concluding Remarks

This paper studies the sparse additive model for documedehmg. By employing the double ma-
jorization technique, we approximate the log-sum-exptinkterm involved in data log-likelihood
into a quadratic lower-bound. With the help of this lowerhd, we are able to conveniently relax
the equality constraint on background log-space disiobudf SAGE [10], into a low-rank con-
straint, leading to our SAM-LRB model. Then, after the coaisied optimization is transformed
into the form of RPCA's objective function, an algorithm bdson accelerated proximal gradient
is adopted during learning SAM-LRB. The model specificataonl learning algorithm are some-
what simple yet effective. Besides the supervised versxtensions of SAM-LRB to unsupervised
and multifaceted scenarios are investigated. Experirheggalts demonstrate the effectiveness and
efficiency of SAM-LRB compared with Dirichlet-Multinomiand SAGE.

Several perspectives may deserve investigations in futrst, the accelerated proximal gradient
updating needs to compute SVD decompositions, which ateptg consuming for very large scale
data. In this case, more efficient optimization consideringlear norm and;-norm are expected,
with the semidefinite relaxation technique in[16] being @ussible choice. Second, this paper
uses a constrained optimization formulation, while Bagresackling via adding conjugate priors to
complete the generative model similar[to [8] is an alteusatihoice. Moreover, we may also adopt
nonconjugate priors and employ nonconjugate variatiarfakénce in[[2]7]. Last but not the least,
discriminative learning with large margiris |18, 30] miglet &so equipped for robust classification.
Since nonzero elements of spaiSén SAM-LRB can be also regarded as selected feature, one
may design to include them into the discriminative featurather than only topical distributions
[3]. Additionally, the augmented Lagrangian and altemmgtiirection methods$ [9, 29] could be also
considered as alternatives to the proximal gradient op#tion.
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