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Abstract

The sparse additive model for text modeling involves the sum-of-exp computing,
whose cost is consuming for large scales. Moreover, the assumption of equal back-
ground across all classes/topics may be too strong. This paper extends to propose
sparse additive model with low rank background (SAM-LRB) and obtains sim-
ple yet efficient estimation. Particularly, employing a double majorization bound,
we approximate log-likelihood into a quadratic lower-bound without the log-sum-
exp terms. The constraints of low rank and sparsity are then simply embodied by
nuclear norm andℓ1-norm regularizers. Interestingly, we find that the optimiza-
tion task of SAM-LRB can be transformed into the same form as in Robust PCA.
Consequently, parameters of supervised SAM-LRB can be efficiently learned us-
ing an existing algorithm for Robust PCA based on accelerated proximal gradient.
Besides the supervised case, we extend SAM-LRB to favor unsupervised and mul-
tifaceted scenarios. Experiments on three real data demonstrate the effectiveness
and efficiency of SAM-LRB, compared with a few state-of-the-art models.

1 Introduction
Generative models of text have gained large popularity in analyzing a large collection of documents
[3, 4, 17]. This type of models overwhelmingly rely on the Dirichlet-Multinomial conjugate pair,
perhaps mainly because its formulation and estimation is straightforward and efficient. However,
the ease of parameter estimation may come at a cost: unnecessarily over-complicated latent struc-
tures and lack of robustness to limited training data. Several efforts emerged to seek alternative
formulations, taking the correlated topic models [13, 19] for instance.

Recently in [10], the authors listed three main problems with Dirichlet-Multinomial generative mod-
els, namely inference cost, overparameterization, and lack of sparsity. Motivated by them, a Sparse
Additive GEnerative model (SAGE) was proposed in [10] as an alternative choice of generative mod-
el. Its core idea is that the lexical distribution in log-space comes by adding the background distribu-
tion with sparse deviation vectors. Successfully applyingSAGE, effort [14] discovers geographical
topics in the twitter stream, and paper [25] detects communities in computational linguistics.

However, SAGE still suffers from two problems. First, the likelihood and estimation involve the
sum-of-exponential computing due to the soft-max generative nature, and it would be time consum-
ing for large scales. Second, SAGE assumes one single background vector across all classes/topics,
or equivalently, there is one background vector for each class/topic but all background vectors are
constrained to be equal. This assumption might be too strongin some applications, e.g., when lots
of synonyms vary their distributions across different classes/topics.

Motivated to solve the second problem, we are propose to use alow rank constrained background.
However, directly assigning the low rank assumption to the log-space is difficult. We turn to ap-
proximate the data log-likelihood of sparse additive modelby a quadratic lower-bound based on the
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double majorization bound in [6], so that the costly log-sum-exponential computation, i.e., the first
problem of SAGE, is avoided. We then formulate and derive learning algorithm to the proposed
SAM-LRB model. Main contributions of this paper can be summarized into four-fold as below:

• Propose to use low rank background to extend the equally constrained setting in SAGE.
• Approximate the data log-likelihood of sparse additive model by a quadratic lower-bound

based on the double majorization bound in [6], so that the costly log-sum-exponential com-
putation is avoided.

• Formulate the constrained optimization problem into Lagrangian relaxations, leading to a
form exactly the same as in Robust PCA [28]. Consequently, SAM-LRB can be efficiently
learned by employing the accelerated proximal gradient algorithm for Robust PCA [20].

• Extend SAM-LRB to favor supervised classification, unsupervised topic model and multi-
faceted model; conduct experimental comparisons on real data to validate SAM-LRB.

2 Supervised Sparse Additive Model with Low Rank Background

2.1 Supervised Sparse Additive Model

Same as in SAGE [10], the core idea of our model is that the lexical distribution in log-space comes
from adding the background distribution with additional vectors. Particularly, we are given doc-
umentsD documents overM words. For each documentd ∈ [1, D], let yd ∈ [1,K] represent
the class label in the current supervised scenario,cd ∈ R

M
+ denote the vector of term counts,

andCd =
∑

w cdw be the total term count. We assume each classk ∈ [1,K] has two vectors
bk, sk ∈ R

M , denoting the background and additive distributions in log-space, respectively. Then
the generative distribution for each wordw in a documentd with labelyd is a soft-max form:

p(w|yd) = p(w|yd, byd
, syd

) =
exp(bydw + sydw)

∑M

i=1 exp(bydi + sydi)
. (1)

GivenΘ = {B,S} with B = [b1, . . . , bK ] andS = [s1, . . . , sK ], the log-likelihood of dataX is:

L = log p(X|Θ) =
K
∑

k=1

∑

d:yd=k

L(d, k), L(d, k) = c⊤d (bk + sk)− Cd log
M
∑

i=1

exp(bki + ski). (2)

Similarly, a testing documentd is classified into clasŝy(d) according tôy(d) = argmaxk L(d, k).
In SAGE [10], the authors further assumed that the background vectors across all classes are the
same, i.e.,bk = b for ∀k, and each additive vectorsk is sparse. Although intuitive, the background
equality assumption may be too strong for real applications. For instance, to express a same/similar
meaning, different classes of documents may choose to use different terms from a tuple of synonyms.
In this case, SAGE would tend to include these terms as the sparse additive part, instead of as the
background. Taking Fig. 1 as an illustrative example, the log-space distribution (left) is the sum
of the low-rank backgroundB (middle) and the sparseS (right). Applying SAGE to this type of
data, the equality constrained backgroundB would fail to capture the low-rank structure, and/or the
additive partS would be not sparse, so that there may be risks of over-fittingor under-fitting.

Moreover, since there exists sum-of-exponential terms in Eq. (2) and thus also in its derivatives, the
computing cost becomes huge when the vocabulary sizeM is large. As a result, although performing
well in [10, 14, 25], SAGE might still suffer from problems ofover-constrain and inefficiency.

Figure 1: Low rank background.
Left to right illustrates the log-
space distr., backgroundB, and
sparseS, resp. Rows index
terms, and columns for classes.

Figure 2: Lower-bound’s optimization. Left to right
shows the trajectory of lower-bound,α, andξ, resp.
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2.2 Supervised Sparse Additive Model with Low Rank Background

Motivated to avoid the inefficient computing due to sum-of-exp, we adopt the double majorization
lower-bound ofL [6], so that it is well approximated and quadratic w.r.t.B andS. Further based on
this lower-bound, we proceed to assume the backgroundB across classes is low-rank, in contrast to
the equality constraint in SAGE. An optimization algorithmis proposed based on proximal gradient.

2.2.1 Double Majorization Quadratic Lower Bound
In the literature, there have been several existing effortson efficient computing the sum-of-exp ter-
m involved in soft-max [5, 15, 6]. For instance, based on the convexity of logarithm, one can
obtain a bound− log

∑

i exp(xi) ≥ −φ
∑

i exp(xi) + log φ + 1 for any φ ∈ R+, namely the
lb-log-cvx bound. Moreover, via upper-bounding the Hessian matrix, one can obtain the fol-
lowing local quadratic approximation for any∀ξi ∈ R, shortly named aslb-quad-loc:

− log
M
∑

i=1

exp(xi) ≥
1

M
(
∑

i

xi−
∑

i

ξi)
2−

∑

i

(xi−ξi)
2−

∑

i(xi − ξi) exp(ξi)
∑

i exp(ξi)
−log

∑

i

exp(ξi).

In [6], Bouchard proposed the following quadratic lower-bound by double majorization
(lb-quad-dm) and demonstrated its better approximation compared with the previous two:

− log

M
∑

i=1

exp(xi) ≥ −α−
1

2

M
∑

i=1

{

xi − α− ξi + f(ξi)[(xi − α)2 − ξ2i ] + 2 log[exp(ξi) + 1]
}

, (3)

with α ∈ R andξ ∈ R
M
+ being auxiliary (variational) variables, andf(ξ) = 1

2ξ ·
exp(ξ)−1
exp(ξ)+1 . This

bound is closely related to the bound proposed by Jaakkola and Jordan [6].

Employing Eq. (3), we obtain a lower-boundLlb ≤ L to the data log-likelihood in Eq. (2):

Llb =
K
∑

k=1

[

−(bk + sk)
⊤Ak(bk + sk)− β⊤

k (bk + sk)− γk
]

,

with γk = C̃k

{

αk −
1

2

M
∑

i=1

[

αk + ξki + f(ξki)(α
2
k − ξ2ki) + 2 log(exp(ξki) + 1)

]

}

,

Ak = C̃kdiag [f(ξk)] , βk = C̃k(
1

2
− αkf(ξk))−

∑

d:yd=k

cd, C̃k =
∑

d:yd=k

Cd. (4)

For each classk, the two variational variables,αk ∈ R andξk ∈ R
M
+ , can be updated iteratively as

below for a better approximated lower-bound. Therein,abs(·) denotes the absolute value operator.

αk =
1

∑M

i=1 f(ξki)

[

M

2
− 1 +

M
∑

i=1

(bki + ski)f(ξki)

]

, ξk = abs(bk + sk − αk). (5)

One example of the trajectories during optimizing this lower-bound is illustrated in Fig. 2. Partic-
ularly, the left shows the lower-bound converges quickly toground truth, usually within 5 rounds
in our experiences. The values of the three lower-bounds with randomly sampled the variation-
al variables are also sorted and plotted. One can find thatlb-quad-dm approximates better or
comparably well even with a random initialization. Please see [6] for more comparisons.

2.2.2 Supervised SAM-LRB Model and Optimization by Proximal Gradient
Rather than optimizing the data log-likelihood in Eq. (2) like in SAGE, we turn to optimize its
lower-bound in Eq. (4), which is convenient for further assigning the low-rank constraint onB and
the sparsity constraint onS. Concretely, our target is formulated as a constrained optimization task:

max
B,S

Llb, with Llb specified in Eq. (4),

s.t. B = [b1, . . . , bK ] is low rank, S = [s1, . . . , sK ] is sparse. (6)

Concerning the two constraints, we call the above as supervisedSparseAdditive Model withLow-
RankBackground, or supervised SAM-LRB for short. Although both of the two assumptions can
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be tackled via formulating a fully generative model, assigning appropriate priors, and delivering
inference in a Bayesian manner similar to [8], we determine to choose the constrained optimization
form for not only a clearer expression but also a simpler and efficient algorithm.

In the literature, there have been several efforts considering both low rank and sparse constraints
similar to Eq. (6), most of which take the use of proximal gradient [2, 7]. Papers [20, 28] studied the
problems under the name of Robust Principal Component Analysis (RPCA), aiming to decouple an
observed matrix as the sum of a low rank matrix and a sparse matrix. Closely related to RPCA,
our scenario in Eq. (6) can be regarded as a weighted RPCA formulation, and the weights are
controlled by variational variables. In [24], the authors proposed an efficient algorithm for problems
that constrain a matrix to be both low rank and sparse simultaneously.

Following these existing works, we adopt the nuclear norm toimplement the low rank constraint, and
ℓ1-norm for the sparsity constraint, respectively. Letting the partial derivative w.r.t.λk = (bk + sk)
of Llb equal to zero, the maximum ofLlb can be achieved atλ∗

k = − 1
2A

−1
k βk. SinceAk is

positive definite and diagonal, the optimal solutionλ∗

k is well-posed and can be efficiently computed.
Simultaneously considering the equalityλk = (bk + sk), the low rank onB and the sparsity onS,
one can rewritten Eq. (6) into the following Lagrangian form:

min
B,S

1

2
||Λ∗ −B − S||

2
F + µ(||B||

∗
+ ν|S|1), with Λ

∗ = [λ∗

1, . . . ,λ
∗

K ], (7)

where||·||F , ||·||
∗

and | · |1 denote the Frobenius norm, nuclear norm andℓ1-norm, respectively.
The Frobenius norm term concerns the accuracy of decouplingfrom Λ

∗ into B andS. Lagrange
multipliersµ andν control the strengths of low rank constraint and sparsity constraint, respectively.

Interestingly, Eq. (7) is exactly the same as the objective of RPCA [20, 28]. Paper [20] proposed an
algorithm for RPCA based onaccelerated proximal gradient (APG-RPCA), showing its advantages
of efficiency and stability over (plain) proximal gradient.We choose it, i.e., Algorithm 2 in [20], for
seeking solutions to Eq. (7). The computations involved in APG-RPCA include SVD decomposition
and absolute value thresholding, and interested readers are referred to [20] for more details. The
augmented Lagrangian and alternating direction methods [9, 29] could be considered as alternatives.

Data: Term counts and labels{cd, Cd, yd}
D
d=1 of D docs andK classes, sparse thres.ν ≈ 0.05

Result: Log-space distributions: low-rankB and sparseS
Initialization : randomly initialize parameters{B,S}, and variational variables{αk, ξk}k;
while not converge do

if optimize variational variables then iteratively update{αk, ξk}k according to Eq. (5);
for k = 1, . . . ,K do calculateAk andβk by Eq. (4), andλ∗

k = − 1
2A

−1
k βk ;

B,S ←− APG-RPCA(Λ∗, ν) by Algorithm 2 in [20], withΛ∗ = [λ∗

1, . . . ,λ
∗

K ];
end

Algorithm 1: Supervised SAM-LRB learning algorithm

Consequently, the supervised SAM-LRB algorithm is specified in Algorithm 1. Therein, one can
choose to either fix or update the variational variables{αk, ξk}k. If they are fixed, Algorithm 1
has only one outer iteration with no need to check the convergence. Compared with the supervised
SAGE learning algorithm in Sec. 3 of [10], our supervised SAM-LRB algorithm not only does not
need to compute the sum of exponentials so that computing cost is saved, but also is optimized sim-
ply and efficiently by proximal gradient instead of using Newton updating as in SAGE. Moreover,
adding Laplacian-Exponential prior onS for sparseness, SAGE updates the conjugate posteriors and
needs to employ a “warm start” technique to avoid being trapped in early stages with inappropriate
initializations, while in contrast SAM-LRB does not have this risk. Additionally, since the evolution
from SAGE to SAM-LRB is two folded, i.e., the low rank background assumption and the convex
relaxation, we find that adopting the convex relaxation alsohelps SAGE during optimization.

3 Extensions

Analogous to [10], our SAM-LRB formulation can be also extended to unsupervised topic modeling
scenario with latent variables, and the scenario with multifaceted class labels.
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3.1 Extension 1: Unsupervised Latent Variable Model

We consider how to incorporate SAM-LRB in a latent variable model of unsupervised text mod-
elling. Following topic models, there is one latent vector of topic proportions per document and
one latent discrete variable per term. That is, each document d is endowed with a vector of topic
proportionsθd ∼ Dirichlet(ρ), and each termw in this document is associated with a latent topic
labelz(d)w ∼ Multinomial(θd). Then the probability distribution forw is

p(w|z(d)w ,B,S) ∝ exp
(

b
z
(d)
w w

+ s
z
(d)
w w

)

, (8)

which only replaces the known class labelyd in Eq. (1) with the unknown topic labelz(d)w .

We can combine the mean field variational inference for latent Dirichlet allocation (LDA) [4] with
the lower-bound treatment in Eq. (4), leading to the following unsupervised lower-bound

Llb =

K
∑

k=1

[

−(bk + sk)
⊤Ak(bk + sk)− β⊤

k (bk + sk)− γk
]

+
∑

d

[〈log p(θd|ρ)〉 − 〈logQ(θd)〉] +
∑

d

∑

w

[

〈log p(z(d)w |θd)〉 − 〈logQ(z(d)w )〉
]

,

with γk = C̃k

{

αk −
1

2

M
∑

i=1

[

αk + ξki + f(ξki)(α
2
k − ξ2ki) + 2 log(exp(ξki) + 1)

]

}

,

Ak = C̃kdiag [f(ξk)] , βk = C̃k(
1

2
− αkf(ξk))− c̃k, (9)

where eachw-th item in c̃k is c̃kw =
∑

d Q(k|d,w)cdw, i.e. the expected count of termw in topic
k, andC̃k =

∑

w c̃kw is the topic’s expected total count throughout all words.

This unsupervised SAM-LRB model formulates a topic model with low rank background and sparse
deviation, which is learned via EM iterations. The E-step toupdate posteriorsQ(θd) andQ(z

(d)
w ) is

identical to the standard LDA. Once{Ak,βk} are computed as above, the M-step to update{B,S}
and variational variables{αk, ξk}k remains the same as the supervised case in Algorithm 1.

3.2 Extension 2: Multifaceted Modelling

We consider how SAM-LRB can be used to combine multiple facets (multi-dimensional class label-
s), i.e, combining per-word latent topics and document labels and pursuing a structural view of labels
and topics. In the literature, multifaceted generative models have been studied in [1, 21, 23], and they
incorporated latent switching variables that determine whether each term is generated from a topic
or from a document label. Topic-label interactions can alsobe included to capture the distributions
of words at the intersections. However in this kind of models, the number of parameters becomes
very large for large vocabulary size, many topics, many labels. In [10], SAGE needs no switching
variables and shows advantageous of model sparsity on multifaceted modeling. More recently, paper
[14] employs SAGE and discovers meaningful geographical topics in the twitter streams.

Applying SAM-LRB to the multifaceted scenario, we still assume the multifaceted variations are
composed of low rank background and sparse deviation. Particularly, for each topick ∈ [1,K],
we have the topic backgroundb(T )

k and sparse deviations(T )
k ; for each labelj ∈ [1, J ], we have

label backgroundb(L)
j and sparse deviations(L)

j ; for each topic-label interaction pair(k, j), we

have only the sparse deviations(I)kj . Again, background distributionsB(T ) = [b
(T )
1 , . . . , b

(T )
K ] and

B(L) = [b
(L)
1 , . . . , b

(L)
J ] are assumed of low ranks to capture single view’s distribution similarity.

Then for a single termw given the latent topicz(d)w and the class labelyd, its generative probability
is obtained by summing the background and sparse componentstogether:

p(w|z(d)w , yd,Θ) ∝ exp
(

b
(T )

z
(d)
w w

+ s
(T )

z
(d)
w w

+ b(L)
ydw

+ s(L)
ydw

+ s
(I)

z
(d)
w ydw

)

, (10)
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with parametersΘ = {B(T ),S(T ),B(L),S(L),S(I)}. The log-likelihood’s lower-bound involves
the sum through all topic-label pairs:

Llb =
K
∑

k=1

J
∑

j=1

[

−λ⊤

kjAkjλkj − β⊤

kjλkj − γkj
]

+
∑

d

[〈log p(θd|ρ)〉 − 〈logQ(θd)〉] +
∑

d

∑

w

[

〈log p(z(d)w |θd)〉 − 〈logQ(z(d)w )〉
]

,

with λkj , b
(T )
k + s

(T )
k + b

(L)
j + s

(L)
j + s

(I)
kj . (11)

In the quadratic form, the values ofAkj , βkj andγkj are trivial combination of Eq. (4) and Eq. (9),
i.e., weighted by both the observed labels and posteriors oflatent topics. Details are omitted here
due to space limit. The second row remains the same as in Eq. (9) and standard LDA.

During the iterative estimation, every iteration includesthe following steps:

• Estimate the posteriorsQ(z
(d)
w ) andQ(θd);

• With (B(T ),S(T ),S(I)) fixed, solve a quadratic program overΛ
∗(L), which approximates

the sum ofB(L) andS(L). PutΛ∗(L) into Algorithm 1 to updateB(L) andS(L);
• With (B(L),S(L),S(I)) fixed, solve a quadratic program overΛ

∗(T ), which approximates
the sum ofB(T ) andS(T ). PutΛ∗(T ) into Algorithm 1 to updateB(T ) andS(T );
• With (B(T ),S(T ),B(L),S(L)) fixed, updateS(I) by proximal gradient.

4 Experimental Results

In order to test SAM-LRB in different scenarios, this section considers experiments under three
tasks, namely supervised document classification, unsupervised topic modeling, and multi-faceted
modeling and classification, respectively.

4.1 Document Classification

We first test our SAM-LRB model in the supervised document modeling scenario and evaluate
the classification accuracy. Particularly, the supervisedSAM-LRB is compared with the Dirichlet-
Multinomial model and SAGE. The precision of the Dirichlet prior in Dirichlet-Multinomial model
is updated by the Newton optimization [22]. Nonparametric Jeffreys prior [12] is adopted in SAGE
as a parameter-free sparse prior. Concerning the variational variables{αi, ξi}i in the quadratic
lower-bound of SAM-LRB, both cases of fixing them and updating them are considered.

We consider the benchmark20Newsgroups data1, and aim to classify unlabelled newsgroup post-
ings into 20 newsgroups. No stopword filtering is performed,and we randomly pick a vocabulary
of 55,000 terms. In order to test the robustness, we vary the proportion of training data. After 5
independent runs by each algorithm, the classification accuracies on testing data are plotted in Fig. 3
in terms of box-plots, where the lateral axis varies the training data proportion.

Figure 3: Classification accuracy on20Newsgroups data. The pro-
portion of training data varies in{10%, 30%, 50%}.

1Following [10], we use the training/testing sets from http://people.csail.mit.edu/jrennie/20Newsgroups/
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One can find that, SAGE outperforms Dirichlet-Multinomial model especially in case of limited
training data, which is consistent to the observations in [10]. Moreover, with random and fixed
variational variables, the SAM-LRB model performs furtherbetter or at least comparably well. If
the variational variables are updated to tighten the lower-bound, the performance of SAM-LRB is
substantially the best, with a 10%∼20% relative improvement over SAGE. Table 1 also reports the
average computing time of SAGE and SAM-LRB. We can see that, by avoiding the log-sum-exp
calculation, SAM-LRB (fixed) performs more than 7 times faster than SAGE, while SAM-LRB
(optimized) pays for updating the variational variables.

Table 1: Comparison on average time costs per iteration (in minutes).
method SAGE SAM-LRB (fixed) SAM-LRB (optimized)

time cost (minutes) 3.8 0.6 3.3

4.2 Unsupervised Topic Modeling

We now apply our unsupervised SAM-LRB model to the benchmarkNIPS data2. Following the
same preprocessing and evaluation as in [10, 26], we have a training set of 1986 documents with
237,691 terms, and a testing set of 498 documents with 57,427terms.

For consistency, SAM-LRB is still compared with Dirichlet-Multinomial model (variational LDA
model with symmetric Dirichlet prior) and SAGE. For all these unsupervised models, the number
of latent topics is varied from 10 to 25 and then to 50. After unsupervised training, the performance
is evaluated by perplexity, the smaller the better. The performances of 5 independent runs by each
method are illustrated in Fig. 4, again in terms of box-plots.

Figure 4: Perplexity results onNIPS data.

As shown, SAGE performs worse than LDA when there are few number of topics, perhaps mainly
due to its strong equality assumption on background. Whereas, SAM-LRB performs better than
both LDA and SAGE in most cases. With one exception happens when the topic number equals 50,
SAM-LRB (fixed) performs slightly worse than SAGE, mainly caused by inappropriate fixed values
of variational variables. If updated instead, SAM-LRB (optimized) performs promisingly the best.

4.3 Multifaceted Modeling

We then proceed to test the multifaceted modeling by SAM-LRB. Same as [10], we choose a
publicly-available dataset of political blogs describingthe 2008 U.S. presidential election3 [11].
Out of the total 6 political blogs, three are from the right and three are from left. There are 20,827
documents and a vocabulary size of 8284. Using four blogs fortraining, our task is to predict the
ideological perspective of two unlabeled blogs.

On this task, Ahmed and Xing in [1] used multiview LDA model toachieve accuracy within
65.0% ∼ 69.1% depending on different topic number settings. Also, support vector machine pro-
vides a comparable accuracy of69%, while supervised LDA [3] performs undesirably on this task.
In [10], SAGE is repeated 5 times for each of multiple topic numbers, and achieves its best median

2http://www.cs.nyu.edu/∼roweis/data.html
3http://sailing.cs.cmu.edu/socialmedia/blog2008.html
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result 69.6% atK = 30. Using SAM-LRB (optimized), the median results out of 5 runsfor each
topic number are shown in Table 2. Interestingly, SAM-LRB provides a similarly state-of-the-art
result, while achieving it atK = 20. The different preferences on topic numbers between SAGE and
SAM-LRB may mainly come from their different assumptions onbackground lexical distributions.

Table 2: Classification accuracy onpolitical blogs data by SAM-LRB (optimized).
# topic (K) 10 20 30 40 50

accuracy (%) median out of 5 runs 67.369.8 69.1 68.3 68.1

5 Concluding Remarks

This paper studies the sparse additive model for document modeling. By employing the double ma-
jorization technique, we approximate the log-sum-exponential term involved in data log-likelihood
into a quadratic lower-bound. With the help of this lower-bound, we are able to conveniently relax
the equality constraint on background log-space distribution of SAGE [10], into a low-rank con-
straint, leading to our SAM-LRB model. Then, after the constrained optimization is transformed
into the form of RPCA’s objective function, an algorithm based on accelerated proximal gradient
is adopted during learning SAM-LRB. The model specificationand learning algorithm are some-
what simple yet effective. Besides the supervised version,extensions of SAM-LRB to unsupervised
and multifaceted scenarios are investigated. Experimental results demonstrate the effectiveness and
efficiency of SAM-LRB compared with Dirichlet-Multinomialand SAGE.

Several perspectives may deserve investigations in future. First, the accelerated proximal gradient
updating needs to compute SVD decompositions, which are probably consuming for very large scale
data. In this case, more efficient optimization consideringnuclear norm andℓ1-norm are expected,
with the semidefinite relaxation technique in [16] being onepossible choice. Second, this paper
uses a constrained optimization formulation, while Bayesian tackling via adding conjugate priors to
complete the generative model similar to [8] is an alternative choice. Moreover, we may also adopt
nonconjugate priors and employ nonconjugate variational inference in [27]. Last but not the least,
discriminative learning with large margins [18, 30] might be also equipped for robust classification.
Since nonzero elements of sparseS in SAM-LRB can be also regarded as selected feature, one
may design to include them into the discriminative features, rather than only topical distributions
[3]. Additionally, the augmented Lagrangian and alternating direction methods [9, 29] could be also
considered as alternatives to the proximal gradient optimization.
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