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Abstract

We propose a novel convex relaxation of sparse principal subspace estimation
based on the convex hull of rank-d projection matrices (the Fantope). The convex
problem can be solved efficiently using alternating direction method of multipli-
ers (ADMM). We establish a near-optimal convergence rate, in terms of the spar-
sity, ambient dimension, and sample size, for estimation of the principal subspace
of a general covariance matrix without assuming the spiked covariance model.
In the special case of d = 1, our result implies the near-optimality of DSPCA
(d’Aspremont et al. [1]) even when the solution is not rank 1. We also provide a
general theoretical framework for analyzing the statistical properties of the method
for arbitrary input matrices that extends the applicability and provable guarantees
to a wide array of settings. We demonstrate this with an application to Kendall’s
tau correlation matrices and transelliptical component analysis.

1 Introduction

Principal components analysis (PCA) is a popular technique for unsupervised dimension reduction
that has a wide range of application—science, engineering, and any place where multivariate data
is abundant. PCA uses the eigenvectors of the sample covariance matrix to compute the linear
combinations of variables with the largest variance. These principal directions of variation explain
the covariation of the variables and can be exploited for dimension reduction. In contemporary
applications where variables are plentiful (large p) but samples are relatively scarce (small n), PCA
suffers from two major weaknesses : 1) the interpretability and subsequent use of the principal
directions is hindered by their dependence on all of the variables; 2) it is generally inconsistent in
high-dimensions, i.e. the estimated principal directions can be noisy and unreliable [see 2, and the
references therein].

Over the past decade, there has been a fever of activity to address the drawbacks of PCA with a class
of techniques called sparse PCA that combine the essence of PCA with the assumption that the phe-
nomena of interest depend mostly on a few variables. Examples include algorithmic [e.g., 1, 3–10]
and theoretical [e.g., 11–14] developments. However, much of this work has focused on the first
principal component. One rationale behind this focus is by analogy with ordinary PCA: additional
components can be found by iteratively deflating the input matrix to account for variation uncovered
by previous components. However, the use of deflation with sparse PCA entails complications of
non-orthogonality, sub-optimality, and multiple tuning parameters [15]. Identifiability and consis-
tency present more subtle issues. The principal directions of variation correspond to eigenvectors
of some population matrix Σ. There is no reason to assume a priori that the d largest eigenvalues
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of Σ are distinct. Even if the eigenvalues are distinct, estimates of individual eigenvectors can be
unreliable if the gap between their eigenvalues is small. So it seems reasonable, if not necessary,
to de-emphasize eigenvectors and to instead focus on their span, i.e. the principal subspace of
variation.

There has been relatively little work on the problem of estimating the principal subspace or even
multiple eigenvectors simultaneously. Most works that do are limited to iterative deflation schemes
or optimization problems whose global solution is intractable to compute. Sole exceptions are the
diagonal thresholding method [2], which is just ordinary PCA applied to the subset of variables
with largest marginal sample variance, or refinements such as iterative thresholding [16], which use
diagonal thresholding as an initial estimate. These works are limited, because they cannot be used
when the variables have equal variances (e.g., correlation matrices). Theoretical results are equally
limited in their applicability. Although the optimal minimax rates for the sparse principal subspace
problem are known in both the spiked [17] and general [18] covariance models, existing statistical
guarantees only hold under the restrictive spiked covariance model, which essentially guarantees that
diagonal thresholding has good properties, or for estimators that are computationally intractable.

In this paper, we propose a novel convex optimization problem to estimate the d-dimensional princi-
pal subspace of a population matrix Σ based on a noisy input matrix S. We show that if S is a sample
covariance matrix and the projection Π of the d-dimensional principal subspace of Σ depends only
on s variables, then with a suitable choice of regularization parameter, the Frobenius norm of the
error of our estimator X̂ is bounded with high probability

|||X̂ −Π|||2 = O
(
(λ1/δ)s

√
log p/n

)

where λ1 is the largest eigenvalue of Σ and δ the gap between the dth and (d + 1)th largest eigen-
values of Σ. This rate turns out to be nearly minimax optimal (Corollary 3.3), and under additional
assumptions on signal strength, it also allows us to recover the support of the principal subspace
(Theorem 3.2). Moreover, we provide easy to verify conditions (Theorem 3.3) that yield near-
optimal statistical guarantees for other choices of input matrix, such as Pearson’s correlation and
Kendall’s tau correlation matrices (Corollary 3.4).

Our estimator turns out to be a semidefinite program (SDP) that generalizes the DSPCA approach
of [1] to d ≥ 1 dimensions. It is based on a convex body, called the Fantope, that provides a tight
relaxation for simultaneous rank and orthogonality constraints on the positive semidefinite cone.
Solving the SDP is non-trivial. We find that an alternating direction method of multipliers (ADMM)
algorithm [e.g., 19] can efficiently compute its global optimum (Section 4).

In summary, the main contributions of this paper are as follows.

1. We formulate the sparse principal subspace problem as a novel semidefinite program with
a Fantope constraint (Section 2).

2. We show that the proposed estimator achieves a near optimal rate of convergence in sub-
space estimation without assumptions on the rank of the solution or restrictive spiked co-
variance models. This is a first for both d = 1 and d > 1 (Section 3).

3. We provide a general theoretical framework that accommodates other matrices, in addition
to sample covariance, such as Pearson’s correlation and Kendall’s tau.

4. We develop an efficient ADMM algorithm to solve the SDP (Section 4), and provide nu-
merical examples that demonstrate the superiority of our approach over deflation methods
in both computational and statistical efficiency (Section 5).

The remainder of the paper explains each of these contributions in detail, but we defer all proofs to
Appendix A.

Related work Existing work most closely related to ours is the DSPCA approach for single com-
ponent sparse PCA that was first proposed in [1]. Subsequently, there has been theoretical analysis
under a spiked covariance model and restrictions on the entries of the eigenvectors [11], and algo-
rithmic developments including block coordinate ascent [9] and ADMM [20]. The crucial difference
with our work is that this previous work only considered d = 1. The d > 1 case requires invention
and novel techniques to deal with a convex body, the Fantope, that has never before been used in
sparse PCA.
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Notation For matrices A,B of compatible dimension ⟨A,B⟩ := tr(ATB) is the Frobenius inner
product, and |||A|||22 := ⟨A,A⟩ is the squared Frobenius norm. ∥x∥q is the usual ℓq norm with ∥x∥0
defined as the number of nonzero entries of x. ∥A∥a,b is the (a, b)-norm defined to be the ℓb norm
of the vector of rowwise ℓa norms of A, e.g. ∥A∥1,∞ is the maximum absolute row sum. For a
symmetric matrix A, we define λ1(A) ≥ λ2(A) ≥ · · · to be the eigenvalues of A with multiplicity.
When the context is obvious we write λj := λj(A) as shorthand. For two subspaces M1 and M2,
sinΘ(M1,M2) is defined to be the matrix whose diagonals are the sines of the canonical angles
between the two subspaces [see 21, §VII].

2 Sparse subspace estimation

Given a symmetric input matrix S, we propose a sparse principal subspace estimator X̂ that is
defined to be a solution of the semidefinite program

maximize ⟨S,X⟩ − λ∥X∥1,1
subject to X ∈ Fd,

(1)

in the variable X , where
Fd :=

{
X : 0 ≼ X ≼ I and tr(X) = d

}

is a convex body called the Fantope [22, §2.3.2], and λ ≥ 0 is a regularization parameter that
encourages sparsity. When d = 1, the spectral norm bound in Fd is redundant and (1) reduces to
the DSPCA approach of [1]. The motivation behind (1) is based on two key insights.

The first insight is a variational characterization of the principal subspace of a symmetric matrix.
The sum of the d largest eigenvalues of a symmetric matrix A can be expressed as

d∑

i=1

λi(A)
(a)
= max

V TV=Id
⟨A, V V T ⟩ (b)= max

X∈Fd
⟨A,X⟩ . (2)

Identity (a) is an extremal property known as Ky Fan’s maximum principle [23]; (b) is based on the
less well known observation that

Fd = conv({V V T : V TV = Id}) ,
i.e. the extremal points of Fd are the rank-d projection matrices. See [24] for proofs of both.

The second insight is a connection between the (1, 1)-norm and a notion of subspace sparsity intro-
duced by [18]. Any X ≽ 0 can be factorized (non-uniquely) as X = V V T .
Lemma 2.1. If X = V V T , then ∥X∥1,1 ≤ ∥V ∥

2
2,1 ≤ ∥V ∥

2
2,0 tr(X).

Consequently, any X ∈ Fd that has at most s non-zero rows necessarily has ∥X∥1,1 ≤ s2d. Thus,
∥X∥1,1 is a convex relaxation of what [18] call row sparsity for subspaces.

These two insights reveal that (1) is a semidefinite relaxation of the non-convex problem

maximize ⟨S, V V T ⟩ − λ∥V ∥22,0d

subject to V TV = Id .

[18] proposed solving an equivalent form of the above optimization problem and showed that the
estimator corresponding to its global solution is minimax rate optimal under a general statistical
model for S. Their estimator requires solving an NP-hard problem. The advantage of (1) is that it is
computationally tractable.

Subspace estimation The constraint X̂ ∈ Fd guarantees that its rank is≥ d. However X̂ need not
be an extremal point of Fd, i.e. a rank-d projection matrix. In order to obtain a proper d-dimensional
subspace estimate, we can extract the d leading eigenvectors of X̂ , say V̂ , and form the projection
matrix Π̂ = V̂ V̂ T . The projection is unique, but the choice of basis is arbitrary. We can follow the
convention of standard PCA by choosing an orthogonal matrix O so that (V̂ O)TS(V̂ O) is diagonal,
and take V̂ O as the orthonormal basis for the subspace estimate.
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3 Theory

In this section we describe our theoretical framework for studying the statistical properties of X̂
given by (1) with arbitrary input matrices that satisfy the following assumptions.
Assumption 1 (Symmetry). S and Σ are p× p symmetric matrices.
Assumption 2 (Identifiability). δ = δ(Σ) = λd(Σ)− λd+1(Σ) > 0.
Assumption 3 (Sparsity). The projection Π onto the subspace spanned by the eigenvectors of Σ
corresponding to its d largest eigenvalues satisfies ∥Π∥2,0 ≤ s, or equivalently, ∥diag(Π)∥0 ≤ s.

The key result (Theorem 3.1 below) implies that the statistical properties of the error of the estimator

∆ := X̂ −Π ,

can be derived, in many cases, by routine analysis of the entrywise errors of the input matrix

W := S − Σ .

There are two main ideas in our analysis of X̂ . The first is relating the difference in the values of
the objective function in (1) at Π and X̂ to ∆. The second is exploiting the decomposability of
the regularizer. Conceptually, this is the same approach taken by [25] in analyzing the statistical
properties of regularized M -estimators. It is worth noting that the curvature result in our problem
comes from the geometry of the constraint set in (1). It is different from the “restricted strong
convexity” in [25], a notion of curvature tailored for regularization in the form of penalizing an
unconstrained convex objective.

3.1 Variational analysis on the Fantope

The first step of our analysis is to establish a bound on the curvature of the objective function along
the Fantope and away from the truth.
Lemma 3.1 (Curvature). Let A be a symmetric matrix and E be the projection onto the subspace
spanned by the eigenvectors of A corresponding to its d largest eigenvalues λ1 ≥ λ2 ≥ · · · . If
δA = λd − λd+1 > 0, then

δA
2
|||E − F |||22 ≤ ⟨A,E − F ⟩

for all F satisfying 0 ≼ F ≼ I and tr(F ) = d.

A version of Lemma 3.1 first appeared in [18] with the additional restriction that F is a projection
matrix. Our proof of the above extension is a minor modification of their proof.

The following is an immediate corollary of Lemma 3.1 and the Ky Fan maximal principle.
Corollary 3.1 (A sinΘ theorem [18]). Let A,B be symmetric matrices and MA, MB be their
respective d-dimensional principal subspaces. If δA,B = [λd+1(A)−λd(A)]∨ [λd+1(B)−λd(B)],
then

|||sinΘ(MA,MB)|||2 ≤
√
2

δA,B
|||A−B|||2 .

The advantage of Corollary 3.1 over the Davis-Kahan Theorem [see, e.g., 21, §VII.3] is that it does
not require a bound on the differences between eigenvalues of A and eigenvalues of B. This means
that typical applications of the Davis-Kahan Theorem require the additional invocation of Weyl’s
Theorem. Our primary use of this result is to show that even if rank(X̂) ̸= d, its principal subspace
will be close to that of Π if ∆ is small.
Corollary 3.2 (Subspace error bound). If M is the principal d-dimensional subspace of Σ and M̂
is the principal d-dimensional subspace of X̂ , then

|||sinΘ(M,M̂)|||2 ≤
√
2|||∆|||2 .
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3.2 Deterministic error

With Lemma 3.1, it is straightforward to prove the following theorem.
Theorem 3.1 (Deterministic error bound). If λ ≥ ∥W∥∞,∞ and s ≥ ∥Π∥2,0 then

|||∆|||2 ≤ 4sλ/δ .

Theorem 3.1 holds for any global optimizer X̂ of (1). It does not assume that the solution is rank-d as
in [11]. The next theorem gives a sufficient condition for support recovery by diagonal thresholding
X̂ .
Theorem 3.2 (Support recovery). For all t > 0

∣∣{j : Πjj = 0, X̂jj ≥ t}
∣∣+

∣∣{j : Πjj ≥ 2t, X̂jj < t}
∣∣ ≤

|||∆|||22
t2

.

As a consequence, the variable selection procedure Ĵ(t) :=
{
j : X̂jj ≥ t

}
succeeds if

minj:Πjj ̸=0 Πjj ≥ 2t > 2|||∆|||2.

3.3 Statistical properties

In this section we use Theorem 3.1 to derive the statistical properties of X̂ in a generic setting where
the entries of W uniformly obey a restricted sub-Gaussian deviation inequality. This is not the most
general result possible, but it allows us to illustrate the statistical properties of X̂ for two different
types of input matrices: sample covariance and Kendall’s tau correlation. The former is the standard
input for PCA; the latter has recently been shown to be a useful robust and nonparametric tool for
high-dimensional graphical models [26].
Theorem 3.3 (General statistical error bound). If there exists σ > 0 and n > 0 such that Σ and S
satisfy

max
ij

P
(
|Sij − Σij | ≥ t

)
≤ 2 exp

(
− 4nt2/σ2

)
(3)

for all t ≤ σ and
λ = σ

√
log p/n ≤ σ , (4)

then
|||X̂ −Π|||2 ≤

4σ

δ
s
√

log p/n

with probability at least 1− 2/p2.

Sample covariance Consider the setting where the input matrix is the sample covariance matrix
of a random sample of size n > 1 from a sub-Gaussian distribution. A random vector Y with
Σ = Var(Y ) has sub-Gaussian distribution if there exists a constant L > 0 such that

P
(
|⟨Y − EY, u⟩| ≥ t

)
≤ exp

(
− Lt2/∥Σ1/2u∥22

)
(5)

for all u and t ≥ 0. Under this condition we have the following corollary of Theorem 3.3.
Corollary 3.3. Let S be the sample covariance matrix of an i.i.d. sample of size n > 1 from a
sub-Gaussian distribution (5) with population covariance matrix Σ. If λ is chosen to satisfy (4) with
σ = cλ1, then

|||X̂ −Π|||2 ≤ C
λ1

δ
s
√
log p/n

with probablity at least 1− 2/p2, where c, C are constants depending only on L.

Comparing with the minimax lower bounds derived in [17, 18], we see that the rate in Corollary 3.3
is roughly larger than the optimal minimax rate by a factor of√

λ1/λd+1 ·
√

s/d
The first term only becomes important in the near-degenerate case where λd+1 ≪ λ1. It is possible
with much more technical work to get sharp dependence on the eigenvalues, but we prefer to retain
brevity and clarity in our proof of the version here. The second term is likely to be unimprovable
without additional conditions on S and Σ such as a spiked covariance model. Very recently, [14]
showed in a testing framework with similar assumptions as ours when d = 1 that the extra factor√
s is necessary for any polynomial time procedure if the planted clique problem cannot be solved

in randomized polynomial time.
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Kendall’s tau Kendall’s tau correlation provides a robust and nonparametric alternative to ordi-
nary (Pearson) correlation. Given an n × p matrix whose rows are i.i.d. p-variate random vectors,
the theoretical and empirical versions of Kendall’s tau correlation matrix are

τij := Cor
(
sign(Y1i − Y2i) , sign(Y1j − Y2j)

)

τ̂ij :=
2

n(n− 1)

∑

s<t

sign(Ysi − Yti) sign(Ysj − Ytj) .

A key feature of Kendall’s tau is that it is invariant under strictly monotone transformations, i.e.
sign(Ysi − Yti) sign(Ysj − Ytj)) = sign(fi(Ysi)− fi(Yti)) sign(fj(Ysj)− fj(Ytj)) ,

where fi, fj are strictly monotone transformations. When Y is multivariate Gaussian, there is also
a one-to-one correspondence between τij and ρij = Cor(Y1i, Y1j) [27] :

τij =
2

π
arcsin(ρij) . (6)

These two observations led [26] to propose using

T̂ij =

{
sin

(
π
2 τ̂ij

)
if i ̸= j

1 if i = j .
(7)

as an input matrix to Gaussian graphical model estimators in order to extend the applicability of those
procedures to the wider class of nonparanormal distributions [28]. This same idea was extended to
sparse PCA by [29]; they proposed and analyzed using T̂ as an input matrix to the non-convex
sparse PCA procedure of [13]. A shortcoming of that approach is that their theoretical guarantees
only hold for the global solution of an NP-hard optimization problem. The following corollary of
Theorem 3.3 rectifies the situation by showing that X̂ with Kendall’s tau is nearly optimal.

Corollary 3.4. Let S = T̂ as defined in (7) for an i.i.d. sample of size n > 1 and let Σ = T be the
analogous quantity with τij in place of τ̂ij . If λ is chosen to satisfy (4) with σ =

√
8π, then

|||X̂ −Π|||2 ≤
8
√
2π

δ
s
√
log p/n

with probablity at least 1− 2/p2.

Note that Corollary 3.4 only requires that τ̂ be computed from an i.i.d. sample. It does not specify
the marginal distribution of the observations. So Σ = T is not necessarily positive semidefinite
and may be difficult to interpret. However, under additional conditions, the following lemma gives
meaning to T by extending (6) to a wide class of distributions, called transelliptical by [29], that
includes the nonparanormal. See [29, 30] for further information.
Lemma ([29, 30]). If (Y11, . . . , Y1p) has continuous distribution and there exist monotone transfor-
mations f1, . . . , fp such that (

f1(Y11), . . . , fp(Y1p)
)

has elliptical distribution with scatter matrix Σ̃, then

Tij = Σ̃ij/
√
Σ̃iiΣ̃jj .

Moreover, if fj(Y1j), j = 1, . . . , p have finite variance, then Tij = Cor
(
fi(Y1i), fj(Y1j)

)
.

This lemma together with Corollary 3.4 shows that Kendall’s tau can be used in place of the sample
correlation matrix for a wide class of distributions without much loss of efficiency.

4 An ADMM algorithm

The chief difficulty in directly solving (1) is the interaction between the penalty and the Fantope
constraint. Without either of these features, the optimization problem would be much easier. ADMM
can exploit this fact if we first rewrite (1) as the equivalent equality constrained problem

minimize ∞ · 1Fd(X)− ⟨S,X⟩+ λ∥Y ∥1,1
subject to X − Y = 0 ,

(8)
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Algorithm 1 Fantope Projection and Selection (FPS)

Require: S = ST , d ≥ 1, λ ≥ 0, ρ > 0, ϵ > 0
Y (0) ← 0, U (0) ← 0 ◃ Initialization
repeat t = 0, 1, 2, 3, . . .

X(t+1) ← PFd

(
Y (t) − U (t) + S/ρ

)
◃ Fantope projection

Y (t+1) ← Sλ/ρ

(
X(t+1) + U (t)

)
◃ Elementwise soft thresholding

U (t+1) ← U (t) +X(t+1) − Y (t+1) ◃ Dual variable update
until max(|||X(t) − Y (t)|||22 , ρ2|||Y (t) − Y (t−1)|||22) ≤ dϵ2 ◃ Stopping criterion
return Y (t)

in the variables X and Y , where 1Fd is the 0-1 indicator function for Fd and we adopt the convention
∞ · 0 = 0. The augmented Lagrangian associated with (8) has the form

Lρ(X,Y, U) :=∞ · 1Fd(X)− ⟨S,X⟩+ λ∥Y ∥1,1 +
ρ

2

(
|||X − Y + U |||22 − |||U |||22

)
, (9)

where U = (1/ρ)Z is the scaled ADMM dual variable and ρ is the ADMM penalty parameter [see
19, §3.1]. ADMM consists of iteratively minimizing Lρ with respect to X , minimizing Lρ with
respect to Y , and then updating the dual variable. Algorithm 1 summarizes the main steps.

In light of the separation of X and Y in (9) and some algebraic manipulation, the X and Y updates
reduce to computing the proximal operators

PFd

(
Y − U + S/ρ

)
:= argmin

X∈Fd

1

2
|||X − (Y − U + S/ρ)|||22

Sλ/ρ(X + U) := argmin
Y

λ

ρ
∥Y ∥1,1 +

1

2
|||(X + U)− Y |||22 .

Sλ/ρ is the elementwise soft thresholding operator [e.g., 19, §4.4.3] defined as

Sλ/ρ(x) = sign(x)max(|x|− λ/ρ, 0) .

PFd is the Euclidean projection onto Fd and is given in closed form in the following lemma.
Lemma 4.1 (Fantope projection). If X =

∑
i γiuiuT

i is a spectral decomposition of X , then
PFd(X) =

∑
i γ

+
i (θ)uiuT

i , where γ+
i (θ) = min(max(γi − θ, 0), 1) and θ satisfies the equation∑

i γ
+
i (θ) = d.

Thus, PFd(X) involves computing an eigendecomposition of Y , and then modifying the eigenvalues
by solving a monotone, piecewise linear equation.

Rather than fix the ADMM penalty parameter ρ in Algorithm 1 at some constant value, we recom-
mend using the varying penalty scheme described in [19, §3.4.1] that dynamically updates ρ after
each iteration of the ADMM to keep the primal and dual residual norms (the two sum of squares
in the stopping criterion of Algorithm 1) within a constant factor of each other. This eliminates an
additional tuning parameter, and in our experience, yields faster convergence.

5 Simulation results

We conducted a simulation study to compare the effectiveness of FPS against three deflation-based
methods: DSPCA (which is just FPS with d = 1), GPowerℓ1 [7], and SPC [5, 6]. These methods
obtain multiple component estimates by taking the kth component estimate v̂k from input matrix Sk,
and then re-running the method with the deflated input matrix: Sk+1 = (I − v̂kv̂Tk )Sk(I − v̂kv̂Tk ).
The resulting d-dimensional principal subspace estimate is the span of v̂1, . . . , v̂d. Tuning parameter
selection can be much more complicated for these iterative deflation methods. In our simulations,
we simply fixed the regularization parameter to be the same for all d components.

We generated input matrices by sampling n = 100, i.i.d. observations from a Np(0,Σ), p = 200
distribution and taking S to be the usual sample covariance matrix. We considered two different
types of sparse Π = V V T of rank d = 5: those with disjoint support for the nonzero entries of the
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g(
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)

Figure 1: Mean squared error of FPS ( ), DSPCA with deflation ( ), GPowerℓ1 ( ), and
SPC ( ) across 100 replicates each of a variety of simulation designs with n = 100, p = 200,
d = 5, s ∈ {10, 25}, noise σ2 ∈ {1, 10}.

columns of V and those with shared support. We generated V by sampling its nonzero entries from
a standard Gaussian distribution and then orthnormalizing V while retaining the desired sparsity
pattern. In both cases, the number of nonzero rows of V is equal to s ∈ {10, 25}. We then embedded
Π inside the population covariance matrix Σ = αΠ + (I − Π)Σ0(I − Π), where Σ0 is a Wishart
matrix with p degrees of freedom and α > 0 is chosen so that the effective noise level (in the optimal
minimax rate [18]), σ2 =

√
λ1λd+1/(λd − λd+1) ∈ {1, 10}.

Figure 1 summarizes the resulting mean squared error |||Π̂ − Π|||22 across 100 replicates for each
of the different combinations of simulation parameters. Each method’s regularization parameter
varies over a range and the x-axis shows the (2, 1)-norm of the corresponding estimate. At the
right extreme, all methods essentially correspond to standard PCA. It is clear that regularization is
beneficial, because all the methods have significantly smaller MSE than standard PCA when they
are sufficiently sparse. Comparing between methods, we see that FPS dominates in all cases, but
the competition is much closer in the disjoint support case. Finally, all methods degrade when the
number of active variables or noise level increases.

6 Discussion

Estimating sparse principal subspaces in high-dimensions poses both computational and statistical
challenges. The contribution of this paper—a novel SDP based estimator, an efficient algorithm,
and strong statistical guarantees for a wide array of input matrices—is a significant leap forward on
both fronts. Yet, there are newly open problems and many possible extensions related to this work.
For instance, it would be interesting to investigate the performance of FPS a under weak, rather than
exact, sparsity assumption on Π (e.g., ℓq , 0 < q ≤ sparsity). The optimization problem (1) and
ADMM algorithm can easily be modified handle other types of penalties. In some cases, extensions
of Theorem 3.1 would require minimal modifications to its proof. Finally, the choices of dimension
d and regularization parameter λ are of great practical interest. Techniques like cross-validation
need to be carefully formulated and studied in the context of principal subspace estimation.
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