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Abstract

We consider the stochastic approximation problem where a convex function has
to be minimized, given only the knowledge of unbiased estimates of its gradients
at certain points, a framework which includes machine learning methods based
on the minimization of the empirical risk. We focus on problems without strong
convexity, for which all previously known algorithms achieve a convergence rate
for function values ofO(1/

√
n) aftern iterations. We consider and analyze two

algorithms that achieve a rate ofO(1/n) for classical supervised learning prob-
lems. For least-squares regression, we show thataveragedstochastic gradient
descentwith constant step-sizeachieves the desired rate. For logistic regression,
this is achieved by a simple novel stochastic gradient algorithm that (a) constructs
successive local quadratic approximations of the loss functions, while (b) preserv-
ing the same running-time complexity as stochastic gradient descent. For these
algorithms, we provide a non-asymptotic analysis of the generalization error (in
expectation, and also in high probability for least-squares), and run extensive ex-
periments showing that they often outperform existing approaches.

1 Introduction

Large-scale machine learning problems are becoming ubiquitous in many areas of science and en-
gineering. Faced with large amounts of data, practitionerstypically prefer algorithms that process
each observation only once, or a few times. Stochastic approximation algorithms such as stochastic
gradient descent (SGD) and its variants, although introduced more than sixty years ago [1], still
remain the most widely used and studied method in this context (see, e.g., [2, 3, 4, 5, 6, 7]).

We consider minimizing convex functionsf , defined on a Euclidean spaceF , given byf(θ) =
E
[

ℓ(y, 〈θ, x〉)
]

, where(x, y) ∈ F × R denotes the data andℓ denotes a loss function that is con-
vex with respect to the second variable. This includes logistic and least-squares regression. In
the stochastic approximation framework, independent and identically distributed pairs(xn, yn) are
observed sequentially and the predictor defined byθ is updated after each pair is seen.

We partially understand the properties off that affect the problem difficulty.Strong convexity(i.e.,
whenf is twice differentiable, a uniform strictly positive lower-boundµ on Hessians off ) is a key
property. Indeed, aftern observations and with the proper step-sizes, averaged SGD achieves the
rate ofO(1/µn) in the strongly-convex case [5, 4], while it achieves onlyO(1/

√
n) in the non-

strongly-convex case [5], with matching lower-bounds [8].

The main issue with strong convexity is that typical machinelearning problems are high-dimensional
and have correlated variables so that the strong convexity constantµ is zero or very close to zero,
and in any case smaller thanO(1/

√
n). This then makes the non-strongly convex methods better.

In this paper, we aim at obtaining algorithms that may deal with arbitrarily small strong-convexity
constants, but still achieve a rate ofO(1/n).
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Smoothnessplays a central role in the context of deterministic optimization. The known convergence
rates for smooth optimization are better than for non-smooth optimization (e.g., see [9]). However,
for stochastic optimization the use of smoothness only leads to improvements on constants (e.g.,
see [10]) but not on the rate itself, which remainsO(1/

√
n) for non-strongly-convex problems.

We show that for the square loss and for the logistic loss, we may use the smoothness of the loss and
obtain algorithms that have a convergence rate ofO(1/n) without any strong convexity assumptions.
More precisely, for least-squares regression, we show in Section 2 thataveragedstochastic gradient
descentwith constant step-sizeachieves the desired rate. For logistic regression this is achieved by
a novel stochastic gradient algorithm that (a) constructs successive local quadratic approximations
of the loss functions, while (b) preserving the same running-time complexity as stochastic gradi-
ent descent (see Section 3). For these algorithms, we provide a non-asymptotic analysis of their
generalization error (in expectation, and also in high probability for least-squares), and run exten-
sive experiments on standard machine learning benchmarks showing in Section 4 that they often
outperform existing approaches.

2 Constant-step-size least-mean-square algorithm
In this section, we consider stochastic approximation for least-squares regression, where SGD is
often referred to as the least-mean-square (LMS) algorithm. The novelty of our convergence result
is the use of the constant step-size with averaging, which was already considered by [11], but now
with an explicit non-asymptotic rateO(1/n) without any dependence on the lowest eigenvalue of
the covariance matrix.

2.1 Convergence in expectation

We make the following assumptions:
(A1) F is ad-dimensional Euclidean space, withd > 1.
(A2) The observations(xn, zn) ∈ F × F are independent and identically distributed.
(A3) E‖xn‖2 andE‖zn‖2 are finite. Denote byH = E(xn ⊗ xn) the covariance operator from

F to F . Without loss of generality,H is assumed invertible (by projecting onto the minimal
subspace wherexn lies almost surely). However, its eigenvalues may be arbitrarily small.

(A4) The global minimum off(θ) = (1/2)E
[

〈θ, xn〉2 − 2〈θ, zn〉
]

is attained at a certainθ∗ ∈ F .
We denote byξn = zn − 〈θ∗, xn〉xn the residual. We haveE

[

ξn
]

= 0, but in general, it is not
true thatE

[

ξn
∣

∣ xn

]

= 0 (unless the model is well-specified).
(A5) We study the stochastic gradient (a.k.a. least mean square)recursion defined as

θn = θn−1 − γ(〈θn−1, xn〉xn − zn) = (I − γxn ⊗ xn)θn−1 + γzn, (1)
started fromθ0 ∈ F . We also consider the averaged iteratesθ̄n = (n+ 1)−1

∑n
k=0

θk.

(A6) There existsR > 0 andσ > 0 such thatE
[

ξn ⊗ ξn
]

4 σ2H andE
(

‖xn‖2xn ⊗ xn

)

4 R2H ,
where4 denotes the the order between self-adjoint operators, i.e., A 4 B if and only ifB −A
is positive semi-definite.

Discussion of assumptions.Assumptions(A1-5) are standard in stochastic approximation (see,
e.g., [12, 6]). Note that for least-squares problems,zn is of the formynxn, whereyn ∈ R is
the response to be predicted as a linear function ofxn. We consider a slightly more general case
than least-squares because we will need it for the quadraticapproximation of the logistic loss in
Section 3.1. Note that in assumption(A4), we do not assume that the model is well-specified.

Assumption(A6) is true for least-square regression with almost surely bounded data, since, if
‖xn‖2 6 R2 almost surely, thenE

(

‖xn‖2xn ⊗ xn

)

4 E
(

R2xn ⊗ xn

)

= R2H ; a similar inequality
holds for the output variablesyn. Moreover, it also holds for data with infinite supports, such as
Gaussians or mixtures of Gaussians (where all covariance matrices of the mixture components are
lower and upper bounded by a constant times the same matrix).Note that the finite-dimensionality
assumption could be relaxed, but this would require notionssimilar to degrees of freedom [13],
which is outside of the scope of this paper.

The goal of this section is to provide a non-asymptotic boundon the expectationE
[

f(θ̄n)− f(θ∗)
]

,
that (a) does not depend on the smallest non-zero eigenvalueof H (which could be arbitrarily small)
and (b) still scales asO(1/n).
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Theorem 1 Assume(A1-6). For any constant step-sizeγ < 1/R2, we have

E
[

f(θ̄n−1)− f(θ∗)
]

6
1

2n

[

σ
√
d

1−
√

γR2
+R‖θ0 − θ∗‖

1
√

γR2

]2

. (2)

Whenγ = 1/(4R2), we obtainE
[

f(θ̄n−1)− f(θ∗)
]

6
2

n

[

σ
√
d+R‖θ0 − θ∗‖

]2

.

Proof technique. We adapt and extend a proof technique from [14] which is basedon non-
asymptotic expansions in powers ofγ. We also use a result from [2] which studied the recursion in
Eq. (1), withxn ⊗ xn replaced by its expectationH . See [15] for details.

Optimality of bounds. Our bound in Eq. (2) leads to a rate ofO(1/n), which is known to be optimal
for least-squares regression (i.e., under reasonable assumptions, no algorithm, even more complex
than averaged SGD can have a better dependence inn) [16]. The termσ2d/n is also unimprovable.

Initial conditions. If γ is small, then the initial condition is forgotten more slowly. Note that with
additional strong convexity assumptions, the initial condition would be forgotten faster (exponen-
tially fast without averaging), which is one of the traditional uses of constant-step-size LMS [17].

Specificity of constant step-sizes.The non-averaged iterate sequence(θn) is a homogeneous
Markov chain; under appropriate technical conditions, this Markov chain has a unique stationary
(invariant) distribution and the sequence of iterates(θn) converges in distribution to this invari-
ant distribution; see [18, Chapter 17]. Denote byπγ the invariant distribution. Assuming that
the Markov Chain is Harris-recurrent, the ergodic theorem for Harris Markov chain shows that

θ̄n−1 = n−1
∑n−1

k=0
θk converges almost-surely tōθγ

def
=

∫

θπγ(dθ), which is the mean of the
stationary distribution. Taking the expectation on both side of Eq. (1), we getE[θn] − θ∗ =
(I − γH)(E[θn−1] − θ∗), which shows, using thatlimn→∞ E[θn] = θ̄γ thatHθ̄γ = Hθ∗ and
thereforēθγ = θ∗ sinceH is invertible. Under slightly stronger assumptions, it canbe shown that

limn→∞ nE[(θ̄n − θ∗)
2] = Varπγ

(θ0) + 2
∑

∞

k=1
Covπγ

(θ0, θk) ,

whereCovπγ
(θ0, θk) denotes the covariance ofθ0 andθk when the Markov chain is started from

stationarity. This implies thatlimn→∞ nE[f(θ̄n)− f(θ∗)] has a finite limit. Therefore, this in-
terpretation explains why the averaging produces a sequence of estimators which converges to the
solutionθ∗ pointwise, and that the rate of convergence ofE[f(θn)−f(θ∗)] is of orderO(1/n). Note
that (a) our result is stronger since it is independent of thelowest eigenvalue ofH , and (b) for other
losses than quadratic, the same properties holdexceptthat the mean under the stationary distribution
does not coincide withθ∗ and its distance toθ∗ is typically of orderγ2 (see Section 3).

2.2 Convergence in higher orders

We are now going to consider an extra assumption in order to bound thep-th moment of the excess
risk and then get a high-probability bound. Letp be a real number greater than1.

(A7) There existsR > 0, κ > 0 andτ > σ > 0 such that, for alln > 1, ‖xn‖2 6 R2 a.s., and

E‖ξn‖p 6 τpRp and E
[

ξn ⊗ ξn
]

4 σ2H, (3)

∀z ∈ F , E〈z, xn〉4 6 κ
(

E〈z, xn〉2
)2

= κ〈z,Hz〉2. (4)

The last condition in Eq. (4) says that thekurtosisof the projection of the covariatesxn on any
directionz ∈ F is bounded. Note that computing the constantκ happens to be equivalent to the
optimization problem solved by the FastICA algorithm [19],which thus provides an estimate ofκ. In
Table 1, we provide such an estimate for the non-sparse datasets which we have used in experiments,
while we consider only directionsz along the axes for high-dimensional sparse datasets. For these
datasets where a given variable is equal to zero except for a few observations,κ is typically quite
large. Adapting and analyzing normalized LMS techniques [20] to this set-up is likely to improve
the theoretical robustness of the algorithm (but note that results in expectation from Theorem 1 do
not useκ). The next theorem provides a bound for thep-th moment of the excess risk.

Theorem 2 Assume(A1-7). For any realp > 1, and for a step-sizeγ 6 1/(12pκR2), we have:
(

E
∣

∣f(θ̄n−1)− f(θ∗)
∣

∣

p)1/p
6

p

2n

(

7τ
√
d+R‖θ0 − θ∗‖

√

3 +
2

γpR2

)2

. (5)
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For γ = 1/(12pκR2), we get:
(

E
∣

∣f(θ̄n−1)− f(θ∗)
∣

∣

p)1/p
6

p
2n

(

7τ
√
d+ 6

√
κR‖θ0 − θ∗‖

)2
.

Note that to control thep-th order moment, a smaller step-size is needed, which scales as1/p. We
can now provide a high-probability bound; the tails decay polynomially as1/(nδ12γκR

2

) and the
smaller the step-sizeγ, the lighter the tails.

Corollary 1 For any step-size such thatγ 6 1/(12κR2), anyδ ∈ (0, 1),

P

(

f(θ̄n−1)− f(θ∗) >
1

nδ12γκR2

[

7τ
√
d+R‖θ0 − θ∗‖(

√
3 +

√
24κ)

]2

24γκR2

)

6 δ . (6)

3 Beyond least-squares: M-estimation
In Section 2, we have shown that for least-squares regression, averaged SGD achieves a convergence
rate ofO(1/n) with no assumption regarding strong convexity. For all losses, with a constant step-
sizeγ, the stationary distributionπγ corresponding to the homogeneous Markov chain(θn) does
always satisfy

∫

f ′(θ)πγ(dθ) = 0, wheref is the generalization error. When the gradientf ′ is linear
(i.e.,f is quadratic), then this implies thatf ′(

∫

θπγ(dθ))=0, i.e., the averaged recursion converges
pathwise tōθγ =

∫

θπγ(dθ) which coincides with the optimal valueθ∗ (defined throughf ′(θ∗)=0).
When the gradientf ′ is no longer linear, then

∫

f ′(θ)πγ(dθ) 6= f ′(
∫

θπγ(dθ)). Therefore, for
generalM -estimation problems we should expect that the averaged sequence still converges at rate
O(1/n) to the mean of the stationary distributionθ̄γ , but not to the optimal predictorθ∗. Typically,
the average distance betweenθn andθ∗ is of orderγ (see Section 4 and [21]), while for the averaged
iterates that converge pointwise tōθγ , it is of orderγ2 for strongly convex problems under some
additional smoothness conditions on the loss functions (these are satisfied, for example, by the
logistic loss [22]).

Since quadratic functions may be optimized with rateO(1/n) under weak conditions, we are going
to use a quadratic approximation around a well chosen support point, which shares some similarity
with the Newton procedure (however, with a non trivial adaptation to the stochastic approximation
framework). The Newton step forf around a certain point̃θ is equivalent to minimizing a quadratic

surrogateg of f aroundθ̃, i.e.,g(θ) = f(θ̃) + 〈f ′(θ̃), θ− θ̃〉+ 1

2
〈θ− θ̃, f ′′(θ̃)(θ− θ̃)〉. If fn(θ)

def
=

ℓ(yn, 〈θ, xn〉), theng(θ) = Egn(θ), with gn(θ) = f(θ̃)+〈f ′

n(θ̃), θ−θ̃〉+ 1

2
〈θ−θ̃, f ′′

n (θ̃)(θ−θ̃)〉; the
Newton step may thus be solved approximately with stochastic approximation (here constant-step
size LMS), with the following recursion:

θn = θn−1 − γg′n(θn−1) = θn−1 − γ
[

f ′

n(θ̃) + f ′′

n (θ̃)(θn−1 − θ̃)
]

. (7)

This is equivalent to replacing the gradientf ′

n(θn−1) by its first-order approximation around̃θ. A
crucial point is that for machine learning scenarios wherefn is a loss associated to a single data
point, its complexity is only twice the complexity of a regular stochastic approximation step, since,
with fn(θ) = ℓ(yn, 〈xn, θ〉), f ′′

n (θ) is a rank-one matrix.

Choice of support points for quadratic approximation. An important aspect is the choice of the
support point̃θ. In this paper, we consider two strategies:
– Two-step procedure: for convex losses, averaged SGD with a step-size decaying at O(1/

√
n)

achieves a rate (up to logarithmic terms) ofO(1/
√
n) [5, 6]. We may thus use it to obtain a first

decent estimate. The two-stage procedure is as follows (anduses2n observations):n steps of
averaged SGD with constant step sizeγ ∝ 1/

√
n to obtainθ̃, and then averaged LMS for the

Newton step around̃θ. As shown below, this algorithm achieves the rateO(1/n) for logistic
regression. However, it is not the most efficient in practice.

– Support point = current average iterate: we simply consider the current averaged iterateθ̄n−1

as the support point̃θ, leading to the recursion:

θn = θn−1 − γ
[

f ′

n(θ̄n−1) + f ′′

n (θ̄n−1)(θn−1 − θ̄n−1)
]

. (8)

Although this algorithm has shown to be the most efficient in practice (see Section 4) we cur-
rently have no proof of convergence. Given that the behaviorof the algorithms does not change
much when the support point is updated less frequently than each iteration, there may be some
connections to two-time-scale algorithms (see, e.g., [23]). In Section 4, we also consider several
other strategies based on doubling tricks.
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Interestingly, for non-quadratic functions, our algorithm imposes a new bias (by replacing the true
gradient by an approximation which is only valid close toθ̄n−1) in order to reach faster convergence
(due to the linearity of the underlying gradients).

Relationship with one-step-estimators.One-step estimators (see, e.g., [24]) typically take any
estimator withO(1/n)-convergence rate, and make a full Newton step to obtain an efficient estima-
tor (i.e., one that achieves the Cramer-Rao lower bound). Although our novel algorithm is largely
inspired by one-step estimators, our situation is slightlydifferent since our first estimator has only
convergence rateO(1/

√
n) and is estimated on different observations.

3.1 Self-concordance and logistic regression

We make the following assumptions:
(B1) F is ad-dimensional Euclidean space, withd > 1.

(B2) The observations(xn, yn) ∈ F × {−1, 1} are independent and identically distributed.

(B3) We considerf(θ) = E
[

ℓ(yn, 〈xn, θ〉)
]

, with the following assumption on the loss functionℓ
(whenever we take derivatives ofℓ, this will be with respect to the second variable):

∀(y, ŷ) ∈ {−1, 1} × R, ℓ′(y, ŷ) 6 1, ℓ′′(y, ŷ) 6 1/4, |ℓ′′′(y, ŷ)| 6 ℓ′′(y, ŷ).

We denote byθ∗ a global minimizer off , which we thus assume to exist, and we denote by
H = f ′′(θ∗) the Hessian operator at a global optimumθ∗.

(B4) We assume that there existsR > 0, κ > 0 andρ > 0 such that‖xn‖2 6 R2 almost surely, and

E
[

xn ⊗ xn

]

4 ρE
[

ℓ′′(yn, 〈θ∗, xn〉)xn ⊗ xn

]

= ρH, (9)

∀z ∈ F , θ ∈ F , E
[

ℓ′′(yn, 〈θ, xn〉)2〈z, xn〉4
]

6 κ
(

E
[

ℓ′′(yn, 〈θ, xn〉)〈z, xn〉2
])2

. (10)

Assumption(B3) is satisfied for the logistic loss and extends to all generalized linear models (see
more details in [22]), and the relationship between the third derivative and second derivative of the
lossℓ is often referred to asself-concordance(see [9, 25] and references therein). Note moreover
that we must haveρ > 4 andκ > 1.

A loose upper bound forρ is 1/ infn ℓ
′′(yn, 〈θ∗, xn〉) but in practice, it is typically much smaller

(see Table 1). The condition in Eq. (10) is hard to check because it is uniform inθ. With a slightly
more complex proof, we could restrictθ to be close toθ∗; with such constraints, the value ofκ we
have found is close to the one from Section 2.2 (i.e., withoutthe terms inℓ′′(yn, 〈θ, xn〉)).

Theorem 3 Assume(B1-4), and consider the vectorζn obtained as follows: (a) performn steps of
averaged stochastic gradient descent with constant step size1/2R2

√
n, to getθ̃n, and (b) performn

step of averaged LMS with constant step-size1/R2 for the quadratic approximation off aroundθ̃n.
If n > (19 + 9R‖θ0 − θ∗‖)4, then

Ef(ζn)− f(θ∗) 6
κ3/2ρ3d

n
(16R‖θ0 − θ∗‖+ 19)4. (11)

We get anO(1/n) convergence rate without assuming strong convexity, even locally, thus improving
on results from [22] where the the rate is proportional to1/(nλmin(H)). The proof relies on self-
concordance properties and the sharp analysis of the Newtonstep (see [15] for details).

4 Experiments
4.1 Synthetic data

Least-mean-square algorithm.We consider normally distributed inputs, with covariance matrixH
that has random eigenvectors and eigenvalues1/k, k = 1, . . . , d. The outputs are generated from a
linear function with homoscedastic noise with unit signal to noise-ratio. We considerd = 20 and
the least-mean-square algorithm with several settings of the step sizeγn, constant or proportional to
1/

√
n. HereR2 denotes theaverage radius of the data, i.e.,R2 = trH . In the left plot of Figure 1,

we show the results, averaged over 10 replications.

Without averaging, the algorithm with constant step-size does not converge pointwise (it oscillates),
and its average excess risk decays as a linear function ofγ (indeed, the gap between each values of
the constant step-size is close tolog10(4), which corresponds to a linear function inγ).
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Figure 1: Synthetic data. Left: least-squares regression.Middle: logistic regression with averaged
SGD with various step-sizes, averaged (plain) and non-averaged (dashed). Right: various Newton-
based schemes for the same logistic regression problem. Best seen in color; see text for details.

With averaging, the algorithm with constant step-size doesconverge at rateO(1/n), and for all
values of the constantγ, the rate is actually the same. Moreover (although it is not shown in the
plots), the standard deviation is much lower.

With decaying step-sizeγn = 1/(2R2
√
n) and without averaging, the convergence rate is

O(1/
√
n), and improves toO(1/n) with averaging.

Logistic regression.We consider the same input data as for least-squares, but nowgenerates outputs
from the logistic probabilistic model. We compare several algorithms and display the results in
Figure 1 (middle and right plots).

On the middle plot, we consider SGD; without averaging, the algorithm with constant step-size does
not converge and its average excess risk reaches a constant value which is a linear function ofγ
(indeed, the gap between each values of the constant step-size is close tolog10(4)). With averaging,
the algorithm does converge, but as opposed to least-squares, to a point which is not the optimal
solution, with an error proportional toγ2 (the gap between curves is twice as large).

On the right plot, we consider various variations of our online Newton-approximation scheme. The
“2-step” algorithm is the one for which our convergence rateholds (n being the total number of
examples, we performn/2 steps of averaged SGD, thenn/2 steps of LMS). Not surprisingly, it is
not the best in practice (in particular atn/2, when starting the constant-size LMS, the performance
worsens temporarily). It is classical to use doubling tricks to remedy this problem while preserving
convergence rates [26], this is done in “2-step-dbl.”, which avoids the previous erratic behavior.

We have also considered getting rid of the first stage where plain averaged stochastic gradient is
used to obtain a support point for the quadratic approximation. We now consider only Newton-steps
but change only these support points. We consider updating the support point at every iteration, i.e.,
the recursion from Eq. (8), while we also consider updating it every dyadic point (“dbl.-approx”).
The last two algorithms perform very similarly and achieve theO(1/n) early. In all experiments on
real data, we have considered the simplest variant (which corresponds to Eq. (8)).

4.2 Standard benchmarks

We have considered 6 benchmark datasets which are often usedin comparing large-scale optimiza-
tion methods. The datasets are described in Table 1 and vary in values ofd, n and sparsity levels.
These are allfinite binary classification datasets with outputs in{−1, 1}. For least-squares and lo-
gistic regression, we have followed the following experimental protocol: (1) remove all outliers (i.e.,
sample pointsxn whose norm is greater than 5 times the average norm), (2) divide the dataset in two
equal parts, one for training, one for testing, (3) sample within the training dataset with replacement,
for 100 times the number of observations in the training set (this corresponds to100 effective passes;
in all plots, a black dashed line marks the first effective pass), (4) compute averaged costs on training
and testing data (based on 10 replications). All the costs are shown in log-scale, normalized to that
the first iteration leads tof(θ0)− f(θ∗) = 1.

All algorithms that we consider (ours and others) have a step-size, and typically a theoretical value
that ensures convergence. We consider two settings: (1) onewhen this theoretical value is used, (2)
one with the best testing error after one effective pass through the data (testing powers of4 times the
theoretical step-size).
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Here, we only considercovertype, alpha, sidoandnews, as well as test errors. For all training errors
and the two other datasets (quantum, rcv1), see [15].

Least-squares regression.We compare three algorithms: averaged SGD with constant step-size,
averaged SGD with step-size decaying asC/R2

√
n, and the stochastic averaged gradient (SAG)

method which is dedicated to finite training data sets [27], which has shown state-of-the-art perfor-
mance in this set-up. We show the results in the two left plotsof Figure 2 and Figure 3.

Averaged SGD with decaying step-size equal toC/R2
√
n is slowest (except forsido). In particu-

lar, when the best constantC is used (right columns), the performance typically starts to increase
significantly. With that step size, even after 100 passes, there is no sign of overfitting, even for the
high-dimensional sparse datasets.

SAG and constant-step-size averaged SGD exhibit the best behavior, for the theoretical step-sizes
and the best constants, with a significant advantage for constant-step-size SGD. The non-sparse
datasets do not lead to overfitting, even close to the global optimum of the (unregularized) training
objectives, while the sparse datasets do exhibit some overfitting after more than 10 passes.

Logistic regression.We also compare two additional algorithms: our Newton-based technique and
“Adagrad” [7], which is a stochastic gradient method with a form a diagonal scaling1 that allows to
reduce the convergence rate (which is still in theory proportional toO(1/

√
n)). We show results in

the two right plots of Figure 2 and Figure 3.

Averaged SGD with decaying step-size proportional to1/R2
√
n has the same behavior than for

least-squares (step-size harder to tune, always inferior performance except forsido).

SAG, constant-step-size SGD and the novel Newton techniquetend to behave similarly (good with
theoretical step-size, always among the best methods). They differ notably in some aspects: (1)
SAG converges quicker for the training errors (shown in [15]) while it is a bit slower for the testing
error, (2) in some instances, constant-step-size averagedSGD does underfit (covertype, alpha, news),
which is consistent with the lack of convergence to the global optimum mentioned earlier, (3) the
novel online Newton algorithm is consistently better.

On the non-sparse datasets, Adagrad performs similarly to the Newton-type method (often better in
early iterations and worse later), except for thealphadataset where the step-size is harder to tune
(the best step-size tends to have early iterations that makethe cost go up significantly). On sparse
datasets likercv1, the performance is essentially the same as Newton. On thesidodata set, Adagrad
(with fixed steps size, left column) achieves a good testing loss quickly then levels off, for reasons
we cannot explain. On thenewsdataset, it is inferior without parameter-tuning and a bit better with.
Adagrad uses a diagonal rescaling; it could be combined withour technique, early experiments show
that it improves results but that it is more sensitive to the choice of step-size.

Overall, even withd andκ very large (where our bounds are vacuous), the performance of our
algorithm still achieves the state of the art, while being more robust to the selection of the step-size:
finer quantities likes degrees of freedom [13] should be ableto quantify more accurately the quality
of the new algorithms.

5 Conclusion

In this paper, we have presented two stochastic approximation algorithms that can achieve rates
of O(1/n) for logistic and least-squares regression, without strong-convexity assumptions. Our
analysis reinforces the key role of averaging in obtaining fast rates, in particular with large step-
sizes. Our work can naturally be extended in several ways: (a) an analysis of the algorithm that
updates the support point of the quadratic approximation atevery iteration, (b) proximal extensions
(easy to implement, but potentially harder to analyze); (c)adaptive ways to find the constant-step-
size; (d) step-sizes that depend on the iterates to increaserobustness, like in normalized LMS [20],
and (e) non-parametric analysis to improve our theoreticalresults for large values ofd.

Acknowledgements. Francis Bach was partially supported by the European Research Council
(SIERRA Project). We thank Aymeric Dieuleveut and Nicolas Flammarion for helpful discussions.

1Since a bound on‖θ∗‖ is not available, we have used step-sizes proportional to1/ sup
n
‖xn‖∞.
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Table 1: Datasets used in our experiments. We report the proportion of non-zero entries, as well
as estimates for the constantκ andρ used in our theoretical results, together with the non-sharp
constant which is typically used in analysis of logistic regression and which our analysis avoids
(these are computed for non-sparse datasets only).

Name d n sparsity κ ρ 1/ infn ℓ
′′(yn, 〈θ∗, xn〉)

quantum 79 50 000 100 % 5.8×102 16 8.5×102

covertype 55 581 012 100 % 9.6×102 160 3×1012

alpha 501 500 000 100 % 6 18 8×104

sido 4 933 12 678 10 % 1.3×104 × ×
rcv1 47 237 20 242 0.2 % 2 ×104 × ×
news 1 355 192 19 996 0.03 % 2 ×104 × ×
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Figure 2: Test performance for least-square regression (two left plots) and logistic regression (two
right plots). From top to bottom:covertype, alpha. Left: theoretical steps, right: steps optimized for
performance after one effective pass through the data. Bestseen in color.
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Figure 3: Test performance for least-square regression (two left plots) and logistic regression (two
right plots). From top to bottom:sido, news. Left: theoretical steps, right: steps optimized for
performance after one effective pass through the data. Bestseen in color.
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