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A Appendix

A.1 Validation/test Data Methodology

For all experiments except the comparison to Mensink et al. [12] we train our visual model and
DeViSE on the ILSVRC 2012 1K data set. Experiments in Section 4.1 use images and labels only
from the 2012 1K set for testing, and the zero-shot experiments in Section 4.2 use image and labels
from the ImageNet 2011 21K set and, for DeViSE+1K, also labels from ILSVRC 2012 1K. The
same subset of the ILSVRC 2012 1K data used to train the visual model (Section 3.2) is also used to
train DeViSE and the random embedding-based models, and when training all models, we randomly
flip, crop and translate images to artificially expand the training set several-fold. The 50K images
from the ILSVRC 2012 1K validation set are split randomly 10/90 into our experimental validation
and held-out test sets of 5K and 45K images, respectively. Our validation set is used to choose
hyperparameters, and results are reported on the held-out set. The 1,000 classes are roughly balanced
in the validation and held-out sets. The 500-D DeViSE model trained for the experiments in Section
4.1 is also used for the corresponding zero-shot experiments in Section 4.2 with no additional tuning.

The zero-shot experiments performed to compare to Mensink et al. [12] are trained with images
and labels from the ILSVRC 2010 1K data set, using the same 800/200 training/test class split used
in [12]. We use the ILSVRC 2010 training/validation/test data split; training and validation images
from the 800 classes are used to train and tune our visual model and DeViSE, and test images from
the 200 zero-shot classes are used to generate our experimental results.

At test time, images are center-cropped to 225 × 225 for input to the visual model, and no other
distortions are applied.

A.2 Mapping Text Terms to ImageNet Synset

The language model represents terms and phrases gathered from unannotated text as embedding
vectors, whereas the ImageNet data set represents each class as a synset, a set of synonymous terms,
where each term is a word or phrase. When training DeViSE, a method is needed for mapping from
an ImageNet synset to the target embedding vector, and at prediction time, label predictions from the
embedding space must be translated back into ImageNet synsets from the test set for scoring. There
are two complications: (1) the same term can occur in multiple ImageNet synsets, often representing
different concepts, for example the two synsets consisting only of “crane” in ILSVRC 2012 1K; (2)
the language model as we have trained it only has one embedding for each word or phrase, so there
is only one embedding vector representing both senses of “crane”.
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When training, we choose the target embedding vector by mapping the first term of the synset to its
embedding vector through the text of the synset term. We found this to work well in practice; other
possible approaches are to choose randomly from among the synset terms or take an average of the
embedding vectors for the synset terms.

When making a prediction, the mapping from embedded text vectors back to ImageNet synsets
is more difficult: each embedding vector can correspond to several ImageNet synsets due to the
repetition of terms between synsets, up to 9 different synsets in the case of “head”. Additionally,
multiple of our predicted embedding vectors can correspond to terms from the same synset, e.g.
“ballroom”, “dance hall”, “dance palace”. In practice, this happens frequently since synonymous
terms are embedded close to one another by the skip-gram language model.

For a given visual output vector, our model first finds the N nearest embedding label vectors using
cosine similarity, sorted by their similarity, where N > k. In these experiments, we chose N = 4∗k
as this is close to the average number of text labels per synset in the ILSVRC 2012 data set. The
first step in converting these to ImageNet synsets is to expand every embedded term to all of its
corresponding ImageNet synsets. For example, “crane” would be expanded to the two synsets which
contain the term “crane” (the order of the two “crane” synsets in the final list is arbitrary). After
expansion, if there are duplicate entries for a given synset, then all but the first are removed from
their places in the list, leaving a list where each synset occurs at most once in the prediction list.
Finally, the list is truncated to the top k predictions. We experimented with choosing randomly from
among all the possible synsets instead of expanding to all of them and found this to slightly reduce
performance in the ILSVRC 2012 1K experiments.

A.3 Hierarchical Precision-at-k Metric

We defined the following hierarchical precision-at-k metric, hp@k, to assess the accuracy of model
predictions with respect to the ImageNet object category hierarchy. For each image in the test set, the
model in question emits its top k predicted ImageNet object category labels (synsets). We calculate
hp@k as the fraction of these k predictions which are in hCorrectSet, averaged across the test
examples:

hp@k =
1

N

N∑
i=1

number of model’s top k predictions in hCorrectSet for image i

k
(1)

The hCorrectSet for a true label is constructed by iteratively adding nodes from the ImageNet
hierarchy in a widening radius around the true label until hCorrectSet has a size ≥ k:

hCorrectSet = {}
R = 0
while NumberElements(hCorrectSet < k):

radiusSet = all nodes in the ImageNet hierarchy which are
R hops from the true label

validRadiusSet = ValidLabelNodes(radiusSet)
hCorrectSet = Union(hCorrectSet, validRadiusSet)
R = R + 1

return hCorrectSet

The size of hCorrectSet for a given test example depends on the combination of the structure of
the hierarchy around a given label and which classes are included in the test set. It is exactly 1 when
k = 1 and is rarely equal to k when k > 1. The ValidLabelNodes()function allows us to
restrict hCorrectSet to any subset of labels in the ImageNet (or larger WordNet) hierarchy. For
example, in generating the results in Table 2 we restrict the nodes in the hCorrectSet to be drawn
from only those nodes which are both members the ImageNet 2011 21K label set and are three-hops
or less from at least one of the ImageNet 2012 1K labels.

Note that this hierarchical metric differs from the hierarchical metric used in some of the earlier
ImageNet Challenge competitions. That metric was generally considered to be rather insensitive,
and was withdrawn from more recent years of the competition. Our DeViSE model does perform
better than the baseline softmax model on that metric as well, but effect sizes are generally much
smaller.
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k
Label set # kCorrectSet Labels 2 5 10 20
ImageNet 2012 1K 1000 6.5 12.5 22.5 41.7
Zero-shot 2-hop 2589 3.2 16.8 25.5 45.2
Zero-shot 3-hop 8860 4.4 577.4 635.4 668.0
Zero-shot ImageNet 2011 21K 21900 5.4 273.3 317.4 350.6

Table 1: Mean sizes of hCorrectSet lists used for hierarchical evaluation, averaged across the test examples,
shown for various label sets and values of k. At k = 1, hCorrectSet always contains only the true label.
Note that for the zero-shot data sets, kCorrectSet includes the test set labels as well as the ImageNet 2012
1K labels. List sizes vary among test examples depending upon the local topology of the graph around the true
label as well as how many labels from the graph are in the ground truth set.
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