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Abstract

The efficiency of Brain-Computer Interfaces (BCI) largely depends upon a reliable
extraction of informative features from the high-dimensional EEG signal. A cru-
cial step in this protocol is the computation of spatial filters. The Common Spatial
Patterns (CSP) algorithm computes filters that maximize the difference in band
power between two conditions, thus it is tailored to extract the relevant informa-
tion in motor imagery experiments. However, CSP is highly sensitive to artifacts
in the EEG data, i.e. few outliers may alter the estimate drastically and decrease
classification performance. Inspired by concepts from the field of information ge-
ometry we propose a novel approach for robustifying CSP. More precisely, we
formulate CSP as a divergence maximization problem and utilize the property of
a particular type of divergence, namely beta divergence, for robustifying the esti-
mation of spatial filters in the presence of artifacts in the data. We demonstrate the
usefulness of our method on toy data and on EEG recordings from 80 subjects.

1 Introduction

Spatial filtering is a crucial step in the reliable decoding of user intention in Brain-Computer In-
terfacing (BCI) [1, 2]. It reduces the adverse effects of volume conduction and simplifies the clas-
sification problem by increasing the signal-to-noise-ratio. The Common Spatial Patterns (CSP)
[3, 4, 5, 6] method is one of the most widely used algorithms for computing spatial filters in mo-
tor imagery experiments. A spatial filter computed with CSP maximizes the differences in band
power between two conditions, thus it aims to enhance detection of the synchronization and desyn-
chronization effects occurring over different locations of the sensorimotor cortex after performing
motor imagery. It is well known that CSP may provide poor results when artifacts are present in
the data or when the data is non-stationary [7, 8]. Note that artifacts in the data are often unavoid-
able and can not always be removed by preprocessing, e.g. with Independent Component Analysis.
They may be due to eye movements, muscle movements, loose electrodes, sudden changes of atten-
tion, circulation, respiration, external events, among the many possibilities. A straight forward way
to robustify CSP against overfitting is to regularize the filters or the covariance matrix estimation
[3, 7, 9, 10, 11]. Several other strategies have been proposed for estimating spatial filters under
non-stationarity [12, 8, 13, 14].

In this work we propose a novel approach for robustifying CSP inspired from recent results in the
field of information geometry [15, 16]. We show that CSP may be formulated as a divergence
maximization problem, in particular we prove by using Cauchy’s interlacing theorem [17] that the
spatial filters found by CSP span a subspace with maximum symmetric Kullback-Leibler divergence
between the distributions of both classes. In order to robustify the CSP algorithm against the influ-
ence of outliers we propose solving the divergence maximization problem with a particular type of
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divergence, namely beta divergence. This divergence has been successfully used for robustifying
algorithms such as Independent Component Analysis (ICA) [18] and Non-negative Matrix Factor-
ization (NMF) [19]. In order to capture artifacts on a trial-by-trial basis we reformulate the CSP
problem as sum of trial-wise divergences and show that our method downweights the influence of
artifactual trials, thus it robustly integrates information from all trials.

The remainder of this paper is organized as follows. Section 2 introduces the divergence-based
framework for CSP. Section 3 describes the beta-divergence CSP method and discusses its robust-
ness property. Section 4 evaluates the method on toy data and EEG recordings from 80 subjects
and interprets the performance improvement. Section 5 concludes the paper with a discussion. An
implementation of our method is available at http://www.divergence-methods.org.

2 Divergence-Based Framework for CSP

Spatial filters computed by the Common Spatial Patterns (CSP) [3, 4, 5] algorithm have been widely
used in Brain-Computer Interfacing as they are well suited to discriminate between distinct motor
imagery patterns. A CSP spatial filter w maximizes the variance of band-pass filtered EEG signals
in one condition while minimizing it in the other condition. Mathematically the CSP solution can
be obtained by solving the generalized eigenvalue problem

Σ1wi = λiΣ2wi (1)
where Σ1 and Σ2 are the estimated (average) D × D covariance matrices of class 1 and 2,
respectively. Note that the spatial filters W = [w1 . . .wD] can be sorted by importance
α1 = max{λ1,

1
λ1
} > . . . > αD = max{λD, 1

λD
}.

2.1 divCSP Algorithm

Information geometry [15] has provided useful frameworks for developing various machine learning
(ML) algorithms, e.g. by optimizing divergences between two different probability distributions [20]
[21]. In particular, a series of robust ML methods have been successfully obtained from Bregman
divergences which are generalization of the Kullback-Leibler (KL) divergence [22]. Among them,
we employ in this work the beta divergence. Before proposing our novel algorithm, we show that
CSP can also be interpreted as maximization of the symmetric KL divergence.

Theorem 1: Let W = [w1 . . .wd] be the d top (sorted by αi) spatial filters computed by CSP and let
Σ1 and Σ2 denote the covariance matrices of class 1 and 2. Let V> = R̃P be a d×D dimensional
matrix that can be decomposed into a whitening projection P ∈ RD×D (P(Σ1 + Σ2)P> = I) and
an orthogonal projection R̃ ∈ Rd×D. Then

span(W) = span(V∗) (2)

with V∗ = argmax
V

D̃kl

(
V>Σ1V || V>Σ2V

)
(3)

where D̃kl(· || ·) denotes the symmetric Kullback-Leibler Divergence1 between zero mean Gaus-
sians and span(M) stands for the subspace spanned by the columns of matrix M. Note that [23]
has provided a proof for the special case of one spatial filter, i.e. for V ∈ RD×1.

Proof: See appendix and supplement material.

The objective function that is maximized in Eq. (3) can be written as

Lkl(V) =
1

2
tr
(
(V>Σ1V)−1(V>Σ2V)

)
+

1

2
tr
(
(V>Σ2V)−1(V>Σ1V)

)
− d. (4)

In order to cater for artifacts on a trial-by-trial basis we need to reformulate the above objective
function. Instead of maximizing the divergence between the average class distributions we propose
to optimize the sum of trial-wise divergences

Lsumkl(V) =

N∑
i=1

D̃kl

(
V>Σi

1V || V>Σi
2V
)
, (5)

1The symmetric Kullback-Leibler Divergence between distributions f(x) and g(x) is defined as
D̃kl(f(x) || g(x)) =

∫
f(x) · log f(x)

g(x)
dx +

∫
g(x) · log g(x)

f(x)
dx.
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where Σi
1 and Σi

2 denote the covariance matrices estimated from the i-th trial of class 1 and class
2, respectively, and N is the number of trials per class. Note that the reformulated problem is
not equivalent to CSP; in Eq. (4) averaging is performed w.r.t. the covariance matrices, whereas in
Eq. (5) it is performed w.r.t. the divergences. We denote the former approach by kl-divCSP and the
latter one by sumkl-divCSP. The following theorem relates both approaches in the asymptotic case.

Theorem 2: Suppose that the number of discriminative sources is one; then let c be such that
D/n → c as D,n → ∞ (D dimensions, n data points per trial). Then if there exists γ(c) with
N/D → γ(c) for N → ∞ (N the number of trials) then the empirical maximizer of Lsumkl(v)
(and of course also of Lkl(v)) converges almost surely to the true solution.

Sketched Proof: See appendix.

Thus Theorem 2 says that both divergence-based CSP variants kl-divCSP and sumkl-divCSP almost
surely converge to the same (true) solution in the asymptotic case. The theorem can be easily
extended to multiple discriminative sources.

2.2 Optimization Framework

We use the methods developed in [24], [25] and [26] for solving the maximization problems in
Eq. (4) and Eq. (5). The projection V ∈ RD×d to the d-dimensional subspace can be decomposed
into three parts, namely V> = IdRP where Id is an identity matrix truncated to the first d rows, R
is a rotation matrix with RR> = I and P is a whitening matrix. The optimization process consists
of finding the rotation R that maximizes our objective function and can be performed by gradient
descent on the manifold of orthogonal matrices. More precisely, we start with an orthogonal matrix
R0 and find an orthogonal update U in the k-th step such that Rk+1 = URk. The update matrix
is chosen by identifying the direction of steepest descent in the set of orthogonal transformations
and then performing a line search along this direction to find the optimal step. Since the basis of
the extracted subspace is arbitrary (one can right multiply a rotation matrix to V without changing
the divergence), we select the principal axes of the data distribution of one class (after projection)
as basis in order to maximally separate the two classes. The optimization process is summarized in
Algorithm 1 and explained in the supplement material of the paper.

Algorithm 1 Divergence-based Framework for CSP
1: function DIVCSP(Σ1,Σ2, d)
2: Compute the whitening matrix P = Σ−

1
2

3: Initialise R0 with a random rotation matrix
4: Whiten and rotate the data Σc = (R0P)Σc(R0P)> with c = {1, 2}
5: repeat
6: Compute the gradient matrix and determine the step size (see supplement material)
7: Update the rotation matrix Rk+1 = URk

8: Apply the rotation to the data Σc = UΣcU
>

9: until convergence
10: Let V> = IdRk+1P
11: Rotate V by G ∈ Rd×d where G are eigenvectors of V>Σ1V
12: return V
13: end function

3 Beta Divergence CSP

Robustness is a desirable property of algorithms that work in data setups which are known to be
contaminated by outliers. For example, in the biomedical fields, signals such as EEG may be highly
affected by artifacts, i.e. outliers, which may drastically influence statistical estimation. Note that
both of the above approaches kl-divCSP and sumkl-divCSP are not robust w.r.t. artifacts as they
both perform simple (non-robust) averaging of the covariance matrices and of the divergence terms,
respectively. In this section we show that by using beta divergence we robustify the averaging of the
divergence terms as beta divergence downweights the influence of outlier trials.
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Beta divergence was proposed in [16, 27] and is defined (for β > 0) as

Dβ (f(x) || g(x)) =
1

β

∫
(fβ(x)− gβ(x))f(x)dx− 1

β + 1

∫
(fβ+1(x)− gβ+1(x))dx, (6)

where f(x) and g(x) are two probability distributions. Like every statistical divergence it is
always positive and equals zero iff g = f [15]. The symmetric version of beta divergence
D̃β(f(x) || g(x)) = Dβ(f(x) || g(x)) + Dβ(g(x) || f(x)) can be interpreted as discrepancy
between two probability distributions. One can show easily that beta and Kullback-Leibler diver-
gence coincide as β → 0.

In the context of parameter estimation, one can show that minimizing the divergence function from
an empirical distribution p to the statistical model q(φ) is equivalent to maximizing the Ψ-likelihood
L̄Ψβ (φ)

argmin
q(φ)

Dβ(p || q(φ)) = argmax
q(φ)

L̄Ψβ (q(φ)) (7)

with L̄Ψβ (q(φ)) =
1

n

n∑
i=1

Ψβ(`(xi, q(φ)))− bΨβ (φ) and Ψβ(z) =
exp(βz)− 1

β
, (8)

where `(xi, q(φ)) denotes the log-likelihood of observation xi and distribution q(φ), and bΨβ (φ) :=

(β + 1)−1
∫
q(φ)β+1dx. Basu et al. [27] showed that the Ψ-likelihood method weights each obser-

vation according to the magnitude of likelihood evaluated at the observation; if an observation is an
outlier, i.e. of lower likelihood, then it is downweighted. Thus, beta divergence allows to construct
robust estimators as samples with low likelihood are downweighted (see also M-estimators [28]).

β-divCSP Algorithm

We propose applying beta divergence to the objective function in Eq. (5) in order to downweight the
influence of artifacts in the computation of spatial filters. An overview over the different divergence-
based CSP variants is provided in Figure 1. The objective function of our β-divCSP approach is

Lβ(V) =
∑
i

D̃β

(
VTΣi

1V || VTΣi
2V
)

(9)

=
1

β

∑
i

(∫
gβ+1
i dx+

∫
fβ+1
i dx−

∫
fβi gidx−

∫
fig

β
i dx

)
, (10)

with fi = N
(
0, Σ̄i

1

)
and gi = N

(
0, Σ̄i

2

)
being the zero-mean Gaussian distributions with pro-

jected covariances Σ̄i
1 = VTΣi

1V ∈ Rd×d and Σ̄i
2 = VTΣi

2V ∈ Rd×d, respectively.

One can show easily (see the supplement file to this paper) that Lβ(V) has an explicit form

γ
∑
i

(
|Σ̄i

1|−
β
2 + |Σ̄i

2|−
β
2 − (β + 1)

d
2

(
|Σ̄i

2|
1−β
2 |βΣ̄i

1 + Σ̄i
2|−

1
2 + |Σ̄i

1|
1−β
2 |βΣ̄i

2 + Σ̄i
1|−

1
2

))
, (11)

with γ = 1
β

√
1

(2π)βd(β+1)d
. We use Algorithm 1 to maximize the objective function of β-divCSP.

In the following we show that the robustness property of β-divCSP can be directly understood from
inspection of its objective function.

Assume Σ̄i
1 and Σ̄i

2 are full rank d × d covariance matrices. We investigate the behaviour of the
objective functions of β-divCSP and sumkl-divCSP when Σ̄i

1 is constant and Σ̄i
2 becomes very

large, e.g. because it is affected by artifacts. It is not hard to see that for β > 0 the objective
function Lβ does not go to infinity but is constant as Σ̄i

2 becomes arbitrarily large. The first term
of the objective function |Σ̄i

1|−
β
2 is constant with respect to changes of Σ̄i

2 and all the other terms
go to zero as Σ̄i

2 increases. Thus the influence function of the β-divCSP estimator is bounded w.r.t.
changes in Σ̄i

2 (the same argument holds for changes of Σ̄i
1). Note that this robustness property

vanishes when applying Kullback-Leibler divergences Eq. (4) as the trace term tr
(
(Σ̄i

1)−1Σ̄i
2

)
is

not bounded when Σ̄i
2 becomes arbitrarily large, thus this artifactual term will dominate the solution.
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Figure 1: Relation between the different CSP formulations outlined in this paper.

4 Experimental Evaluation

4.1 Simulations

In order to investigate the effects of artifactual trials on CSP and β-divCSP we generate data x(t)
using the following mixture model

x(t) = A

[
sdis(t)
sndis(t)

]
+ ε, (12)

where A ∈ R10×10 is a random orthogonal mixing matrix, sdis is a discriminative source sampled
from a zero mean Gaussian with variance 1.8 in one condition and 0.2 in the other one, sndis are 9
sources with variance 1 in both conditions and ε is a noise variable with variance 2. We generate
100 trials per condition, each consisting of 200 data points. Furthermore we randomly add artifacts
with variance 10 independently to each data dimension (i.e. virtual electrode) and trial with varying
probability and evaluate the angle between the true filter extracting the source activity of sdis and
the spatial filter computed by CSP and β-divCSP. The median angles are shown in Figure 2 using
100 repetitions. One can clearly see that the angle error between the spatial filter extracted by CSP
and the true one increases with larger artifact probability. Furthermore one can see from the figure
that using very small β values does not attenuate the artefact problem, but it rather increases the
error by adding up trial-wise divergences without downweighting outliers. However, as the β value
increases the artifactual trials are downweighted and a robust average is computed over the trial-wise
divergence terms. This increased robustness significantly reduces the angle error.
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Figure 2: Angle between the true spatial filter and the filter computed by CSP and β-divCSP for
different probabilities of artifacts. The robustness of our approach increases with the β value and
significantly outperforms the CSP solution.
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4.2 Data Sets and Experimental Setup

The data set [29] used for the evaluation contains EEG recordings from 80 healthy BCI-
inexperienced volunteers performing motor imagery tasks with the left and right hand or feet. The
subjects performed motor imagery first in a calibration session and then in a feedback mode in which
they were required to control a 1D cursor application. Activity was recorded from the scalp with
multi-channel EEG amplifiers using 119 Ag/AgCl electrodes in an extended 10-20 system sampled
at 1000 Hz (downsampled to 100 Hz) and a band-pass from 0.05 to 200 Hz. Three runs with 25
trials of each motor condition were recorded in the calibration session and the two best classes were
selected; the subjects performed feedback with three runs of 100 trials. Both sessions were recorded
on the same day.

For the offline analysis we manually select 62 electrodes densely covering the motor cortex, extract
a time segment located from 750ms to 3500ms after the cue indicating the motor imagery class and
filter the signal in 8-30 Hz using a 5-th order Butterworth filter. We do not apply manual or automatic
rejection of trials or electrodes and use six spatial filters for feature extraction. For classification
we apply Linear Discriminant Analysis (LDA) after computing the logarithm of the variance on
the spatially filtered data. We measure performance as misclassification rate and normalize the
covariance matrices by dividing them by their traces. The parameter β is selected from the set of
15 candidates {0, 0.0001, 0.001, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.5, 0.75, 1, 1.5, 2, 5} by 5-fold
cross-validation on the calibration data using minimal training error rate as selection criterion. For
faster convergence we use the rotation part of the CSP solution as initial rotation matrix R0.

4.3 Results

We compare our β-divCSP method with three CSP baselines using different estimators for the co-
variance matrices. The first baseline uses the standard empirical estimator, the second one applies a
standard analytic shrinkage estimator [9] and the third one relies on the minimum covariance deter-
minant (MCDE) estimate [30]. Note that the shrinkage estimator usually provides better estimates
in small-sample settings, whereas MCDE is robust to outliers. In order to perform a fair comparison
we applied MCDE over various ranges [0, 0.05, 0.1 . . . 0.5] of parameters and selected the best one
by cross-validation (as with β-divCSP). The MCDE parameter determines the expected proportion
of artifacts in the data. The results are shown in Figure 3. Each circle denotes the error rate of one
subject. One can see that the β-divCSP method outperforms the baselines as most circles are be-
low the solid line. Furthermore the performance increases are significant according to the one-sided
Wilcoxon sign rank test as the p-values are smaller than 0.05.
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Figure 3: Performance results of the CSP, shrinkage + CSP and MCDE + CSP baselines compared to
β-divCSP. Each circle represents the error rate of one subject. Our method outperforms the baselines
for circles that are below the solid line. The p-values of the one-sided Wilcoxon sign rank test are
shown in the lower right corner.

We made an interesting observation when analysing the subject with largest improvement over the
CSP baseline; the error rates were 48.6% (CSP), 48.6% (MCDE+CSP) and 11.0% (β-divCSP).
Over all ranges of MCDE parameters this subject has an error rate higher than 48% i.e. MCDE
was not able help in this case. This example shows that β-divCSP and MCDE are not equivalent.
Enforcing robustness on the CSP algorithm may in some cases be better than enforcing robustness
when estimating the covariance matrices.
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In the following we study the robustness property of the β-divCSP method on subject 74, the user
with the largest improvement (CSP error rate: 48.6 % and β-divCSP error rate: 11.0 %). The left
panel of Figure 4 displays the activity pattern associated with the most important CSP filter of subject
74. One can clearly see that the pattern does not encode neurophysiologically relevant activity,
but focuses on a single electrode, namely FFC6. When analysing the (filtered) EEG signal of this
electrode one can identify a strong artifact in one of the trials. Since neither the empirical covariance
estimator nor the CSP algorithm is robust to this kind of outliers, it dominates the solution. However,
the resulting pattern is meaningless as it does not capture motor imaginary related activity. The right
panel of Figure 4 shows the relative importance of the divergence term of the artifactual trial with
respect to the average divergence terms of the other trials. One can see that the divergence term
computed from the artifactual trial is over 1800 times larger than the average of the other trials. This
ratio decreases rapidly for larger β values, thus the influence of the artifact decreases. Thus, our
experiments provide an excellent example of the robustness property of the β-divCSP approach.
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Figure 4: Left: The CSP pattern of subject 74 does not reflect neurophysiological activity but it rep-
resents the artifact (red ellipse) in electrode FFC6. Right: The relative importance of this artifactual
trial decreases with the β parameters. The relative importance is measured as quotient between the
divergence term of the artifactual trial and the average divergence terms of the other trials.

5 Discussion

Analysis of EEG data is challenging because the signal of interest is typically present with a low
signal to noise ratio. Moreover artifacts and non-stationarity require robust algorithms. This paper
has placed its focus on a robust estimation and proposed a novel algorithm family giving rise to a beta
divergence algorithm which allows robust spatial filter computation for BCI. In the very common
setting where EEG electrodes become loose or movement related artifacts occur in some trials, it
is a practical necessity to either ignore these trials (which reduces an already small sample size
further) or to enforce intrinsic invariance to these disturbances into the learning procedures. Here,
we have used CSP, the standard filtering technique in BCI, as a starting point and reformulated it
in terms of an optimization problem maximizing the divergence between the class-distributions that
correspond to two cognitive states. By borrowing the concept of beta divergences, we could adapt
the optimization problem and arrive at a robust spatial filter computation based on CSP. We showed
that our novel method can reduce the influence of artifacts in the data significantly and thus allows
to robustly extract relevant filters for BCI applications.

In future work we will investigate the properties of other divergences for Brain-Computer Interfacing
and consider also further applications like ERP-based BCIs [31] and beyond the neurosciences.
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Appendix

Sketch of proof of Theorem 1
Cauchy’s interlacing theorem [17] establishes a relation between the eigenvalues µ1 ≤ . . . ≤ µD of
the original covariance matrix Σ and the eigenvalues ν1 ≤ . . . ≤ νd of the projected one VΣV>.
The theorem says that

µj ≤ νj ≤ µD−d+j .

In the proof we split the optimal projection V∗ into two parts U1 ∈ Rk×D and U2 ∈ Rd−k×D based
on whether the first or second trace term in Eq. (4) is larger when applying the spatial filters. By
using Cauchy’s theorem we then show that Lkl(U) ≤ Lkl(W) where W consists of k eigenvectors
with largest eigenvalues; equality only holds if U and W coincide (up to linear transformations).
We show an analogous relation for U2 and conclude that V∗ must be the CSP solution (up to linear
transformations). See the full proof in the supplement material.

Sketch of the proof of Theorem 2
Since there is only one discriminative direction we may perform analysis in a basis whereby the
covariances of both classes have the form diag(a, 1, . . . , 1) and diag(b, 1, . . . , 1). If we show in this
basis that consistency holds then it is a simple matter to prove consistency in the original basis. We
want to show that as the number of trialsN increases the filter provided by sumkl-divCSP converges
to the true solution v∗. If the support of the density of the eigenvalues includes a region around 0,
then there is no hope of showing that the matrix inversion is stable. However, it has been shown
in the random matrix theory literature [32] that if D and n tend to∞ in a ratio c = D

n then all of
the eigenvalues apart from the largest lie between (1 −

√
c)2 and (1 +

√
c)2 whereas the largest

sample eigenvalue (α denotes the true non-unit eigenvalue) converges almost surely to α + c α
α−1

provided α > 1 +
√
c, independently of the distribution of the data; a similar result applies if one

true eigenvalue is smaller than the rest. This implies that for sufficient discriminability in the true
distribution and sufficiently many data points per trial, each filter maximizing each term in the sum
has non-zero dot-product with the true maximizing filter. But since the trials are independent, this
implies that in the limit of N trials the maximizing filter corresponds to the true filter. Note that the
full proof goes well beyond the scope of this contribution.
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