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Abstract

The Lasso is a cornerstone of modern multivariate data analysis, yet its perfor-
mance suffers in the common situation in which covariates are correlated. This
limitation has led to a growing number of Preconditioned Lasso algorithms that
pre-multiply X and y by matrices PX , Py prior to running the standard Lasso. A
direct comparison of these and similar Lasso-style algorithms to the original Lasso
is difficult because the performance of all of these methods depends critically on
an auxiliary penalty parameter λ. In this paper we propose an agnostic framework
for comparing Preconditioned Lasso algorithms to the Lasso without having to
choose λ. We apply our framework to three Preconditioned Lasso instances and
highlight cases when they will outperform the Lasso. Additionally, our theory
reveals fragilities of these algorithms to which we provide partial solutions.

1 Introduction

Variable selection is a core inferential problem in a multitude of statistical analyses. Confronted with
a large number of (potentially) predictive variables, the goal is to select a small subset of variables
that can be used to construct a parsimonious model. Variable selection is especially relevant in linear
observation models of the form

y = Xβ∗ + w with w ∼ N (0, σ2In×n), (1)

where X is an n × p matrix of features or predictors, β∗ is an unknown p-dimensional regression
parameter, andw is a noise vector. In high-dimensional settings where n� p, ordinary least squares
is generally inappropriate. Assuming that β∗ is sparse (i.e., the support set S(β∗) , {i|β∗i 6= 0} has
cardinality k < n), a mainstay algorithm for such settings is the Lasso [10]:

Lasso: β̂ = argminβ∈Rp

1

2n
||y −Xβ||22 + λ ||β||1 . (2)

For a particular choice of λ, the variable selection properties of the Lasso can be analyzed by quan-
tifying how well the estimated support S(β̂) approximates the true support S(β∗). More careful
analyses focus instead on recovering the signed support S±(β∗),

S±(β∗i ) ,

{
+1 if β∗i > 0
−1 if β∗i < 0

0 o.w.
. (3)

Theoretical developments during the last decade have shed light onto the support recovery proper-
ties of the Lasso and highlighted practical difficulties when the columns of X are correlated. These
developments have led to various conditions on X for support recovery, such as the mutual incoher-
ence or the irrepresentable condition [1, 3, 8, 12, 13].
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In recent years, several modifications of the standard Lasso have been proposed to improve its
support recovery properties [2, 7, 14, 15]. In this paper we focus on a class of “Preconditioned
Lasso” algorithms [5, 6, 9] that pre-multiply X and y by suitable matrices PX and Py to yield
X̄ = PXX, ȳ = Pyy, prior to running Lasso. Thus, the general strategy of these methods is

Preconditioned Lasso: ˆ̄β = argminβ∈Rp

1

2n

∣∣∣∣ȳ − X̄β∣∣∣∣2
2

+ λ̄ ||β||1 . (4)

Although this class of algorithms often compares favorably to the Lasso in practice, our theoretical
understanding of them is at present still fairly poor. Huang and Jojic [5], for example, consider
only empirical evaluations, while both Jia and Rohe [6] and Paul et al. [9] consider asymptotic
consistency under various assumptions. Important and necessary as they are, consistency results do
not provide insight into the relative performance of Preconditioned Lasso variants for finite data sets.
In this paper we provide a new theoretical basis for making such comparisons. Although the focus
of the paper is on problems of the form of Eq. (4), we note that the core ideas can also be applied to
algorithms that right-multiply X and/or y with some matrices (e.g., [4, 11]).

For particular instances of X,β∗, we want to discover whether a given Preconditioned Lasso al-
gorithm following Eq. (4) improves or degrades signed support recovery relative to the standard
Lasso of Eq. (2). A major roadblock to a one-to-one comparison are the auxiliary penalty param-
eters, λ, λ̄, which trade off the `1 penalty to the quadratic objective in both Eq. (2) and Eq. (4).
A correct choice of penalty parameter is essential for signed support recovery: If it is too small,
the algorithm behaves like ordinary least squares; if it is too large, the estimated support may be
empty. Unfortunately, in all but the simplest cases, pre-multiplying data X, y by matrices PX , Py
changes the relative geometry of the `1 penalty contours to the elliptical objective contours in a
nontrivial way. Suppose we wanted to compare the Lasso to the Preconditioned Lasso by choosing
for each λ in Eq. (2) a suitable, matching λ̄ in Eq. (4). For a fair comparison, the resulting map-
ping would have to capture the change of relative geometry induced by preconditioning of X, y,
i.e. λ̄ = f(λ,X, y, PX , Py). It seems difficult to theoretically characterize such a mapping. Fur-
thermore, it seems unlikely that a comparative framework could be built by independently choosing
“ideal” penalty parameters λ, λ̄: Meinshausen and Bühlmann [8], for example, demonstrate that a
seemingly reasonable oracle estimator of λ will not lead to consistent support recovery in the Lasso.
In the Preconditioned Lasso literature this problem is commonly sidestepped either by resorting
to asymptotic comparisons [6, 9], empirically comparing regularization paths [5], or using model-
selection techniques which aim to choose reasonably “good” matching penalty parameters [6]. We
deem these approaches to be unsatisfactory—asymptotic and empirical analyses provide limited in-
sight, and model selection strategies add a layer of complexity that may lead to unfair comparisons.

It is our view that all of these approaches place unnecessary emphasis on particular choices of
penalty parameter. In this paper we propose an alternative strategy that instead compares the Lasso to
the Preconditioned Lasso by comparing data-dependent upper and lower penalty parameter bounds.
Specifically, we give bounds (λu, λl) on λ so that the Lasso in Eq. (2) is guaranteed to recover the
signed support iff λl < λ < λu. Consequently, if λl > λu signed support recovery is not possible.
The Preconditioned Lasso in Eq. (4) uses data X̄ = PXX, ȳ = Pyy and will thus induce new
bounds (λ̄u, λ̄l) on λ̄. The comparison of Lasso and Preconditioned Lasso on an instance X,β∗
then proceeds by suitably comparing the bounds on λ and λ̄. The advantage of this approach is that
the upper and lower bounds are easy to compute, even though a general mapping between specific
penalty parameters cannot be readily derived.

To demonstrate the effectiveness of our framework, we use it to analyze three Preconditioned Lasso
algorithms [5, 6, 9]. Using our framework we make several contributions: (1) We confirm intuitions
about advantages and disadvantages of the algorithms proposed in [5, 9]; (2) We show that for an
SVD-based construction of n × p matrices X , the algorithm in [6] changes the bounds determin-
istically; (3) We show that in the context of our framework, this SVD-based construction can be
thought of as a limit point of a Gaussian construction.

The paper is organized as follows. In Section 2 we will discuss three recent instances of Eq. (4). We
outline our comparative framework in Section 3 and highlight some immediate consequences for [5]
and [9] on general matrices X in Section 4. More detailed comparisons can be made by considering
a generative model for X . In Section 5 we introduce such a model based on a block-wise SVD of X
and then analyze [6] for specific instances of this generative model. Finally, we show that in terms
of signed support recovery, this generative model can be thought of as a limit point of a Gaussian
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construction. Section 6 concludes with some final thoughts. The proofs of all lemmas and theorems
are in the supplementary material.

2 Preconditioned Lasso Algorithms

Our interest lies in the class of Preconditioned Lasso algorithms that is summarized by Eq. (4).
Extensions to related algorithms, such as [4, 11] will follow readily. In this section we focus on three
recent Preconditioned Lasso examples and instantiate the matrices PX , Py appropriately. Detailed
derivations can be found in the supplementary material. For later reference, we will denote each
algorithm by the author initials.

Huang and Jojic [5] (HJ). Huang and Jojic proposed Correlation Sifting [5], which, although
not presented as a preconditioning algorithm, can be rewritten as one. Let the SVD of X be X =
UDV >. Given an algorithm parameter q, let UA be the set of q smallest left singular vectors of X1.
Then HJ amounts to setting

PX = Py = UAU
>
A . (5)

Paul et al. [9] (PBHT). An earlier instance of the preconditioning idea was put forward by Paul
et al. [9]. For some algorithm parameter q, let A be the q column indices of X with largest absolute
correlation to y, (i.e., where |X>j y|/||Xj ||2 is largest). Define UA to be the q largest left singular
vectors of XA. With this, PBHT can be expressed as setting

PX = In×n Py = UAU
>
A . (6)

Jia and Rohe [6] (JR). Jia and Rohe [6] propose a preconditioning method that amounts to
whitening the matrix X . If X = UDV > is full rank, then JR defines2

PX = Py = U
(
DD>

)−1/2
U>. (7)

If n < p then X̄X̄> = PXXX
>P>X ∝ In×n and if n > p then X̄>X̄ = X>P>XPXX ∝ Ip×p.

Both HJ and PBHT estimate a basis UA for a q-dimensional subspace onto which they project y
and/orX . However, since the methods differ substantially in their assumptions, the estimators differ
also. Empirical results in [5] and [9] suggest that the respective assumptions are useful in a variety of
situations. In contrast, JR reweights the column space directions U and requires no extra parameter
q to be estimated.

3 Comparative Framework

In this section we propose a new comparative approach for Preconditioned Lasso algorithms which
avoids choosing particular penalty parameters λ, λ̄. We first derive upper and lower bounds for λ
and λ̄ respectively so that signed support recovery can be guaranteed iff λ and λ̄ satisfy the bounds.
We then compare estimators by comparing the resulting bounds.

3.1 Conditions for signed support recovery

Before proceeding, we make some definitions motivated by Wainwright [12]. Suppose that the
support set of β∗ is S , S(β∗), with |S| = k. To simplify notation, we will assume throughout that
S = {1, . . . , k} so that the corresponding off-support set is Sc = {1, . . . , p} \S, with |Sc| = p− k.
Denote by Xj column j of X and by XA the submatrix of X consisting of columns indexed by set
A. Define the following variables: For all j ∈ Sc and i ∈ S, let

µj = X>j XS(X>S XS)−1sgn(β∗S) ηj = X>j
(
In×n −XS(X>S XS)−1X>S

) w
n

(8)

γi = e>i

(
1

n
X>S XS

)−1
sgn(β∗S) εi = e>i

(
1

n
X>S XS

)−1
X>S

w

n
. (9)

1The choice of smallest singular vectors is considered for matrices X with sharply decaying spectrum.
2We note that Jia and Rohe [6] let D be square, so that it can be directly inverted. If X is not full rank, the

pseudo-inverse of D can be used.
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(a) Signed support recovery around λl.
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(b) Signed support recovery around λu.

Figure 1: Empirical evaluation of the penalty parameter bounds of Lemma 1. For each of 500
synthetic Lasso problems (n = 300, p = 1000, k = 10) we computed λl, λu as per Lemma 1.
Then we ran Lasso using penalty parameters fλl in Figure (a) and fλu in Figure (b), where the
factor f = 0.5, . . . , 1.5. The figures show the empirical probability of signed support recovery as a
function of the factor f for both λl and λu. As expected, the probabilities change sharply at f = 1.

For the traditional Lasso of Eq. (2), results in (for example) Wainwright [12] connect settings of λ
with instances ofX,β∗, w to certify whether or not Lasso will recover the signed support. We invert
these results and, for particular instances of X,β∗, w, derive bounds on λ so that signed support
recovery is guaranteed if and only if the bounds are satisfied. Specifically, we prove the following
Lemma in the supplementary material.
Lemma 1. Suppose that X>S XS is invertible, |µj | < 1,∀j ∈ Sc, and sgn(β∗i )γi > 0,∀i ∈ S. Then
the Lasso has a unique solution β̂ which recovers the signed support (i.e., S±(β̂) = S±(β∗)) if and
only if λl < λ < λu, where

λl = max
j∈Sc

ηj
(2Jηj > 0K− 1)− µj

λu = min
i∈S

∣∣∣∣β∗i + εi
γi

∣∣∣∣
+

, (10)

J·K denotes the indicator function and | · |+ = max(0, ·) denotes the hinge function. On the other
hand, if X>S XS is not invertible, then the signed support cannot in general be recovered.

Lemma 1 recapitulates well-worn intuitions about when the Lasso has difficulty recovering the
signed support. For instance, assuming that w has symmetric distribution with mean 0, if 1 − |µj |
is small (i.e., the irrepresentable condition almost fails to hold), then λl will tend to be large. In
extreme cases we might have λl > λu so that signed support recovery is impossible. Figure 1 em-
pirically validates the bounds of Lemma 1 by estimating probabilities of signed support recovery for
a range of penalty parameters on synthetic Lasso problems.

3.2 Comparisons

In this paper we propose to compare a preconditioning algorithm to the traditional Lasso by compar-
ing the penalty parameter bounds produced by Lemma 1. As highlighted in Eq. 4, the precondition-
ing framework runs Lasso on modified variables X̄ = PXX, ȳ = Pyy. For the purpose of applying
Lemma 1, these transformations induce a new noise vector

w̄ = ȳ − X̄β∗ = Py (Xβ∗ + w)− PXXβ∗. (11)

Note that if PX = Py then w̄ = Pyw. Provided the conditions of Lemma 1 hold for X̄, β∗ we can
define updated variables µ̄j , γ̄i, η̄j , ε̄i from which the bounds λ̄u, λ̄l on the penalty parameter λ̄ can
be derived. In order for our comparison to be scale-invariant, we will compare algorithms by ratios
of resulting penalty parameter bounds. That is, we deem a Preconditioned Lasso algorithm to be
more effective than the traditional Lasso if λ̄u/λ̄l > λu/λl. Intuitively, the upper bound λ̄u is then
disproportionately larger than λ̄l relative to λu and λl, which in principle allows easier tuning of λ̄3.
We will later encounter the special case λ̄u 6= 0, λ̄l = 0 in which case we define λ̄u/λ̄l , ∞ to
indicate that the preconditioned problem is very easy. If λ̄u/λ̄l < 1 then signed support recovery is
in general impossible. Finally, to match this intuition, we define λ̄u/λ̄l , 0 if λ̄u = λ̄l = 0.

3Other functions of λl, λu and λ̄l, λ̄u could also be considered. However, we find the ratio to be a particu-
larly intuitive measure.
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4 General Comparisons

We begin our comparisons with some immediate consequences of Lemma 1 for HJ and PBHT. In
order to highlight the utility of the proposed framework, we focus in this section on special cases of
PX , Py . The framework can of course also be applied to general matrices PX , Py . As we will see,
both HJ and PBHT have the potential to improve signed support recovery relative to the traditional
Lasso, provided the matrices PX , Py are suitably estimated. The following notation will be used
during our comparisons: We will write Ā � A to indicate that random variable A stochastically
dominates Ā, that is, ∀t P(Ā ≥ t) ≤ P(A ≥ t). We also let US be a minimal basis for the column
space of the submatrix XS , and define span(US) =

{
x
∣∣∃c ∈ Rk s.t. x = USc

}
⊆ Rn. Finally, we

let USc be a minimal basis for the orthogonal complement of span(US).

Consequences for HJ. Recall from Section 2 that HJ uses PX = Py = UAU>A , where UA is a
column basis estimated from X . We have the following theorem:
Theorem 1. Suppose that the conditions of Lemma 1 are met for a fixed instance of X,β∗. If
span(US) ⊆ span(UA), then after preconditioning using HJ the conditions continue to hold, and

λu
λl
� λ̄u
λ̄l
, (12)

where the stochasticity on both sides is due to independent noise vectors w. On the other hand, if
X>S P

>
XPXXS is not invertible, then HJ cannot in general recover the signed support.

We briefly sketch the proof of Theorem 1. If span(US) ⊆ span(UA) then plugging in the definition
of PX into µ̄j , γ̄i, η̄j , ε̄i, one can derive the following

µ̄j = µj γ̄i = γi (13)

η̄j = X>j
(
In×n − USU>S

)
UAU

>
A
w

n
ε̄i = εi. (14)

If span(UA) = span(US), then it is easy to see that η̄j = 0. Notice that because µ̄j and γ̄i are un-
changed, if the conditions of Lemma 1 hold for the original Lasso problem (i.e.,X>S XS is invertible,
|µj | < 1 ∀j ∈ Sc and sgn(β∗i )γi > 0 ∀i ∈ S), they will continue to hold for the preconditioned
problem. Suppose then that the conditions set forth in Lemma 1 are met. With some additional work
one can show that

λ̄u = min
i∈S

∣∣∣∣β∗i + ε̄i
γ̄i

∣∣∣∣
+

= λu λ̄l = max
j∈Sc

η̄j
(2Jη̄j > 0K− 1)− µ̄j

� λl. (15)

The result then follows by showing that λ̄l, λl are both independent of λ̄u = λu. Note that if
span(UA) = span(US), then λ̄l = 0 and so λ̄u/λ̄l , ∞. In the more common case when
span(US) 6⊆ span(UA) the performance of the Lasso depends on how misaligned UA and US are. In
extreme cases, X>S P

>
XPXXS is singular and so signed support recovery is not in general possible.

Consequences for PBHT. Recall from Section 2 that PBHT uses PX = In×n, Py = UAU>A ,
where UA is a column basis estimated from X . We have the following theorem.
Theorem 2. Suppose that the conditions of Lemma 1 are met for a fixed instance of X,β∗. If
span(US) ⊆ span(UA), after preconditioning using PBHT the conditions continue to hold, and

λu
λl
� λ̄u
λ̄l
, (16)

where the stochasticity on both sides is due to independent noise vectors w. On the other hand, if
span(USc) = span(UA), then PBHT cannot recover the signed support.

As before, we sketch the proof to build some intuition. Because PBHT does not set PX = Py as HJ
does, there is no danger of X>S P

>
XPXXS becoming singular. On the other hand, this complicates

the form of the induced noise vector w̄. Plugging PX and Py into Eq. (11), we find w̄ = (UAU>A −
In×n)Xβ∗ + UAU>Aw. However, even though the noise has a more complicated form, derivations
in the supplementary material show that if span(US) ⊆ span(UA), then

µ̄j = µj γ̄i = γi (17)

η̄j = X>j
(
In×n − USU>S

)
UAU

>
A
w

n
ε̄i = εi. (18)
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Figure 2: Experimental evaluations. Figure (a) shows empirical c.d.f.’s of penalty parameter bounds
ratios estimated from 1000 variable selection problems. Each problem consists of Gaussians X and
w, and β∗, with n = 100, p = 300, k = 5. The blue curve shows the c.d.f. for λu/λl estimated on
the original data (Lasso). Then we projected the data using PX = Py = UAU>A , where span(US) ⊆
span(UA) but dim(UA) = dim(span(UA)) is variable (see legend), and estimated the resulting
c.d.f. for the updated bounds ratio λ̄u/λ̄l. As predicted by Theorems 1 and 2, λu/λl � λ̄u/λ̄l. In
Figure (b) the blue curve shows the scale factor (p− k)/(n+ pκ2 − k) predicted by Theorem 3 for
problems constructed from Eq. (19) for κ = f

√
1− (n/p). The red curve plots the corresponding

factor estimated from the Gaussian construction in Eq. (25) (n = 100,m = 2000, p = 200, k = 5)
using the same ΣS ,ΣSc as in Theorem 3, averaged over 50 problem instances and with error bars
for one standard deviation. As in Theorem 3, the factor is approximately 1 if f = 1.

As with HJ, if span(UA) = span(US), then η̄j = 0. Because µ̄j and γ̄i are again unchanged,
the conditions of Lemma 1 will continue to hold for the preconditioned problem if they hold for
the original Lasso problem. With the previous equalities established, the remainder of the proof
is identical to that of Theorem 1. The fact that the above µ̄j , η̄j , γ̄i, ε̄i are identical to those of HJ
depends crucially on the fact that span(US) ⊆ span(UA). In general the values will differ because
PBHT sets PX = In×n, but HJ does not.

On the other hand, if span(US) 6⊆ span(UA) then the distribution of ε̄i depends on how misaligned
UA and US are. In the extreme case when span(USc) = span(UA), one can show that ε̄i = −β∗i ,
which results in λ̄u = 0, λ̄l � λl. Because P(λ̄l ≥ 0) = 1, signed support recovery is not possible.

Remarks. Our theoretical analyses show that both HJ and PBHT can indeed lead to improved
signed support recovery relative to the Lasso on finite datasets. To underline our findings, we em-
pirically validate Theorems 1 and 2 in Figure 2(a), where we plot estimated c.d.f.’s for penalty
parameter bounds ratios of Lasso and Preconditioned Lasso for various subspaces UA. Our theo-
rems focussed on specific settings of PX , Py and ignored others. In general, the gains of HJ and
PBHT over Lasso depend on how much the decoy signals in XSc are suppressed and how much of
the true signal due to XS is preserved. Further comparison of HJ and PBHT must thus analyze how
the subspaces span(UA) are estimated in the context of the assumptions made in [5] and [9]. A final
note concerns the dimension of the subspace span(UA). Both HJ and PBHT were proposed with the
implicit goal of finding a basis UA that has the same span as US . This of course requires estimating
|S| = k by q, which adds another layer of complexity to these algorithms. Theorems 1 and 2 sug-
gest that underestimating k can be more detrimental to signed support recovery than overestimating
it. By overestimating q > k, we can trade off milder improvement when span(US) ⊆ span(UA)
against poor behavior should we have span(US) 6⊆ span(UA).

5 Model-Based Comparisons

In the previous section we used Lemma 1 in conjunction with assumptions onUA to make statements
about HJ and PBHT. Of course, the quality of the estimated UA depends on the specific instances
X,β∗, w, which hinders a general analysis. Similarly, a direct application of Lemma 1 to JR yields
bounds that exhibit strong X dependence. It is possible to crystallize prototypical examples by
specializing X and w to come from a generative model. In this section we briefly present this model
and will show the resulting penalty parameter bounds for JR.
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5.1 Generative model for X

As discussed in Section 2, many preconditioning algorithms can be phrased as truncating or
reweighting column subspaces associated with X [5, 6, 9]. This suggests that a natural generative
model for X can be formulated in terms of the SVD of submatrices of X .

Assume p − k > n and let ΣS ,ΣSc be fixed-spectrum matrices of dimension n × k and n ×
p − k respectively. We will assume throughout this paper that the top left “diagonal” entries of
ΣS ,ΣSc are positive and the remainder is zero. Furthermore, we let U, VS , VSc be orthonormal
bases of dimension n × n, k × k and p − k × p − k respectively. We assume that these bases are
chosen uniformly at random from the corresponding Stiefel manifold. As before and without loss of
generality, suppose S = {1, . . . , k}. Then we let the Lasso problem be

y = Xβ∗ + w with X = U
[
ΣSV

>
S ,ΣScV >Sc

]
w ∼ N (0, σ2In×n), (19)

To ensure that the column norms of X are controlled, we compute the spectra ΣS ,ΣSc by normal-
izing spectra Σ̂S and Σ̂Sc with arbitrary positive elements on the diagonal. Specifically, we let

ΣS =
Σ̂S

||Σ̂S ||F

√
kn ΣSc =

Σ̂Sc

||Σ̂Sc ||F

√
(p− k)n. (20)

We verify in the supplementary material that with these assumptions the squared column norms of
X are in expectation n (provided the orthonormal bases are chosen uniformly at random).

Intuition. Note that any matrix X can be decomposed using a block-wise SVD as

X = [XS , XSc ] = U
[
ΣSV

>
S , TΣScV >Sc

]
, (21)

with orthonormal bases U, T, VS , VSc . Our model in Eq. (19) is only a minor restriction of this
model, where we set T = In×n. To develop more intuition, let us temporarily set VS = Ik×k,
VSc = Ip−k×p−k. Then X = [XS , XSc ] = U [ΣS ,ΣSc ] and we see that up to scaling XS equals
the first k columns of XSc . The difficulty for Lasso thus lies in correctly selecting the columns in
XS , which are highly correlated with the first few columns in XSc .

5.2 Piecewise constant spectra

For notational clarity we will now focus on a special case of the above model. To begin, we develop
some notation. In previous sections we used US to denote a basis for the column space of XS . We
will continue to use this notation, and let US contain the first k columns of U . Accordingly, we
denote the last n − k columns of U by USc . We let the diagonal elements of ΣS , Σ̂S ,ΣSc , Σ̂Sc

be identified by their column indices. That is, the diagonal entries σS,c of ΣS and σ̂S,c of Σ̂S
are indexed by c ∈ {1, . . . , k}; the diagonal entries σSc,c of ΣSc and σ̂Sc,c of Σ̂Sc are indexed
by c ∈ {1, . . . , n}. Each of the diagonal entries in ΣS ,ΣSc is associated with a column of U .
The set of diagonal entries of ΣS and ΣSc associated with US is σ(S) = {1, . . . , k} and the set
of diagonal entries in ΣSc associated with USc is σ(Sc) = {1, . . . , n}\σ(S). We will construct
spectrum matrices ΣS ,ΣSc that are piecewise constant on their diagonals. For some κ ≥ 0, we let
σ̂S,i = 1, σ̂Sc,i = κ ∀i ∈ σ(S) and σ̂Sc,j = 1 ∀j ∈ σ(Sc).

Consequences for JR. Recall that for JR, if X = UDV >, then PX = Py = U
(
DD>

)−1/2
U>.

We have the following theorem.

Theorem 3. Assume the Lasso problem was generated according to the generative model of
Eq. (19) with ∀i ∈ σ(S), σ̂S,i = 1, σ̂Sc,i = κ and ∀j ∈ σ(Sc), σ̂Sc,j = 1 and that
κ <

√
n− k/

√
k(p− k − 1). Then the conditions of Lemma 1 hold before and after precondi-

tioning using JR. Moreover,

λ̄u
λ̄l

=
(p− k)

n+ pκ2 − k
λu
λl
. (22)

In other words, JR deterministically scales the ratio of penalty parameter bounds. The proof idea
is as follows. It is easy to see that X>S XS is always invertible. Furthermore, one can show that if
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κ <
√
n− k/

√
k(p− k − 1), we have |µj | < 1,∀j ∈ Sc and sgn(β∗i )γi > 0,∀i ∈ S. Thus, by our

assumptions, the preconditions of Lemma 1 are satisfied for the original Lasso problem. Plugging in
the definitions of ΣS ,ΣSc into Eq. (19) we find that the SVD becomesX = UDV >, where U is the
same column basis as in Eq. (19), and the diagonal elements of D are determined by κ. Substituting
this into the definitions of µ̄j , γ̄i, η̄j , ε̄i, we have that after preconditioning using JR

µ̄j = µj γ̄i =

(
n+

n(p− k)κ2

kκ2 + n− k

)
γi (23)

η̄j =
(kκ2 + n− k)

n(p− k)
ηj ε̄i = εi. (24)

Thus, if the conditions of Lemma 1 hold for X,β∗, they will continue to hold after precondition-
ing using JR. Furthermore, notice that (2Jη̄j > 0K− 1) − µ̄j = (2Jηj > 0K− 1) − µj . Applying
Lemma 1 then gives the new ratio λ̄u/λ̄l as claimed. According to Theorem 3 the ratio λ̄u/λ̄l will
be larger than λu/λl iff κ <

√
1− (n/p). Indeed, if κ =

√
1− (n/p) then PX = Py ∝ In×n and

so JR coincides with standard Lasso.

5.3 Extension to Gaussian ensembles

The construction in Eq. (19) uses an orthonormal matrix U as the column basis of X . At first
sight this may appear to be restrictive. However, as we show in the supplementary material, one
can construct Lasso problems using a Gaussian basis Wm which lead to penalty parameter bounds
ratios that converge in distribution to those of the Lasso problem in Eq. (19). For some fixed β∗, VS ,
VSc , ΣS and ΣSc , generate two independent problems: One using Eq. (19), and one according to

ym = Xmβ∗ + wm with Xm =
1√
n
Wm

[
ΣSV

>
S ,ΣScV >Sc

]
wm ∼ N

(
0, σ2m

n
Im×m

)
, (25)

where Wm is an m × n standard Gaussian ensemble. Note that an X so constructed is low rank if
n < p. The latter generative model bears some resemblance to Gaussian models considered in Paul
et al. [9] (Eq. (7)) and Jia and Rohe [6] (Proposition 2). Note that while the problem in Eq. (19) uses
n observations with noise variance σ2, Eq. (25) has m observations with noise variance σ2m/n.
The increased variance is necessary because the matrix Wm has expected column length m, while
columns in U are of length 1. We will think of n as fixed and will let m → ∞. Let the penalty
parameter bounds ratio induced by the problem in Eq. (19) be λu/λl and that induced by Eq. (25)
be λmu /λ

m
l . Then we have the following result.

Theorem 4. Let VS , VSc , ΣS , ΣSc and β∗ be fixed. If the conditions of Lemma 1 hold for X,β∗,
then for m large enough they will hold for Xm, β∗. Furthermore, as m→∞

λmu
λml

d→ λu
λl
, (26)

where the stochasticity on the left is due to Wm, wm and on the right is due to w.

Thus, with respect to the bounds ratio λu/λl, the construction of Eq. (19) can be thought of as the
limiting construction of Gaussian Lasso problems in Eq. (25) for large m. As such, we believe
that Eq. (19) is a useful proxy for less restrictive generative models. Indeed, as the experiment in
Figure 2(b) shows, Theorem 3 can be used to predict the scaling factor for penalty parameter bounds
ratios (i.e.,

(
λ̄u/λ̄l

)
/ (λu/λl)) with good accuracy even for Gaussian ensembles.

6 Conclusions

This paper proposes a new framework for comparing Preconditioned Lasso algorithms to the stan-
dard Lasso which skirts the difficulty of choosing penalty parameters. By eliminating this parameter
from consideration, finite data comparisons can be greatly simplified, avoiding the use of model
selection strategies. To demonstrate the framework’s usefulness, we applied it to a number of Pre-
conditioned Lasso algorithms and in the process confirmed intuitions and revealed fragilities and
mitigation strategies. Additionally, we presented an SVD-based generative model for Lasso prob-
lems that can be thought of as the limit point of a less restrictive Gaussian model. We believe this
work to be a first step towards a comprehensive theory for evaluating and comparing Lasso-style
algorithms and believe that the strategy can be extended to comparing other penalized likelihood
methods on finite datasets.
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