Convex Relaxations for Permutation Problems

Fajwel Fogel Rodolphe Jenatton
C.M.A.P., Ecole Polytechnique, CRITEO, Paris & C.M.A.P,, Ecole Polytechnique,
Palaiseau, France Palaiseau, France

fogel@cmap.polytechnique. fr jenatton@cmap.polytechnique. fr

Francis Bach Alexandre d’Aspremont

INRIA, SIERRA Project-Team & DI, CNRS & D.I., UMR 8548,
Ecole Normale Supérieure, Paris, France. Ecole Normale Supérieure, Paris, France.

francis.bach@ens. fr aspremon@ens. fr
Abstract

Seriation seeks to reconstruct a linear order between variables using unsorted sim-
ilarity information. It has direct applications in archeology and shotgun gene se-
quencing for example. We prove the equivalence between the seriation and the
combinatorial 2-SUM problem (a quadratic minimization problem over permuta-
tions) over a class of similarity matrices. The seriation problem can be solved
exactly by a spectral algorithm in the noiseless case and we produce a convex re-
laxation for the 2-SUM problem to improve the robustness of solutions in a noisy
setting. This relaxation also allows us to impose additional structural constraints
on the solution, to solve semi-supervised seriation problems. We present numeri-
cal experiments on archeological data, Markov chains and gene sequences.

1 Introduction

We focus on optimization problems written over the set of permutations. While the relaxation tech-
niques discussed in what follows are applicable to a much more general setting, most of the paper
is centered on the seriation problem: we are given a similarity matrix between a set of n variables
and assume that the variables can be ordered along a chain, where the similarity between variables
decreases with their distance within this chain. The seriation problem seeks to reconstruct this linear
ordering based on unsorted, possibly noisy, similarity information.

This problem has its roots in archeology [1]. It also has direct applications in e.g. envelope re-
duction algorithms for sparse linear algebra [2], in identifying interval graphs for scheduling [3], or
in shotgun DNA sequencing where a single strand of genetic material is reconstructed from many
cloned shorter reads, i.e. small, fully sequenced sections of DNA [4, 5]. With shotgun gene sequenc-
ing applications in mind, many references focused on the Consecutive Ones Problem (C1P) which
seeks to permute the rows of a binary matrix so that all the ones in each column are contiguous. In
particular, [3] studied further connections to interval graphs and [6] crucially showed that a solution
to C1P can be obtained by solving the seriation problem on the squared data matrix. We refer the
reader to [7, 8, 9] for a much more complete survey of applications.

On the algorithmic front, the seriation problem was shown to be NP-Complete by [10]. Archeo-
logical examples are usually small scale and earlier references such as [1] used greedy techniques
to reorder matrices. Similar techniques were, and are still used to reorder genetic data sets. More
general ordering problems were studied extensively in operations research, mostly in connection
with the Quadratic Assignment Problem (QAP), for which several convex relaxations were studied
in e.g. [11, 12]. Since a matrix is a permutation matrix if and only if it is both orthogonal and



doubly stochastic, much work also focused on producing semidefinite relaxations to orthogonal-
ity constraints [13, 14]. These programs are convex hence tractable but the relaxations are usually
very large and scale poorly. More recently however, [15] produced a spectral algorithm that exactly
solves the seriation problem in a noiseless setting, in results that are very similar to those obtained
on the interlacing of eigenvectors for Sturm Liouville operators. They show that for similarity ma-
trices computed from serial variables (for which a total order exists), the ordering of the second
eigenvector of the Laplacian (a.k.a. the Fiedler vector) matches that of the variables.

Here, we show that the solution of the seriation problem explicitly minimizes a quadratic function.
While this quadratic problem was mentioned explicitly in [15], no connection was made between
the combinatorial and spectral solutions. Our result shows in particular that the 2-SUM minimiza-
tion problem mentioned in [10], and defined below, is polynomially solvable for matrices coming
from serial data. This result allows us to write seriation as a quadratic minimization problem over
permutation matrices and we then produce convex relaxations for this last problem. This relaxation
appears to be more robust to noise than the spectral or combinatorial techniques in a number of
examples. Perhaps more importantly, it allows us to impose additional structural constraints to solve
semi-supervised seriation problems. We also develop a fast algorithm for projecting on the set of
doubly stochastic matrices, which is of independent interest.

The paper is organized as follows. In Section 2, we show a decomposition result for similarity
matrices formed from the C1P problem. This decomposition allows to make the connection be-
tween the seriation and 2-SUM minimization problems on these matrices. In Section 3 we use these
results to write convex relaxations of the seriation problem by relaxing permutation matrices as dou-
bly stochastic matrices in the 2-SUM minimization problem. We also briefly discuss algorithmic
and computational complexity issues. Finally Section 4 discusses some applications and numerical
experiments.

Notation. We write P the set of permutations of {1,...,n}. The notation 7 will refer to a per-
muted vector of {1,...,n} while the notation II (in capital letter) will refer to the correspond-
ing matrix permutation, which is a {0, 1} matrix such that IT;; = 1 iff 7(j) = 4. For a vector
y € R™, we write var(y) its variance, with var(y) = Y., v?/n — (3 i, yi/n)?, we also write
Ylu] € Rv~“*1 the vector (yu,...,¥,)". Here, e; € R™ is i-th Euclidean basis vector and 1 is
the vector of ones. We write S,, the set of symmetric matrices of dimension n, || - ||z denotes the
Frobenius norm and \;(X) the i*" eigenvalue (in increasing order) of X.

2 Seriation & consecutive ones

Given a symmetric, binary matrix A, we will focus on variations of the following 2-SUM combina-
torial minimization problem, studied in e.g. [10], and written
minimize ZZ]’:I Aj(m(i) — m(5))?

subjectto w € P. M

This problem is used for example to reduce the envelope of sparse matrices and is shown in [10,
Th. 2.2] to be NP-Complete. When A has a specific structure, [15] show that a related matrix re-
ordering problem used for seriation can be solved explicitly by a spectral algorithm. However, the
results in [15] do not explicitly link spectral ordering and the optimum of (1). For some instances
of A related to seriation and consecutive one problems, we show below that the spectral ordering
directly minimizes the objective of problem (1). We first focus on binary matrices, then extend our
results to more general unimodal matrices.

2.1 Binary matrices

Let A € S,, and y € R", we focus on a generalization of the 2-SUM minimization problem

minimize  f(yx) 2 Zzlj:l Aij (yw(i) - yTr(j))2 )
subjectto w e P.
The main point of this section is to show that if A is the permutation of a similarity matrix formed
from serial data, then minimizing (2) recovers the correct variable ordering. We first introduce a few
definitions following the terminology in [15].



Definition 2.1 We say that the matrix A € S,, is an R-matrix (or Robinson matrix) iff it is symmetric
and satisfies A; ; < A; j41 and A1 5 < A, j in the lower triangle, where 1 < j < i < n.

Another way to write the R-matrix conditions is to impose A;; < Ay if |i—j| < |k—1] off-diagonal,
i.e. the coefficients of A decrease as we move away from the diagonal (cf. Figure 1).

Y L]

Figure 1: A Q-matrix A (see Def. 2.7), which has unimodal columns (left), its “circular square”
A o AT (see Def. 2.8) which is an R-matrix (center), and a matrix a o a” where a is a unimodal
vector (right).

Definition 2.2 We say that the {0, 1}-matrix A € R™*™ is a P-matrix (or Petrie matrix) iff for each
column of A, the ones form a consecutive sequence.

As in [15], we will say that A is pre-R (resp. pre-P) iff there is a permutation IT such that ILAII” is
an R-matrix (resp. I1A is a P-matrix). We now define CUT matrices as follows.

Definition 2.3 For u,v € [1,n], we call CUT (u,v) the matrix such that

1 ifu<i,j<w
0 otherwise,

CUT (u,v) = {
i.e. CUT (u,v) is symmetric, block diagonal and has one square block equal to one.

The motivation for this definition is that if A is a {0,1} P-matrix, then AAT is a sum of CUT
matrices (with blocks generated by the columns of A). This means that we can start by studying
problem (2) on CUT matrices. We first show that the objective of (2) has a natural interpretation in
this case, as the variance of a subset of ¢ under a uniform probability measure.

Lemma 2.4 Let A = CUT (u,v), then f(y) = 327 ) Aij(yi — y;)* = (v — u+ 1) var(yu .))-

Proof. We can write 3, A;j(yi — y;)* = y” Lay where L = diag(A1)— A is the Laplacian of
matrix A, which is a block matrix equal to (v — u + 1)dy;—;3 — 1 foru <i4,j <v.

This last lemma shows that solving (2) for CUT matrices amounts to finding a subset of y of size
(u— v+ 1) with minimum variance. The next lemma characterizes optimal solutions of problem (2)
for CUT matrices and shows that its solution splits the coefficients of y in two disjoint intervals.

Lemma 2.5 Suppose A = CUT (u,v), and write z = y, the optimal solution to (2). If we call
I = [u,v] and I° its complement in [1,n|, then z; ¢ [min(zr), max(zs)], forall j € I° in other
words, the coefficients in z; and z1- belong to disjoint intervals.

We can use these last results to show that, at least for some vectors y, when A is an R-matrix, then
the solution ¥, to (2) is monotonic.

Proposition 2.6 Suppose C € S,, is a {0,1} pre-R matrix, A = C?, and y; = ai + b for i =
1,...,nand a,b € Rwith a # 0. If I is such that ICTIT (hence TLAIIT ) is an R-matrix, then the
corresponding permutation T solves the combinatorial minimization problem (2) for A = C2.



Proof. Suppose C is {0, lj;ﬂ pre-R, then C? is pre-R and Lemma 5.2 shows that there exists IT
such that TICTIT and TTATIT are R-matrices, so we can write ITTATIT as a sum of CUT matrices.
Furthermore, Lemmas 2.4 and 2.5 show that each CUT term is minimized by a monotonic sequence,
but y; = ai+ b means here that all monotonic subsets of y of a given length have the same (minimal)
variance, attained by IIy. So the corresponding 7 also solves problem (2). m

2.2 Unimodal matrices

Here, based on [6], we first define a generalization of P-matrices called (appropriately enough) Q-
matrices, i.e. matrices with unimodal columns. We now show that minimizing (2) also recovers the
correct ordering for these more general matrix classes.

Definition 2.7 We say that a matrix A € R™*™ is a Q-matrix if and only if each column of A is
unimodal, i.e. its coefficients increase to a maximum, then decrease.

Note that R-matrices are symmetric Q-matrices. We call a matrix A pre-Q iff there is a permutation
IT such that ITA is a Q-matrix. Next, again based on [6], we define the circular product of two
matrices.

Definition 2.8 Given A, BT € R"*™, and a strictly positive weight vector w € R™, their circular
product A o B is defined as (Ao B);; = Y -, wy min{A;z, By, }, i,j = 1,...,n, note that when
A is a symmetric matrix, A o A is also symmetric.

Remark that when A, B are {0, 1} matrices and w = 1, min{A;x, Bi;} = AixBy;, so the circle
product matches the regular matrix product ABT. In the appendix we first prove that when A is a
Q-matrix, then A o A7 is a sum of CUT matrices. This is illustrated in Figure 1.

Lemma 2.9 Let A € R" "™ g Q-matrix, then A o AT is a conic combination of CUT matrices.

This last result also shows that Ao AT is a R-matrix when A is a Q matrix, as a sum of CUT matrices.
These definitions are illustrated in Figure 1. We now recall the central result in [6, Th. 1].

Theorem 2.10 [6, Th. 1] Suppose A € R"*™ is pre-Q, then I1A is a Q-matrix iff TI(A o AT)IIT is
a R-matrix.

We are now ready to show the main result of this section linking permutations which order R-
matrices and solutions to problem (2).

Proposition 2.11 Suppose C € R™"*™ is a pre-Q matrix and y; = ai + b fori = 1,...,n and
a,b € Rwitha # 0. Let A = CoC7, if Il is such that TIAII" is an R-matrix, then the corresponding
permutation T solves the combinatorial minimization problem (2).

Proof. If C € R™*™ is pre-Q, then Lemma 2.9 and Theorem 2.10 show that there is a permutation
IT such that IT1(C o CT)IIT is a sum of CUT matrices (hence a R-matrix). Now as in Propostion 2.6,
all monotonic subsets of y of a given length have the same variance, hence Lemmas 2.4 and 2.5
show that 7 solves problem (2). m

This result shows that if A is pre-R and can be written A = C o CT with C pre-Q, then the
permutation that makes A an R-matrix also solves (2). Since [15] show that sorting the Fiedler
vector also orders A as an R-matrix, Prop. 2.11 gives a polynomial time solution to problem (2)
when A = C o C7 is pre-R with C pre-Q.

3 Convex relaxations for permutation problems

In the sections that follow, we will use the combinatorial results derived above to produce convex
relaxations of optimization problems written over the set of permutation matrices. Recall that the
Fiedler value of a symmetric non negative matrix is the smallest non-zero eigenvalue of its Laplacian.
The Fiedler vector is the corresponding eigenvector. We first recall the main result from [15] which
shows how to reorder pre-R matrices in a noise free setting.



Proposition 3.1 [15, Th.3.3] Suppose A € S,, is a pre-R-matrix, with a simple Fiedler value whose
Fiedler vector v has no repeated values. Suppose that 11 € P is such that the permuted Fielder
vector Iv is monotonic, then TTATIT is an R-matrix.

The results in [15] provide a polynomial time solution to the R-matrix ordering problem in a noise-
less setting. While [15] also show how to handle cases where the Fiedler vector is degenerate, these
scenarios are highly unlikely to arise in settings where observations on A are noisy and we do not
discuss these cases here.

The results in the previous section made the connection between the spectral ordering in [15] and
problem (2). In what follows, we will use (2) to produce convex relaxations to matrix ordering
problems in a noisy setting. We also show in Section 3 how to incorporate a priori knowledge in
the optimization problem. Numerical experiments in Section 4 show that semi-supervised seriation
solutions are sometimes significantly more robust to noise than the spectral solutions ordered from
the Fiedler vector.

Permutations and doubly stochastic matrices. We write D,, the set of doubly stochastic matrices
in R"*" ie. D, = {X € R"*" : X > 0,X1 = 1,X71 = 1}. Note that D,, is convex and
polyhedral. Classical results show that the set of doubly stochastic matrices is the convex hull of the
set of permutation matrices. We also have P = D N O, i.e. a matrix is a permutation matrix if and
only if it is both doubly stochastic and orthogonal. This means that we can directly write a convex
relaxation to the combinatorial problem (2) by replacing P with its convex hull D,,, to get

minimize ¢TTIT L 4Ilg

subject to 11 € D, @)

where ¢ = (1,...,n). By symmetry, if a vector Iy minimizes (3), then the reverse vector also
minimizes (3). This often has a significant negative impact on the quality of the relaxation, and
we add the linear constraint e TIg + 1 < eI'Tlg to break symmetries, which means that we always
pick monotonically increasing solutions. Because the Laplacian L 4 is always positive semidefinite,
problem (3) is a convex quadratic program in the variable II and can be solved efficiently. To
provide a solution to the combinatorial problem (2), we then generate permutations from the doubly
stochastic optimal solution to (3) (we will describe an efficient procedure to do so in §3).

The results of Section 2 show that the optimal solution to (2) also solves the seriation problem in
the noiseless setting when the matrix A is of the form C' o CT with C' a Q-matrix and ¥ is an affine
transform of the vector (1,...,n). These results also hold empirically for small perturbations of the
vector y and to improve robustness to noisy observations of A, we can average several values of the
objective of (3) over these perturbations, solving

minimize Tr(YTTITLAIIY)/p

subjectto efTlg+1 < elTlg, 111 =1, 071 =1, 1 > 0, “)

in the variable II € R"*", where Y € R™*? is a matrix whose columns are small perturbations
of the vector ¢ = (1,...,7n)T. Note that the objective of (4) can be rewritten in vector format as
Vec(INT(YYT @ La)Vec(I) /p. Solving (4) is roughly p times faster than individually solving p
versions of (3).

Regularized convex relaxation. As the set of permutation matrices P is the intersection of the set
of doubly stochastic matrices D and the set of orthogonal matrices O, i.e. P = D N O we can add
a penalty to the objective of the convex relaxed problem (4) to force the solution to get closer to the
set of orthogonal matrices.

As a doubly stochastic matrix of Frobenius norm +/n is necessarily orthogonal, we would ideally
like to solve

minimize L Tr(YTTITLATLY) — &[TI|J5.

subjectto el Tlg+1 < elllg, 111 =1,1171 =1, 11 > 0,

with o large enough to guarantee that the global solution is indeed a permutation. However, this
problem is not convex for any ;> 0 since its Hessian is not positive semi-definite (the Hessian
YYT ® Lo — pul ® I is never positive semidefinite when o > 0 since the first eigenvalue of L 4
is 0). Instead, we propose a slightly modified version of (5), which has the same objective function

(&)



up to a constant, and is convex for some values of . Remember that the Laplacian matrix L 4 is
always positive semidefinite with at least one eigenvalue equal to zero (strictly one if the graph is
connected). Let P =1 — %LllT.

Proposition 3.2 The optimization problem
minimize I%’I&'(YTHTLAHY) - %HPHH%7
subject to efTlg+1 < elTlg, 1M1 =1, 071 =1, > 0,

is equivalent to problem (5) and their objectives differ by a constant. When p < \o(La)M\ (YY'T),
this problem is convex.

(6)

Incorporating structural contraints. The QP relaxation allows us to add convex structural con-
straints in the problem. For instance, in archeological applications, one may specify that obser-
vation ¢ must appear before observation j, i.e. m(i) < m(j). In gene sequencing applications,
one may want to constrain the distance between two elements (e.g. mate reads), which would read
a < 7(i) — w(j) < b and introduce an affine inequality on the variable II in the QP relaxation
of the form a < el Tlg — eJTHg < b. Linear constraints could also be extracted from a reference
gene sequence. More generally, we can rewrite problem (6) with n. additional linear constraints as
follows
minimize %Tr(YTHTLAHY) — %HPHH% 7
subjectto DTIlg+6 <0,1I11=1,1171=1,11 >0,
where D is a matrix of size n X n. and  is a vector of size n.. The first column of D is equal to
e; — e, and ;7 = 1 (to break symmetry).

Sampling permutations from doubly stochastic matrices. This procedure is based on the fact
that a permutation can be defined from a doubly stochastic matrix D by the order induced on a
monotonic vector. Suppose we generate a monotonic random vector v and compute Dv. To each v,
we can associate a permutation II such that IIDv is monotonically increasing. If D is a permuta-
tion matrix, then the permutation II generated by this procedure will be constant, if D is a doubly
stochastic matrix but not a permutation, it might fluctuate. Starting from a solution D to problem (6),
we can use this procedure to generate many permutation matrices IT and we pick the one with lowest
cost y ' TI” L 4TIy in the combinatorial problem (2). We could also project II on permutations using
the Hungarian algorithm, but this proved more costly and less effective.

Orthogonal relaxation. Recall that P = D N O, i.e. a matrix is a permutation matrix if and only
if it is both doubly stochastic and orthogonal. So far, we have relaxed the orthogonality constraint to
replace it by a penalty on the Frobenius norm. Semidefinite relaxations to orthogonality constraints
have been developed in e.g. [12, 13, 14], with excellent approximation bounds, and these could
provide alternative relaxation schemes. However, these relaxations form semidefinite programs of
dimension O(n?) (hence have O(n*) variables) which are out of reach numerically for most of the
problems considered here.

Algorithms. The convex relaxation in (7) is a quadratic program in the variable IT € R™*™, which
has dimension n2. For reasonable values of n (around a few hundreds), interior point solvers such
as MOSEK [17] solve this problem very efficiently. Furthermore, most pre-R matrices formed by
squaring pre-Q matrices are very sparse, which considerably speeds up linear algebra. However,
first-order methods remain the only alternative beyond a certain scale. We quickly discuss the im-
plementation of two classes of methods: the Frank-Wolfe (a.k.a. conditional gradient) algorithm,
and accelerated gradient methods.

Solving (7) using the conditional gradient algorithm in [18] requires minimizing an affine function
over the set of doubly stochastic matrices at each iteration. This amounts to solving a classical
transportation (or matching) problem for which very efficient solvers exist [19].

On the other hand, solving (7) using accelerated gradient algorithms requires solving a projection
step on doubly stochastic matrices at each iteration [20]. Here too, exploiting structure significantly
improves the complexity of these steps. Given some matrix Il, the projection problem is written

minimize 3 ||IT — Io[|%

subjectto DTTIg+6 <0,111=1,11T1=1,11>0 ®)



in the variable IT € R™*", with parameter g € R"™. The dual is written

maximize —3|lz17 + 1y” + Dzg” — Z||% — Tr(Z"1l,)
+27 (Il — 1) +y" (II§1 — 1) + 2(D"Ilog + 0) )
subjectto 2z >0,2 >0

in the variables Z € R™" "™, x.y € R™ and z € R™. The dual is written over decoupled linear
constraints in (z, Z) (with z and y are unconstrained). Each subproblem is equivalent to computing
a conjugate norm and can be solved in closed form. In particular, the matrix Z is updated at each
iteration by Z = max{0, 217 + 1y + Dzg” — TIy}. Warm-starting provides a significant speed-
up. This means that problem (9) can be solved very efficiently by block-coordinate ascent, whose
convergence is guaranteed in this setting [21], and a solution to (8) can be reconstructed from the
optimum in (9).

4 Applications & numerical experiments

Archeology. We reorder the rows of the Hodson’s Munsingen dataset (as provided by [22] and
manually ordered by [6]), to date 59 graves from 70 recovered artifact types (graves from similar
periods containing similar artifacts). The results are reported in Table 1 (and in the appendix). We
use a fraction of the pairwise orders in [6] to solve the semi-supervised version.

Sol. in [6] | Spectral QP Reg QP Reg +0.1% | QP Reg + 47.5%
Kendall 7 | 1.004+0.00 | 0.7540.00 0.73+0.22 0.7610.16 0.97+0.01
Spearman p | 1.00£0.00 | 0.90£0.00 0.88+0.19 0.91+£0.16 1.00£0.00
Comb. Obj. | 385204+0 | 38903+0 | 41810+£13960 | 43457423004 37602+775
# R-constr. 1556+0 1802+0 20214484 2050+747 1545+43

Table 1: Performance metrics (median and stdev over 100 runs of the QP relaxation, for Kendall’s 7,
Spearman’s p ranking correlations (large values are good), the objective value in (2), and the num-
ber of R-matrix monotonicity constraint violations (small values are good), comparing Kendall’s
original solution with that of the Fiedler vector, the seriation QP in (6) and the semi-supervised
seriation QP in (7) with 0.1% and 47.5% pairwise ordering constraints specified. Note that the
semi-supervised solution actually improves on both Kendall’s manual solution and on the spectral
ordering.

Markov chains. Here, we observe many disordered samples from a Markov chain. The mutual
information matrix of these variables must be decreasing with |¢ — j| when ordered according to
the true generating Markov chain [23, Th.2.8.1], hence the mutual information matrix of these
variables is a pre-R-matrix. We can thus recover the order of the Markov chain by solving the
seriation problem on this matrix. In the following example, we try to recover the order of a Gaussian
Markov chain written X; 1 = b;X; + ¢; with ¢; ~ N(0,0?). The results are presented in Table 2
on 30 variables. We test performance in a noise free setting where we observe the randomly ordered
model covariance, in a noisy setting with enough samples (6000) to ensure that the spectral solution
stays in a perturbative regime, and finally using much fewer samples (60) so the spectral perturbation
condition fails.

Gene sequencing. In next generation shotgun gene sequencing experiments, genes are cloned about
ten to a hundred times before being decomposed into very small subsequences called “reads”, each
fifty to a few hundreds base pairs long. Current machines can only accurately sequence these small
reads, which must then be reordered by “assembly” algorithms, using the overlaps between reads.
We generate artificial sequencing data by (uniformly) sampling reads from chromosome 22 of the
human genome from NCBI, then store k-mer hit versus read in a binary matrix (a k-mer is a fixed
sequence of k base pairs). If the reads are ordered correctly, this matrix should be C1P, hence
we solve the C1P problem on the {0, 1}-matrix whose rows correspond to k-mers hits for each
read, i.e. the element (i, j) of the matrix is equal to one if k-mer j is included in read i. This
matrix is extremely sparse, as it is approximately band-diagonal with roughly constant degree when
reordered appropriately, and computing the Fiedler vector can be done with complexity O(n logn),
as it amounts to computing the second largest eigenvector of \,,(L)I — L, where L is the Laplacian



No noise | Noise within spectral gap | Large noise
True | 1.0040.00 1.00+0.00 1.0040.00
Spectral | 1.00+0.00 0.86+0.14 0.41+0.25
QP Reg | 0.50+0.34 0.58+0.31 0.45+0.27
QP +0.2% | 0.65+0.29 0.40+0.26 0.60+0.27
QP +4.6% | 0.71+0.08 0.70+0.07 0.68+0.08
QP +54.3% | 0.98+0.01 0.97+0.01 0.97+0.02

Table 2: Kendall’s 7 between the true Markov chain ordering, the Fiedler vector, the seriation QP
in (6) and the semi-supervised seriation QP in (7) with varying numbers of pairwise orders specified.
We observe the (randomly ordered) model covariance matrix (no noise), the sample covariance
matrix with enough samples so the error is smaller than half of the spectral gap, then a sample
covariance computed using much fewer samples so the spectral perturbation condition fails.

of the matrix. In our experiments, computing the Fiedler vector of a million base pairs sequence
takes less than a minute using MATLAB’s eigs on a standard desktop machine.

In practice, besides sequencing errors (handled relatively well by the high coverage of the reads),
there are often repeats in long genomes. If the repeats are longer than the k-mers, the C1P assump-
tion is violated and the order given by the Fiedler vector is not reliable anymore. On the other hand,
handling the repeats is possible using the information given by mate reads, i.e. reads that are known
to be separated by a given number of base pairs in the original genome. This structural knowledge
can be incorporated into the relaxation (7). While our algorithm for solving (7) only scales up to
a few thousands base pairs on a regular desktop, it can be used to solve the sequencing problem
hierarchically, i.e. to refine the spectral solution. Graph connectivity issues can be solved directly
using spectral information.

/

Figure 2: We plot the reads X reads matrix measuring the number of common k-mers between
read pairs, reordered according to the spectral ordering on two regions (two plots on the left), then
the Fiedler and Fiedler+QP read orderings versus true ordering (two plots on the right). The semi-
supervised solution contains much fewer misplaced reads.

In Figure 2, the two first plots show the result of spectral ordering on simulated reads from human
chromosome 22. The full R matrix formed by squaring the reads x kmers matrix is too large to
be plotted in MATLAB and we zoom in on two diagonal block submatrices. In the first one, the
reordering is good and the matrix has very low bandwidth, the corresponding gene segment (or
contig.) is well reconstructed. In the second the reordering is less reliable, and the bandwidth
is larger, the reconstructed gene segment contains errors. The last two plots show recovered read
position versus true read position for the Fiedler vector and the Fiedler vector followed by semi-
supervised seriation, where the QP relaxation is applied to the reads assembled by the spectral
solution, on 250 000 reads generated in our experiments. We see that the number of misplaced reads
significantly decreases in the semi-supervised seriation solution.
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