
RNADE: The real-valued neural autoregressive
density-estimator

Supplementary material

Benigno Uria and Iain Murray
School of Informatics

University of Edinburgh
{b.uria,i.murray}@ed.ac.uk

Hugo Larochelle
Département d’informatique

Université de Sherbrooke
hugo.larochelle@usherbrooke.ca

In this document we provide pseudo-code for the calculation of densities and learning gradi-
ents. No new material is presented. A Python implementation of RNADE is available from
http://www.benignouria.com/en/research/RNADE.

1 Density estimation

In Algorithm 1 we detail the pseudocode for calculating the density of a datapoint under an RNADE
with mixture of Gaussian conditionals. The model has parameters: ρ ∈ RD,W ∈ RH×D−1, c ∈ RH ,
bα ∈ RD×K , V α ∈ RD×H×K , bµ ∈ RD×K , V µ ∈ RD×H×K , bσ ∈ RD×K , V σ ∈ RD×H×K

Algorithm 1 Computation of p(x)
a← c
p(x)← 1
for d from 1 to D do
ψd ← ρda . Rescaling factors
hd ← ψd 1ψd>0 . Rectified linear units
zαd ← V α

d
>hd + b

α
d

zµd ← V µ
d
>
hd + b

µ
d

zσd ← V σ
d
>hd + b

σ
d

αd ← softmax(zαd ) . Enforce constraints
µd ← zµd
σd ← exp(zσd )
p(x)← p(x)pMoG(xd;αd,µd,σd) . pMoG is the density of a mixture of Gaussians
a← a+ xdW ·,d . Activations are calculated recursively, xd is a scalar

end for
return p(x)

2 Learning gradients

Training of an RNADE model can be done using a gradient ascent algorithm on the loglikelihood
of the model given the training data. Gradients can be calculated using automatic differentiation
libraries (e.g. Theano [1]). However we found our manual implementation to work faster in practice,
possibly due to our recomputation of the a terms in the second for loop in Algorithm 2, which is
more cache-friendly than storing them during the first loop.

Here we show the derivation of the gradients of each paramater of a NADE model with MoG
conditionals. Following [2], we define φi(xd |x<d) as the density of xd under the i-th component of

1

http://www.benignouria.com/en/research/RNADE


the conditional:

φi(xd |x<d) =
1√

2πσd,i
exp

{
−
(xd − µd,i)2

2σ2
d,i

}
, (1)

and πi(xd |x<d) as the “responsability” of the i-th component for xd:

πi(xd |x<d) =
αd,iφi(xd |x<d)∑K
j=1αd,jφj(xd |x<d)

. (2)

It is easy to find just by taking their derivatives that:
∂p(x)

∂zαd,i
= πi(xd |x<d)−αd,i (3)

∂p(x)

∂zµd,i
= πi(xd |x<d)

xd − µd,i
σ2
d,i

(4)

∂p(x)

∂zσd,i
= πi(xd |x<d)

{
(xd − µd,i)2

σ2
d,i

− 1

}
(5)

Using the chain rule we can calculate the derivative of the parameters of the output layer parameters:
∂p(x)

∂V α
d

=
∂p(x)

∂zαd,i

∂zαd,i
V α
d

=
∂p(x)

∂zαd,i
h (6)

∂p(x)

∂bαd
=
∂p(x)

∂zαd,i

∂zαd,i
bαd

=
∂p(x)

∂zαd,i
(7)

∂p(x)

∂V µ
d

=
∂p(x)

∂zµd,i

∂zαd,i
V µ
d

=
∂p(x)

∂zµd,i
h (8)

∂p(x)

∂bµd
=
∂p(x)

∂zµd,i

∂zαd,i
bµd

=
∂p(x)

∂zµd,i
(9)

∂p(x)

∂V σ
d

=
∂p(x)

∂zσd,i

∂zαd,i
V σ
d

=
∂p(x)

∂zσd,i
h (10)

∂p(x)

∂bσd
=
∂p(x)

∂zσd,i

∂zαd,i
bσd

=
∂p(x)

∂zσd,i
(11)

By “backpropagating” the we can calculate the partial derivatives with respect to the output of the
hidden units:

∂p(x)

∂hd
=
∂p(x)

∂zαd,i

∂zαd,i
∂hd

+
∂p(x)

∂zµd,i

∂zµd,i
∂hd

+
∂p(x)

∂zσd,i

∂zσd,i
∂hd

(12)

=
∂p(x)

∂zαd,i
V α
d +

∂p(x)

∂zµd,i
V µ
d +

∂p(x)

∂zσd,i
V σ
d (13)

and calculate the partial derivatives with respect to all other parameters in RNADE:
∂p(x)

∂ψd
=
∂p(x)

∂hd
1ψd>0 (14)

∂p(x)

∂ρd
=

∑
j

∂p(x)

∂ψd,j
ad,j (15)

∂p(x)

∂ad
=
∂p(x)

∂ad+1
+
∂p(x)

∂hd
ρd1ψd>0 (16)

∂p(x)

∂W ·,d
=
∂p(x)

∂ad
xd (17)

∂p(x)

∂c
=
∂p(x)

∂a1
(18)

2



Note that gradients are calculated recursively, due to (16), starting at d = D and progressing down to
d = 1.

Algorithm 2 Computation of the learning gradients for a datapoint x
a← c
for d from 1 to D do . Compute the activation of the last dimension
a← a+ xdW ·,d

end for
for d from D to 1 do . Backpropagate errors
ψ ← ρda . Rescaling factors
h← ψ 1ψ>0 . Rectified linear units
zα ← V α

d
>h+ bαd

zµ ← V µ
d
>
h+ bµd

zσ ← V σ
d
>hd + b

σ
d

α← softmax(zα) . Enforce constraints
µ← zµ

σ ← exp(zσ)

φ← 1
2
(µ−xd)

2

σ2 − logσ − 1
2 log(2π) . Calculate gradients

π ← αφ∑K
j=1 αjφj

∂zα ← π −α
∂V α

d ← ∂zαh
∂bαd ← ∂zα

∂zµ ← π(xd − µ)/σ2

∂zµ ← ∂zµ ∗ σ . Move tighter components slower, allows higher learning rates
∂V µ

d ← ∂zµh
∂bµd ← ∂zµ

∂zσ ← π{(xd − µ)2/σ2 − 1}
∂V σ

d ← ∂zσh
∂bσd ← ∂zσ

∂h← ∂zαV α
d + ∂zµV µ

d + ∂zσV σ
d

∂ψ ← ∂h1ψ>0 . Second factor: indicator function with condition ψ > 0
∂ρd ←

∑
j ∂ψjaj

∂a← ∂a+ ∂ψρ
∂W ·,d ← ∂axd
if d = 1 then

∂c← ∂a
else
a← a− xdW ·,d

end if
end for

return ∂ρ, ∂W , ∂c, ∂bα, ∂V α, ∂bµ, ∂V µ, ∂bσ , ∂V σ

References
[1] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, Guillaume Desjardins,

Joseph Turian, David Warde-Farley, and Yoshua Bengio. Theano: a CPU and GPU math expression
compiler. In Proceedings of the Python for Scientific Computing Conference (SciPy), June 2010. Oral
Presentation.

[2] C. M. Bishop. Mixture density networks. Technical Report NCRG 4288, Neural Computing Research
Group, Aston University, Birmingham, 1994.

3


	Density estimation
	Learning gradients

