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Abstract

We provide further details for the NIPS 2013 submission “Approximate Inference in Continuous
Determinantal Processes”. First, we elaborate upon the existing DPP samplers for the discrete and
finite Ω case. We then provide a list of standard cases when our (approximate) DPP sampling scheme
can be performed. We derive the low-rank approximation and Gibbs sampling schemes for a few
standard cases along with the details of empirical analysis of the low-rank approximations. For our
mixture of Gaussian example application, we detail the model specification and Gibbs sampler and
contrast with a standard (non-repulsive) mixture model. Finally, we provide additional details on the
settings used in our experiments and present some additional figures of results.

A DPP, k-DPP, and dual DPP sampling

For Ω discrete and finite with cardinality N , we provide the algorithms for sampling from DPPs, k-DPPs, and DPPs
via the dual representation in Algorithms 1, 2, 3. In the k-DPP sampler, ei denotes the ith elementary symmetric
polynomial. For Ω continuous, we provide the continuous k-DPP dual sampler in Algorithm 4. Note that the only
difference relative to the DPP dual sampler is in the for loop of Phase 1. The revision exactly parallels the story for the
discrete Ω case.

Algorithm 1 DPP-Sample(L)

Input: kernel matrix L of rank D
PHASE 1
{(vn, λn)}Dn=1 ← eigendecomposition of L
J ← ∅
for n = 1, . . . , D do
J ← J ∪ {n} with prob. λn

λn+1

V ← {vn}n∈J

PHASE 2
Y ← ∅
while |V | > 0 do

Select i from Ω with Pr(i) = 1
|V |
∑

v∈V (v>ei)
2

Y ← Y ∪ {i}
V ← V⊥ei , an orthonormal basis for the subspace of
V orthogonal to ei

Output: Y
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Algorithm 2 k-DPP-Sample(L)
Input: kernel matrix L of rank D, size k
PHASE 1
{(vn, λn)}Dn=1 ← eigendecomposition of L
J ← ∅
for n = D, . . . , 1 do

if u ∼ U [0, 1] < λn
en−1
k−1

enk
then

J ← J ∪ {n}
k ← k − 1
if k = 0 then

break
V ← {vn}n∈J

PHASE 2 {same as Algorithm 1}

Algorithm 3 Dual-DPP-Sample(B)

Input: B ∈ CD×N such that L = B∗B.
PHASE 1
C ← BB∗

{(v̂n, λn)}Dn=1 ← eigendecompistion of C
J ← ∅
for n = 1, . . . , D do
J ← J ∪ {n} with prob. λn

λn+1

V̂ ←
{

v̂n√
v̂∗Cv̂

}
n∈J

PHASE 2
Y ← ∅
while |V̂ | > 0 do

Select i from Ω with Pr(i) = 1
|V̂ |

∑
v̂∈V̂ (v̂∗Bi)

2

Y ← Y ∪ {i}
Let v̂0 be a vector in V̂ with B∗i v̂0 6= 0

Update V̂ ←
{
v̂ − v̂∗Bi

v̂∗0Bi
v̂0 | v̂ ∈ V̂ − {v̂0}

}
Orthonormalize V̂ w.r.t. 〈v̂1, v̂2〉 = v̂∗1Cv̂2

Output: Y

Algorithm 4 Dual sampler for a low-rank continuous k- DPP

Input: L̃(x,y) = B(x)∗B(y),
a rank-D DPP kernel

PHASE 1
Compute C =

∫
Ω
B(x)B(x)∗dx

{(vn, λn)}Dn=1 ← eigendecomposition of C
for n = D, . . . , 1 do

if u ∼ U [0, 1] < λn
en−1
k−1

enk
then

J ← J ∪ {n}
k ← k − 1
if k = 0 then

break
V ← { vk√

v∗kCvk
}k∈J

PHASE 2
X ← ∅
while |V | > 0 do

Sample x̂ from density f(x) = 1
|V |
∑

v∈V |v∗B(x)|2
X ← X ∪ {x̂}
Let v0 be a vector in V such that v∗0B(x̂) 6= 0

Update V ← {v − v∗B(x̂)
v∗0B(x̂)v0 | v ∈ V − {v0}}

Orthonormalize V w.r.t. 〈v1,v2〉 = v∗1Cv2

Output: X

B Derivation of the Gibbs sampling scheme

For a k-DPP, the probability of choosing a specific k point configuration is given by

p({xj}kj=1) ∝ det(L{xj}kj=1
). (1)

Denoting J\k = {xj}j 6=k and M\k = L−1
J\k

, the Schur’s determinantal identity formula yields

det(L{xj}kj=1
) = det(LJ\k)

L(xk,xk)−
∑
i,j 6=k

M
\k
ij L(xi,xk)L(xj ,xk)

 . (2)
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Conditioning on the inclusion of the other k − 1 points, and suppressing constants not dependent on xk we can now
write the conditional distribution as

p(xk|{xj}j 6=k) ∝ L(xk,xk)−
∑
i,j 6=k

M
\k
ij L(xi,xk)L(xj ,xk), (3)

Normalizing and integrating this density yields a full conditional CDF given by

F (x̂l|{xj}j 6=k) =

∫ x̂l
−∞ L(xl,xl)−

∑
i,j 6=kM

\k
ij L(xi,xl)L(xj ,xl)1{xl∈Ω}dxl∫

Ω
L(x,x)−∑i,j 6=kM

\k
ij L(xi,x)L(xj ,x)dx

. (4)

C Overview of analytically tractable kernel types under RFF or Nyström

Sampling from a DPP with kernel L using Algorithm 1 of the main paper requires that (i) we can compute a low-rank
decomposition L̃ of L and (ii) the terms C and f(x) are computable. In the main paper, we consider a decomposition
of L(x,y) = q(x)k(x,y)q(y) where q(x) is a quality function and k(x,y) a similarity kernel. We then use either
random Fourier features (RFF) or the Nyström method to approximate L with L̃. In general, we can consider RFF
approximations whenever the spectral density of q(x) and characteristic function of k(x,y) are known. For Nyström,
the statement is not quite as clear. Instead, we provide a list of standard choices and their associated feasibilities for
DPP sampling in Table 1. The list is by no means exhaustive, but is simply to provide some insight. We also elaborate
upon some standard kernels in the following sections.

Table 1: Examination of the feasibility of DPP sampling using Nyström and RFF approximations for a few standard
examples of quality functions q and similarity kernels k.

q(x) k(x, y) Method

Gaussian, Laplacian Gaussian, Laplacian Nyström X
RFF X

Gibbs X

Gaussian, Laplacian Cauchy Nyström ?
RFF X

Gibbs ?

Cauchy Gaussian, Laplacian Nyström ?
RFF X

Gibbs ?

Cauchy Cauchy Nyström ?
RFF X

Gibbs ?

Gaussian, Laplacian Linear, Polynomial Nyström X
RFF X

Gibbs X

Example: Sampling from RFF-approximated DPP with Gaussian quality

Assuming q(x) = exp
{
− 1

2 (x− a)>Γ−1(x− a)
}

and k(x,y) = k(x− y) is given by a translation-invariant kernel
with known characteristic function. We start by sampling ω1, . . . ,ωD ∼ F(k(x − y)). Note, for example, that
the Fourier transform of a Gaussian kernel is a Gaussian while that of the Laplacian is Cauchy and vice versa. The
approximated kernel is given by

L̃RFF = q(x)

[
1

D

D∑
j=1

exp iωj
>(x− y)

]
q(y) where q(x) = exp

{
−1

2
(x− a)>Γ−1(x− a)

}
. (5)
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The elements of the dual matrix CRFF are then given by

CRFFjk =
1

D

∫
Rd

exp{−(x− a)>Γ−1(x− a) + i(ωj − ωk)>x}dx. (6)

Letting R∆R> be the spectral decompostition of Γ−1 with ∆ = diag( 1
δ21
, . . . , 1

δ2D
), ω̃j = R>ωj , ã = R>a and

y = R>x, one can straightforwardly derive:

CRFFjk =
1

D

d∏
l=1

[√
πδ2
l exp

{
−δ

2
l (ω̃jl − ω̃jk)2

4

}
+ iãl(ω̃jl − ω̃jk)

]
. (7)

Likewise,

FRFF (y) =
1

D|V |
∑
v∈V

D∑
j=1

D∑
k=1

v(j)v(k)∗
d∏
l=1

g(ω̃jl, ω̃kl, ãl, δl, yl), (8)

where

g(ω̃jl, ω̃kl, ãl, δl, yl) =
1

2

√
πδ2
l exp

{
−δ

2
l (ω̃jl − ω̃kl)

2

4

}
+iãl

(
ω̃jl − ω̃kl)(1− erf

(
i
√
δ2
l (ω̃jl − ω̃kl)

2
− yl − ãl

2
√
δ2
l

))
.

Once samples y are obtained, we transform back into our original coordinate system by letting x = Ry.

Example: Sampling from Nyström-approximated DPP with Gaussian quality and similarity

Assuming q(x) = exp
{
− 1

2 (x− a)>Γ−1(x− a)
}

and k(x,y) = exp
{
− 1

2 (x− y)>Σ−1(x− y)
}

, the approximated
kernel is given by

L̃Nys(x,y) =

D∑
j=1

D∑
k=1

W 2
jkq(x)q(zj) exp

{
−1

2
(x− zj)

>Σ−1(x− zj)−
1

2
(y − zk)>Σ−1(y − zk)

}
q(zk)q(y).

(9)

Let Σ−1 = QΛQ> with Λ = diag( 1
σ2
1
, . . . , 1

σ2
D

), Γ−1 = R∆R> with ∆ = diag( 1
δ21
, . . . , 1

δ2D
) and (Σ−1 + Γ−1) =

TΘT> with Θ = diag( 1
θ21
, . . . , 1

θ2D
). Furthermore, let z̃j = T>(Γ−1 + Σ−1)Σ−1zj , ã = T>(Γ−1 + Σ−1)Γ−1a and

y = T>x. Then, the elements of the dual matrix CNys are then given by

CNysjk =

D∑
m−1

D∑
n=1

WjnWmkAmn

d∏
l=1

√
πθ2

l . (10)

where

Amn = exp

{
− 1

2
(zn − a)>Γ−1(zn − a)− 1

2
(zm − a)>Γ−1(zm − a)− 1

2
z>mΣ−1zm −

1

2
z>nΣ−1zn

+(Γ−1a + Σ−1 (zm + zn)

2
)>(Σ−1 + Γ−1)−1(Γ−1a + Σ−1 (zm + zn)

2
)− a>Γ−1a

}
.

Finally, the CDF of f(y) is given by

FNys(y) =
1

|V |
∑
v∈V

D∑
j,k=1

wj(v)wk(v)Ajk

d∏
l=1

√
πθ2

l

2

[
1− erf

(
2ãl + z̃jl + z̃kl − 2yl

2
√
θ2
l

)]
. (11)

Once samples y are obtained, we transform back to our original coordinate system by letting x = Ty.
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Example: Sampling from Nyström-approximated DPP with Gaussian quality and polynomial similarity

For simplicity of exposition, we consider a linear similarity kernel and d = 1, although the result can straightforwardly
be extended to higher order polynomials and dimensions d. Assuming q(x) = exp {− x2

2ρ2 } and k(x, y) = xy, the
approximated kernel is given by

L̃Nys(x, y) =

D∑
j=1

D∑
k=1

W 2
jk exp

{
−

(x2 + z2
j + z2

k + y2)

2ρ2

}
(xzj)(yzk). (12)

The elements of the dual matrix CNys are then given by

CNysjk =

D∑
m−1

D∑
n=1

WjnWmk
zmzn

2
exp{−z

2
m + z2

n

2ρ2
}√πρ3. (13)

The CDF is given by

FNys(y) =
1

|V |
∑
v∈V

D∑
j,k=1

wj(v)wk(v)
zjzk

2
exp{−

z2
j + z2

k

2ρ2
}
[√

πρ3

4

[
erf
(
y√
r

)
+ 1

]
− 2ye

− y
2

ρ2

]
. (14)

Example: Gibbs sampling with Gaussian quality and similarity

For generic kernels L(x,y) = q(x)k(x,y)q(y), we recall that the CDF of xk given {xj}j 6=k for a k-DPP is given by

F (x̂k|{xj}j 6=k) =

∫ x̂k
−∞ q(xk)2(1−∑i,j 6=kMijq(xi)q(xj)k(xk,xi)k(xj ,xk))1{xk∈Ω}dxk∫

Ω
q(x)2(1−∑i,j 6=kMijq(xi)q(xj)k(x,xi)k(xj ,x))dx

. (15)

Assuming q(x) = exp
{
− 1

2 (x− a)>Γ−1(x− a)
}

and k(x,y) = exp
{
− 1

2 (x− y)>Σ−1(x− y)
}

, the integrals
above can be solved to yield

F (x̂k|{xj}j 6=k) =

∏d
l=1

[√
πδ2l
2

[
1− erf

(
2ãl−2xkl

2
√
δ2l

)]
−∑i,j 6=kMijAij

√
πθ2l
2

[
1− erf

(
2ãl+z̃il+z̃jl−2xkl

2
√
θ2l

)]]
∏d
l=1

[√
πδ2
l −

∑
i,j 6=kWijAij

√
πθ2

l

] .

(16)
where ã, z̃, δl, Aij and θl are as given in the previous examples.

D Details of the empirical analysis

To evaluate the performance of the RFF and Nyström approximations, we compute the total variational distance

‖PL − PL̃‖1 =
1

2

∑
X

|PL(X)− PL̃(X)| , (17)

where PL(X) denotes the probability of set X under a DPP with kernel L, as given by Eq. (1). One can show that
the normalized density is PL(X) = det(LX)∏∞

n=1(1+λn(L)) , which requires the eigenvalues of the kernel L. Thus, we restrict
our analysis to the case where the quality function and similarity kernel are Gaussians with isotropic covariances
Γ = diag(ρ2, . . . , ρ2) and Σ = diag(σ2, . . . , σ2), respectively, since the eigenvalues of the kernel is easily computable
in this setting [1]. In this case, letting n = (n1, . . . , nd) with nj ∈ Z+, the eigenvalues (indexed by multi-index n) are
given by:

λn =

d∏
j=1

√
πρ2

c1
2 + c2

(
1

c1
c2

+ 1

)nj−1

c1 = (β2 + 1) c2 =
ρ2

σ2
. (18)

where β = (1 + 2ρ2

σ2 )
1
4 . Since the eigenvalues are known in closed form, we can estimate the total variation distance by

sampling sets X from the approximated DPP and calculating the absolute difference between PL(X) and PL̃(X).
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E Empirical analysis of Gibbs sampling

To assess the mixing rate of the Gibbs sampling scheme, we run the Gibbs sampler to sample points from a 1-dimensional
15-DPP with uniform quality and Gaussian similarity kernels in the space Ω = [− 1

2 ,
1
2 ]. We perform this sampling

under two values of repulsion parameter, σ2 = 0.01 (high repulsion) and σ2 = 0.001 (low repulsion). We run 100
Gibbs chains, each of length 3000, discard the first 1500 samples as burn-in and thin every 15 iterations which we call
cycles. Each cycle represents a full resampling of the set, having cycled through the past 15 points. We compare the
results to i.i.d. sampling of Nyström-approximated DPP as a baseline.

Figure 1 (a)-(b) shows a visualization of the 15 points of the 15-DPPs. Figure 1 (c)-(d) shows the plots of the
Nyström-approximated DPP samples. As an ordered set, we see qualitatively that the locations of the points are highly
correlated from cycle to cycle in the high repulsion Gibbs samples while less correlation is observed in the low-repulsion
counterpart. In the Nyström approximated case, there are no correlations as the samples are generated i.i.d..
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Figure 1: Visualization plots of location of 1-dimension DPP samples: (a)-(b) are samples from Gibbs scheme in low
repulsion and high repulsion setting, respectively, (c)-(d) are i.i.d. samples from the Nyström-approximated DPP.

Quantitatively, we use two measures as a proxy to the mixing rate: the average movement of point from cycle to
cycle and the effective sample size. The average movement, m, is simply defined as the average difference in distance
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between points from one cycle to another averaged over the cycles:

m =
1

T − 1

1

k

T−1∑
t=1

k∑
i=1

(xt+1
i − xti)2, (19)

where T is the length of the chain after burn-in and thinning, k is the number of points and xti is the coordinate of point
xi at cycle t. In our experiment, T and k are 100 and 15, respectively. When the Gibbs chain is mixing well, we expect
the average movement to be high as this signals that the points are less correlated across cycles.

The effective sample size is a standard measure in assessing the mixing of a Gibbs chain. To compute this, we first
compute the lag-s autocorrelation function of each point in the sampled sets. We then average the autocorrelation
function at lag-s across the k points and denote this quantity ρ̄s. The effective sample size is then given by: αT , where

α =
1

1 + 2
∑2δ+1
s=1 ρ̄s

, (20)

where δ is the smallest positive integer satisfying ρ̄2δ + ρ̄2δ+1 > 0. In the case of i.i.d. samples, we expect α to be
close to 1 while in cases where the mixing is bad, α will be much lower.

Table 2 shows the average values of m and α for our Gibbs samples with i.i.d. Nyström-approximated DPP samples
serving as a benchmark. We see that in the low repulsion setting, the Gibbs chain mixes well with values close to the
benchmarks while for the Gibbs sampler in the high repulsion setting, the values of m and α are much lower, indicating
slow mixing.

Gibbs High Repulsion Gibbs Low Repulsion Nyström High Repulsion Nyström Low Repulsion
m 0.08 (0.07,0.08) 0.1 (0.10,0.11) 0.11 (0.1,0.11) 0.11 (0.11,0.12)
α 0.39 (0.31,0.45) 0.92 (0.80,1) 0.98 (0.82, 1) 0.98 (0.90, 1)

Table 2: The mean and 95% confidence interval for average movement, m and the effective sample size coefficient, α
for Gibbs samples and i.i.d. Nyström samples in high and low repulsion settings.

F Gibbs sampling for repulsive mixtures of Gaussians
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Figure 2: Graphical models for mixtures of Gaussians using IID and DPP priors on the location parameters.

Generative Model We consider a Bayesian mixture of Gaussians with either an independent normal (IID) orK-DPP
(DPP) prior on the location parameters. In both cases, the K-component model with N observations is specified as:

π | α ∼ Dir(α, . . . , α)

σ2
k | aσ, bσ ∼ IG(aσ, bσ), k = 1, . . . ,K

{µ1, . . . , µK} ∼ F
zi | π ∼ π, i = 1, . . . , N

yi | π, {µk, σ2
k} ∼ N(µzi , σ

2
zi), i = 1, . . . , N.

(21)
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Algorithm 5 Mixture of Gaussians sampler
Input: Previous mixture weights π, emission parameters {µk, σk}2.
for i = 1, . . . , N do

Sample cluster indicators zi | yi, {µk, σ2
k}, πk ∝ 1

Ci

∑K
k=1 πkN(yi;µk, σ

2
k)δ(zi, k)

Sample mixture weights π | {zi}, α ∼ Dir(α+N1, . . . , α+NK)
for k = 1, . . . ,K do

Sample scale parameters σ2
k | {yi : zi = k}, µk, aσ, bσ ∼ IG

(
aσ + Nk

2 , bσ + 1
2

∑
i:zi=1(yi − µk)2

)
Sample location parameters {µ1, . . . , µK} | {yi}, {zi}, {σ2

k} ∼ Fpost
Output: New mixture weights π, emission parameters {µk, σ2

k}.

Here, IG denotes the inverse gamma distribution and Dir a K-dimensional Dirichlet. For simplicity, we consider the
univariate case here, though the multivariate case follows directly by considering an inverse Wishart prior in place of
the inverse gamma and likewise modifying F accordingly. Such a multivariate case is examined in the iris classification
example in the main paper.

The difference between the models is in how the location parameters are specified. For the IID case, we simply have:

µk | µ0, σ
2
0 ∼ N(µ0, σ

2
0) (22)

For the DPP case, we jointly sample:

{µ1, . . . , µK} | L ∼ K-DPP(L). (23)

We consider L decomposed into Gaussian quality and similarity terms:

L(µm, µn) = q(µm)k(µm, µn)q(µn), (24)

with

k(µm, µn) = exp

{
− (µm − µn)2

γ2
0

}
, q(µm) = N(µ0, 2σ

2
0). (25)

Gibbs sampling For the uncollapsed setting, where mixture weights π and emission parameters {µk, σ2
k} are sampled,

Algorithm 5 summarizes the Gibbs sampler for the finite mixture of Gaussians. We write the algorithm generically so
that the overlap between IID and DPP is clear. In particular, the locations are sampled from Fpost, which generically
refers to the full conditional of the cluster means. For the IID case, we sample i.i.d. for each k from

µk | {yi : zi = k}, σ2
k, µ0, σ

2
0 ∼ N

(
µ̂k, σ̂

2
k

)
, (26)

where µ̂k =
(

1
σ2
0

+ Nk
σ2
k

)−1 (
µ0

σ2
0

+ 1
σ2
k

∑
i:zi=k

yi

)
and σ̂2

k =
(

1
σ2
0

+ Nk
σ2
k

)−1

. Here, Nk = |{yi : zi = k}|, i.e., the
cardinality of the set of observations assigned to cluster k.

For DPP, note that p({µj}kj=1|{yi}, {zi}, {µk, σ2
k}) ∝ det(Lµ1,...,µk)

∏k
j=1

∏
i:zi=j

N(yi;µj , σ
2
j ). Unfortunately,

this posterior distribution is not a k-DPP. However, fixing the rest of k − 1 centroids, the full conditional of µk is
(dropping constant terms that do not depend on µk)

p(µk|{yi}, {zi}, {µj , σ2
j }j 6=k, σ2

k) ∝ det(Lµ1,...,µk)
∏
i:zi=k

N(yi;µk, σ
2
k). (27)

As before, we can use Schur’s determinantal equality [2] to get

det(Lµ1,...,µk) ∝ L(µk, µk)−
∑
i,j 6=k

M
\k
ij L(µi, µk)L(µj , µk) (28)

= q2(µk)

1−
∑
i,j 6=k

M
\k
ij q(µi)k(µi, µk)k(µj , µk)q(µj)

 . (29)
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Figure 3: Comparison between the full conditional for µk using the IID and DPP models at a given iteration m of the
sampler.

Combining the previous two equations, we get the full conditional

p(µk|{yi}, {zi}, {µj , σ2
j }j 6=k, σ2

k) ∝ q2(µk)

1−
∑
i,j 6=k

M
\k
ij q(µi)k(µi, µk)k(µj , µk)q(µj)

 ∏
i:zi=k

N(yi;µk, σ
2
k).

(30)

The CDF of the distribution above can be computed easily, since it only involves exponential quadratic forms.
The inverse CDF method can then be used to obtain a sample from the above distribution. Note once again that
q2(µk)

∏
i:zi=k

N(yi;µk, σ
2
k) is defined to be exactly the same as the Gaussian distribution where µk would have been

sampled from in the IID case. Thus the equation above gives a nice intuition on the conditional density of µk in the
DPP setting: it is an exponentially tilted distribution in which q2(µk)

∏
i:zi=k

N(yi;µk, σ
2
k) is corrected by a factor

that depends on the location of the other centroids. In the case where all of the other centroids are far away from the
cluster center µ̂k, the correction factor is close to one and we would recover the density for the IID case.

To get a sense of why the DPP leads to more diverse cluster centers than IID, consider the full conditional for µk at
some iteration m of our sampler, as visualized in Fig. 3. We have some data points currently assigned to cluster k via
cluster indicators zi = k. The IID model assumes that µk is independent of the other µj’s whereas the DPP conditions
on the other cluster centers leading to a conditional distribution for µk that puts more mass on uncovered regions. In
subsequent iterations, the data that had been assigned to cluster k but are not well covered by the sampled (and repulsed)
µk will instead be assigned to one of the existing cluster centers that have mass near that data item. Such an alternative
cluster exists, and is why µk was repulsed from that region, or will likely exist in future draws.

One attractive aspect of our DPP formulation is the fact that the sampling strategy maintains nearly the same simplicity
as the standard IID sampler. This is in contrast, for example, to the repulsive mixture formulation of [3] which relied
on slice sampling and draws from truncated normals, where the truncating region could only be computed in closed
form for a restricted set of repulsive functions.

G Additional details on experiments

G.1 Hyperparameter settings

For our mixture of Gaussian experiments, we used an inverse Wishart IW(ν,Ψ) with ν = d + 1 and Ψ = I , which
corresponds to aσ = 2 and bσ = 1 for the inverse Gamma in 1-dimension. Here, we use an inverse Wishart specification
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Figure 4: (a)-(c) DPP (blue) and i.i.d. multivariate Gaussian (red) samples projected onto the top 4 principal components of the
dance data.

such that Σ ∼ IW(ν,Ψ) has mean E[Σ] = Ψ
ν−d+1 . The Dirichlet hyperparameters were set to α = 1

3 , just as in [3].
For the location hyperparameters, in the IID case we set µ0 = 0 and σ2

0 = 1. In the DPP case, we use µ0 and σ2
0 as in

the IID case and set the repulsion parameter ρ2
0 = 1.

For the MoCap experiment, we computed the covariance estimate from the training data, and set the similarity covariance
parameter Σ equal to this estimate. We then take the quality covariance parameter to be Γ = 1

2Σ.

G.2 Additional figures for MoCap experiments

In Fig. 4, we provide a visualization of poses sampled from the DPP relative to i.i.d. sampling of poses from a
multivariate Gaussian. From these plots, we see how the sample of poses from the DPP covers a broader space, even
when the covariance of the multivariate Gaussian is inflated to match that of the DPP. The reason for this broader
coverage is the fact that the under the DPP, sampled poses repulse from regions already covered by other sampled poses.

Fig. 5 displays additional human poses that are drawn i.i.d. from a multivariate Gaussian, and compares to our DPP
draws from both the RFF and Nyström approximations.
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Original Pose

Poses synthesized from i.i.d. draws from a multivariate Gaussian

Poses synthesized from an RFF-approximated DPP

Poses synthesized from a Nyström-approximated DPP

Figure 5: Synthesizing perturbed human poses relative to an original pose by sampling (1) i.i.d. from a multivarite
Gaussian versus (2) drawing a set from an RFF- or Nyström- approximated DPP with kernel based on MoCap data
from the activity category. The Gaussian covariance is likewise formed from the activity data.
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