
Stochastic Majorization-Minimization Algorithms for

Large-Scale Optimization

Julien Mairal
LEAR Project-Team - INRIA Grenoble

julien.mairal@inria.fr

Abstract

Majorization-minimization algorithms consist of iteratively minimizing a majoriz-
ing surrogate of an objective function. Because of its simplicity and its wide
applicability, this principle has been very popular in statistics and in signal pro-
cessing. In this paper, we intend to make this principle scalable. We introduce
a stochastic majorization-minimization scheme which is able to deal with large-
scale or possibly infinite data sets. When applied to convex optimization problems
under suitable assumptions, we show that it achieves an expected convergence
rate of O(1/

√
n) after n iterations, and of O(1/n) for strongly convex functions.

Equally important, our scheme almost surely converges to stationary points for
a large class of non-convex problems. We develop several efficient algorithms
based on our framework. First, we propose a new stochastic proximal gradient
method, which experimentally matches state-of-the-art solvers for large-scale ℓ1-
logistic regression. Second, we develop an online DC programming algorithm for
non-convex sparse estimation. Finally, we demonstrate the effectiveness of our
approach for solving large-scale structured matrix factorization problems.

1 Introduction

Majorization-minimization [15] is a simple optimization principle for minimizing an objective func-
tion. It consists of iteratively minimizing a surrogate that upper-bounds the objective, thus monoton-
ically driving the objective function value downhill. This idea is used in many existing procedures.
For instance, the expectation-maximization (EM) algorithm (see [5, 21]) builds a surrogate for a
likelihood model by using Jensen’s inequality. Other approaches can also be interpreted under the
majorization-minimization point of view, such as DC programming [8], where “DC” stands for dif-
ference of convex functions, variational Bayes techniques [28], or proximal algorithms [1, 23, 29].

In this paper, we propose a stochastic majorization-minimization algorithm, which is is suitable for
solving large-scale problems arising in machine learning and signal processing. More precisely, we
address the minimization of an expected cost—that is, an objective function that can be represented
by an expectation over a data distribution. For such objectives, online techniques based on stochastic
approximations have proven to be particularly efficient, and have drawn a lot of attraction in machine
learning, statistics, and optimization [3–6, 9–12, 14, 16, 17, 19, 22, 24–26, 30].

Our scheme follows this line of research. It consists of iteratively building a surrogate of the expected
cost when only a single data point is observed at each iteration; this data point is used to update the
surrogate, which in turn is minimized to obtain a new estimate. Some previous works are closely
related to this scheme: the online EM algorithm for latent data models [5, 21] and the online matrix
factorization technique of [19] involve for instance surrogate functions updated in a similar fashion.
Compared to these two approaches, our method is targeted to more general optimization problems.

Another related work is the incremental majorization-minimization algorithm of [18] for finite train-
ing sets; it was indeed shown to be efficient for solving machine learning problems where storing

1

dense information about the past iterates can be afforded. Concretely, this incremental scheme re-
quires to store O(pn) values, where p is the variable size, and n is the size of the training set.1

This issue was the main motivation for us for proposing a stochastic scheme with a memory load
independent of n, thus allowing us to possibly deal with infinite data sets, or a huge variable size p.

We study the convergence properties of our algorithm when the surrogates are strongly convex and
chosen among the class of first-order surrogate functions introduced in [18], which consist of ap-
proximating the possibly non-smooth objective up to a smooth error. When the objective is convex,
we obtain expected convergence rates that are asymptotically optimal, or close to optimal [14, 22].
More precisely, the convergence rate is of orderO(1/

√
n) in a finite horizon setting, andO(1/n) for

a strongly convex objective in an infinite horizon setting. Our second analysis shows that for non-
convex problems, our method almost surely converges to a set of stationary points under suitable
assumptions. We believe that this result is equally valuable as convergence rates for convex opti-
mization. To the best of our knowledge, the literature on stochastic non-convex optimization is rather
scarce, and we are only aware of convergence results in more restricted settings than ours—see for
instance [3] for the stochastic gradient descent algorithm, [5] for online EM, [19] for online matrix
factorization, or [9], which provides stronger guarantees, but for unconstrained smooth problems.

We develop several efficient algorithms based on our framework. The first one is a new stochastic
proximal gradient method for composite or constrained optimization. This algorithm is related to a
long series of work in the convex optimization literature [6,10,12,14,16,22,25,30], and we demon-
strate that it performs as well as state-of-the-art solvers for large-scale ℓ1-logistic regression [7]. The
second one is an online DC programming technique, which we demonstrate to be better than batch
alternatives for large-scale non-convex sparse estimation [8]. Finally, we show that our scheme can
address efficiently structured sparse matrix factorization problems in an online fashion, and offers
new possibilities to [13, 19] such as the use of various loss or regularization functions.

This paper is organized as follows: Section 2 introduces first-order surrogate functions for batch
optimization; Section 3 is devoted to our stochastic approach and its convergence analysis; Section 4
presents several applications and numerical experiments, and Section 5 concludes the paper.

2 Optimization with First-Order Surrogate Functions

Throughout the paper, we are interested in the minimization of a continuous function f : Rp → R:

min
θ∈Θ

f(θ), (1)

where Θ ⊆ R
p is a convex set. The majorization-minimization principle consists of computing a ma-

jorizing surrogate gn of f at iteration n and updating the current estimate by θn ∈ argminθ∈Θ gn(θ).
The success of such a scheme depends on how well the surrogates approximate f . In this paper, we
consider a particular class of surrogate functions introduced in [18] and defined as follows:

Definition 2.1 (Strongly Convex First-Order Surrogate Functions).
Let κ be in Θ. We denote by SL,ρ(f, κ) the set of ρ-strongly convex functions g such that g ≥ f ,
g(κ) = f(κ), the approximation error g − f is differentiable, and the gradient ∇(g − f) is L-
Lipschitz continuous. We call the functions g in SL,ρ(f, κ) “first-order surrogate functions”.

Among the first-order surrogate functions presented in [18], we should mention the following ones:
• Lipschitz Gradient Surrogates.

When f is differentiable and ∇f is L-Lipschitz, f admits the following surrogate g in S2L,L(f, κ):

g : θ 7→ f(κ) +∇f(κ)⊤(θ − κ) + L

2
‖θ − κ‖22.

When f is convex, g is in SL,L(f, κ), and when f is µ-strongly convex, g is in SL−µ,L(f, κ).
Minimizing g amounts to performing a classical classical gradient descent step θ ← κ− 1

L
∇f(κ).

• Proximal Gradient Surrogates.
Assume that f splits into f = f1 + f2, where f1 is differentiable, ∇f1 is L-Lipschitz, and f2 is

1To alleviate this issue, it is possible to cut the dataset into η mini-batches, reducing the memory load to
O(pη), which remains cumbersome when p is very large.

2

convex. Then, the function g below is in S2L,L(f, κ):

g : θ 7→ f1(κ) +∇f1(κ)⊤(θ − κ) +
L

2
‖θ − κ‖22 + f2(θ).

When f1 is convex, g is in SL,L(f, κ). If f1 is µ-strongly convex, g is in SL−µ,L(f, κ). Minimizing g
amounts to a proximal gradient step [1, 23, 29]: θ ← argminθ

1
2‖κ− 1

L
∇f1(κ)− θ‖22 + 1

L
f2(θ).

• DC Programming Surrogates.
Assume that f = f1 + f2, where f2 is concave and differentiable, ∇f2 is L2-Lipschitz, and g1 is in
SL1,ρ1

(f1, κ), Then, the following function g is a surrogate in SL1+L2,ρ1
(f, κ):

g : θ 7→ f1(θ) + f2(κ) +∇f2(κ)⊤(θ − κ).
When f1 is convex, f1 + f2 is a difference of convex functions, leading to a DC program [8].

With the definition of first-order surrogates and a basic “batch” algorithm in hand, we now introduce
our main contribution: a stochastic scheme for solving large-scale problems.

3 Stochastic Optimization

As pointed out in [4], one is usually not interested in the minimization of an empirical cost on a
finite training set, but instead in minimizing an expected cost. Thus, we assume from now on that f
has the form of an expectation:

min
θ∈Θ

[

f(θ) , Ex[ℓ(x, θ)]
]

, (2)

where x from some set X represents a data point, which is drawn according to some unknown
distribution, and ℓ is a continuous loss function. As often done in the literature [22], we assume that
the expectations are well defined and finite valued; we also assume that f is bounded below.

We present our approach for tackling (2) in Algorithm 1. At each iteration, we draw a training
point xn, assuming that these points are i.i.d. samples from the data distribution. Note that in
practice, since it is often difficult to obtain true i.i.d. samples, the points xn are computed by
cycling on a randomly permuted training set [4]. Then, we choose a surrogate gn for the function
θ 7→ ℓ(xn, θ), and we use it to update a function ḡn that behaves as an approximate surrogate for the
expected cost f . The function ḡn is in fact a weighted average of previously computed surrogates,
and involves a sequence of weights (wn)n≥1 that will be discussed later. Then, we minimize ḡn, and
obtain a new estimate θn. For convex problems, we also propose to use averaging schemes, denoted
by “option 2” and “option 3” in Alg. 1. Averaging is a classical technique for improving convergence
rates in convex optimization [10, 22] for reasons that are clear in the convergence proofs.

Algorithm 1 Stochastic Majorization-Minimization Scheme

input θ0 ∈ Θ (initial estimate); N (number of iterations); (wn)n≥1, weights in (0, 1];

1: initialize the approximate surrogate: ḡ0 : θ 7→ ρ
2‖θ − θ0‖22; θ̄0 = θ0; θ̂0 = θ0;

2: for n = 1, . . . , N do
3: draw a training point xn; define fn : θ 7→ ℓ(xn, θ);
4: choose a surrogate function gn in SL,ρ(fn, θn−1);
5: update the approximate surrogate: ḡn = (1− wn)ḡn−1 + wngn;
6: update the current estimate:

θn ∈ argmin
θ∈Θ

ḡn(θ);

7: for option 2, update the averaged iterate: θ̂n , (1− wn+1)θ̂n−1 + wn+1θn;

8: for option 3, update the averaged iterate: θ̄n ,
(1−wn+1)θ̄n−1+wn+1θn∑n+1

k=1
wk

;

9: end for
output (option 1): θN (current estimate, no averaging);
output (option 2): θ̄N (first averaging scheme);

output (option 3): θ̂N (second averaging scheme).

We remark that Algorithm 1 is only practical when the functions ḡn can be parameterized with a
small number of variables, and when they can be easily minimized over Θ. Concrete examples are
discussed in Section 4. Before that, we proceed with the convergence analysis.

3

3.1 Convergence Analysis - Convex Case

First, We study the case of convex functions fn : θ 7→ ℓ(θ,xn), and make the following assumption:

(A) for all θ in Θ, the functions fn are R-Lipschitz continuous. Note that for convex functions,
this is equivalent to saying that subgradients of fn are uniformly bounded by R.

Assumption (A) is classical in the stochastic optimization literature [22]. Our first result shows that
with the averaging scheme corresponding to “option 2” in Alg. 1, we obtain an expected convergence
rate that makes explicit the role of the weight sequence (wn)n≥1.

Proposition 3.1 (Convergence Rate).
When the functions fn are convex, under assumption (A), and when ρ = L, we have

E[f(θ̄n−1)− f⋆] ≤
L‖θ⋆ − θ0‖22 + R2

L

∑n
k=1 w

2
k

2
∑n

k=1 wk

for all n ≥ 1, (3)

where θ̄n−1 is defined in Algorithm 1, θ⋆ is a minimizer of f on Θ, and f⋆ , f(θ⋆).

Such a rate is similar to the one of stochastic gradient descent with averaging, see [22] for example.
Note that the constraint ρ = L here is compatible with the proximal gradient surrogate.

From Proposition 3.1, it is easy to obtain a O(1/
√
n) bound for a finite horizon—that is, when the

total number of iterations n is known in advance. When n is fixed, such a bound can indeed be
obtained by plugging constant weights wk = γ/

√
n for all k ≤ n in Eq. (3). Note that the upper-

boundO(1/
√
n) cannot be improved in general without making further assumptions on the objective

function [22]. The next corollary shows that in an infinite horizon setting and with decreasing
weights, we lose a logarithmic factor compared to an optimal convergence rate [14,22] ofO(1/

√
n).

Corollary 3.1 (Convergence Rate - Infinite Horizon - Decreasing Weights).
Let us make the same assumptions as in Proposition 3.1 and choose the weights wn = γ/

√
n. Then,

E[f(θ̄n−1)− f⋆] ≤
L‖θ⋆ − θ0‖22

2γ
√
n

+
R2γ(1 + log(n))

2L
√
n

, ∀n ≥ 2.

Our analysis suggests to use weights of the formO(1/
√
n). In practice, we have found that choosing

wn =
√
n0 + 1/

√
n0 + n performs well, where n0 is tuned on a subsample of the training set.

3.2 Convergence Analysis - Strongly Convex Case

In this section, we introduce an additional assumption:

(B) the functions fn are µ-strongly convex.

We show that our method achieves a rate O(1/n), which is optimal up to a multiplicative constant
for strongly convex functions (see [14, 22]).

Proposition 3.2 (Convergence Rate).

Under assumptions (A) and (B), with ρ = L+ µ. Define β ,
µ
ρ

and wn ,
1+β
1+βn

. Then,

E[f(θ̂n−1)− f⋆] +
ρ

2
E[‖θ⋆ − θn‖22] ≤ max

(

2R2

µ
, ρ‖θ⋆ − θ0‖22

)

1

βn+ 1
for all n ≥ 1,

where θ̂n is defined in Algorithm 1, when choosing the averaging scheme called “option 3”.

The averaging scheme is slightly different than in the previous section and the weights decrease
at a different speed. Again, this rate applies to the proximal gradient surrogates, which satisfy the
constraint ρ = L+ µ. In the next section, we analyze our scheme in a non-convex setting.

3.3 Convergence Analysis - Non-Convex Case

Convergence results for non-convex problems are by nature weak, and difficult to obtain for stochas-
tic optimization [4, 9]. In such a context, proving convergence to a global (or local) minimum is out
of reach, and classical analyses study instead asymptotic stationary point conditions, which involve
directional derivatives (see [2, 18]). Concretely, we introduce the following assumptions:

4

(C) Θ and the support X of the data are compact;

(D) The functions fn are uniformly bounded by some constant M ;

(E) The weights wn are non-increasing, w1 = 1,
∑

n≥1 wn=+∞, and
∑

n≥1 w
2
n

√
n<+∞;

(F) The directional derivatives ∇fn(θ, θ′ − θ), and ∇f(θ, θ′ − θ) exist for all θ and θ′ in Θ.

Assumptions (C) and (D) combined with (A) are useful because they allow us to use some uniform
convergence results from the theory of empirical processes [27]. In a nutshell, these assumptions
ensure that the function class {x 7→ ℓ(x, θ) : θ ∈ Θ} is “simple enough”, such that a uniform law
of large numbers applies. The assumption (E) is more technical: it resembles classical conditions
used for proving the convergence of stochastic gradient descent algorithms, usually stating that the
weights wn should be the summand of a diverging sum while the sum of w2

n should be finite; the
constraint

∑

n≥1 w
2
n

√
n < +∞ is slightly stronger. Finally, (F) is a mild assumption, which is

useful to characterize the stationary points of the problem. A classical necessary first-order condi-
tion [2] for θ to be a local minimum of f is indeed to have∇f(θ, θ′−θ) non-negative for all θ′ in Θ.
We call such points θ the stationary points of the function f . The next proposition is a generalization
of a convergence result obtained in [19] in the context of sparse matrix factorization.

Proposition 3.3 (Non-Convex Analysis - Almost Sure Convergence).
Under assumptions (A), (C), (D), (E), (f(θn))n≥0 converges with probability one. Under assump-
tion (F), we also have that

lim inf
n→+∞

inf
θ∈Θ

∇f̄n(θn, θ − θn)
‖θ − θn‖2

≥ 0,

where the function f̄n is a weighted empirical risk recursively defined as f̄n = (1−wn)f̄n−1+wnfn.
It can be shown that f̄n uniformly converges to f .

Even though f̄n converges uniformly to the expected cost f , Proposition 3.3 does not imply that the
limit points of (θn)n≥1 are stationary points of f . We obtain such a guarantee when the surrogates
that are parameterized, an assumption always satisfied when Algorithm 1 is used in practice.

Proposition 3.4 (Non-Convex Analysis - Parameterized Surrogates).
Let us make the same assumptions as in Proposition 3.3, and let us assume that the functions ḡn are
parameterized by some variables κn living in a compact set K of Rd. In other words, ḡn can be
written as gκn

, with κn in K. Suppose there exists a constant K > 0 such that |gκ(θ) − gκ′(θ)| ≤
K‖κ − κ′‖2 for all θ in Θ and κ, κ′ in K. Then, every limit point θ∞ of the sequence (θn)n≥1 is a
stationary point of f—that is, for all θ in Θ,

∇f(θ∞, θ − θ∞) ≥ 0.

Finally, we show that our non-convex convergence analysis can be extended beyond first-order sur-
rogate functions—that is, when gn does not satisfy exactly Definition 2.1. This is possible when
the objective has a particular partially separable structure, as shown in the next proposition. This
extension was motivated by the non-convex sparse estimation formulation of Section 4, where such
a structure appears.

Proposition 3.5 (Non-Convex Analysis - Partially Separable Extension).

Assume that the functions fn split into fn(θ) = f0,n(θ)+
∑K

k=1 fk,n(γk(θ)), where the functions
γk :R

p→R are convex and R-Lipschitz, and the fk,n are non-decreasing for k ≥ 1. Consider gn,0
in SL0,ρ1

(f0,n, θn−1), and some non-decreasing functions gk,n in SLk,0(fk,n, γk(θn−1)). Instead

of choosing gn in SL,ρ(fn, θn−1) in Alg 1, replace it by gn,θ 7→g0,n(θ)+gk,n(γk(θ)).

Then, Propositions 3.3 and 3.4 still hold.

4 Applications and Experimental Validation

In this section, we introduce different applications, and provide numerical experiments. A
C++/Matlab implementation is available in the software package SPAMS [19].2 All experiments
were performed on a single core of a 2GHz Intel CPU with 64GB of RAM.

2http://spams-devel.gforge.inria.fr/.

5

http://spams-devel.gforge.inria.fr/

4.1 Stochastic Proximal Gradient Descent Algorithm

Our first application is a stochastic proximal gradient descent method, which we call SMM (Stochas-
tic Majorization-Minimization), for solving problems of the form:

min
θ∈Θ

Ex[ℓ(x, θ)] + ψ(θ), (4)

where ψ is a convex deterministic regularization function, and the functions θ 7→ ℓ(x, θ) are dif-
ferentiable and their gradients are L-Lipschitz continuous. We can thus use the proximal gradient
surrogate presented in Section 2. Assume that a weight sequence (wn)n≥1 is chosen such that

w1 = 1. By defining some other weights wi
n recursively as wi

n , (1−wn)w
i−1
n for i < n and

wn
n,wn, our scheme yields the update rule:

θn ← argmin
θ∈Θ

n
∑

i=1

wi
n

[

∇fi(θi−1)
⊤θ + L

2 ‖θ − θi−1‖22 + ψ(θ)
]

. (SMM)

Our algorithm is related to FOBOS [6], to SMIDAS [25] or the truncated gradient method [16]
(when ψ is the ℓ1-norm). These three algorithms use indeed the following update rule:

θn ← argmin
θ∈Θ

∇fn(θn−1)
⊤θ + 1

2ηn
‖θ − θn−1‖22 + ψ(θ), (FOBOS)

Another related scheme is the regularized dual averaging (RDA) of [30], which can be written as

θn ← argmin
θ∈Θ

1

n

n
∑

i=1

∇fi(θi−1)
⊤θ + 1

2ηn
‖θ‖22 + ψ(θ). (RDA)

Compared to these approaches, our scheme includes a weighted average of previously seen gradi-
ents, and a weighted average of the past iterates. Some links can also be drawn with approaches
such as the “approximate follow the leader” algorithm of [10] and other works [12, 14].

We now evaluate the performance of our method for ℓ1-logistic regression. In summary, the datasets
consist of pairs (yi,xi)

N
i=1, where the yi’s are in {−1,+1}, and the xi’s are in R

p with unit ℓ2-

norm. The function ψ in (4) is the ℓ1-norm: ψ(θ) , λ‖θ‖1, and λ is a regularization parameter;

the functions fi are logistic losses: fi(θ) , log(1 + e−yix
⊤

i θ). One part of each dataset is devoted

to training, and another part to testing. We used weights of the form wn ,
√

(n0 + 1)/(n+ n0),
where n0 is automatically adjusted at the beginning of each experiment by performing one pass on
5% of the training data. We implemented SMM in C++ and exploited the sparseness of the datasets,
such that each update has a computational complexity of the order O(s), where s is the number of
non zeros in∇fn(θn−1); such an implementation is non trivial but proved to be very efficient.

We consider three datasets described in the table below. rcv1 and webspam are obtained from the
2008 Pascal large-scale learning challenge.3 kdd2010 is available from the LIBSVM website.4

name Ntr (train) Nte (test) p density (%) size (GB)

rcv1 781 265 23 149 47 152 0.161 0.95
webspam 250 000 100 000 16 091 143 0.023 14.95
kdd2010 10 000 000 9 264 097 28 875 157 10−4 4.8

We compare our implementation with state-of-the-art publicly available solvers: the batch algorithm
FISTA of [1] implemented in the C++ SPAMS toolbox and LIBLINEAR v1.93 [7]. LIBLINEAR
is based on a working-set algorithm, and, to the best of our knowledge, is one of the most efficient
available solver for ℓ1-logistic regression with sparse datasets. Because p is large, the incremental
majorization-minimization method of [18] could not run for memory reasons. We run every method
on 1, 2, 3, 4, 5, 10 and 25 epochs (passes over the training set), for three regularization regimes,
respectively yielding a solution with approximately 100, 1 000 and 10 000 non-zero coefficients.
We report results for the medium regularization in Figure 1 and provide the rest as supplemental
material. FISTA is not represented in this figure since it required more than 25 epochs to achieve
reasonable values. Our conclusion is that SMM often provides a reasonable solution after one epoch,
and outperforms LIBLINEAR in the low-precision regime. For high-precision regimes, LIBLINEAR
should be preferred. Such a conclusion is often obtained when comparing batch and stochastic
algorithms [4], but matching the performance of LIBLINEAR is very challenging.

3http://largescale.ml.tu-berlin.de.
4http://www.csie.ntu.edu.tw/˜cjlin/libsvm/.

6

http://largescale.ml.tu-berlin.de
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

0 5 10 15 20 25

0.25

0.3

0.35

Epochs / Dataset rcv1

O
bj

ec
tiv

e
on

 T
ra

in
in

g
S

et

LIBLINEAR
SMM

0.25

0.3

0.35

Computation Time (sec) / Dataset rcv1

O
bj

ec
tiv

e
on

 T
ra

in
in

g
S

et

100 101 102

LIBLINEAR
SMM

0 5 10 15 20 25

0.25

0.3

0.35

Epochs / Dataset rcv1

O
bj

ec
tiv

e
on

 T
es

tin
g

S
et

LIBLINEAR
SMM

0 5 10 15 20 25

0.05

0.1

0.15

0.2

Epochs / Dataset webspam

O
bj

ec
tiv

e
on

 T
ra

in
in

g
S

et

LIBLINEAR
SMM

0.05

0.1

0.15

0.2

Computation Time (sec) / Dataset webspam

O
bj

ec
tiv

e
on

 T
ra

in
in

g
S

et

101 102 103

LIBLINEAR
SMM

0 5 10 15 20 25

0.05

0.1

0.15

0.2

Epochs / Dataset webspam

O
bj

ec
tiv

e
on

 T
es

tin
g

S
et

LIBLINEAR
SMM

0 5 10 15 20 25

0

0.05

0.1

0.15

0.2

Epochs / Dataset kddb

O
bj

ec
tiv

e
on

 T
ra

in
in

g
S

et

LIBLINEAR
SMM

0

0.05

0.1

0.15

0.2

Computation Time (sec) / Dataset kddb

O
bj

ec
tiv

e
on

 T
ra

in
in

g
S

et

101 102 103

LIBLINEAR
SMM

0 5 10 15 20 25

0

0.05

0.1

0.15

0.2

Epochs / Dataset kddb

O
bj

ec
tiv

e
on

 T
es

tin
g

S
et

LIBLINEAR
SMM

Figure 1: Comparison between LIBLINEAR and SMM for the medium regularization regime.

4.2 Online DC Programming for Non-Convex Sparse Estimation

We now consider the same experimental setting as in the previous section, but with a non-convex
regularizer ψ : θ 7→ λ

∑p
j=1 log(|θ[j]| + ε), where θ[j] is the j-th entry in θ. A classical way for

minimizing the regularized empirical cost 1
N

∑N
i=1 fi(θ) +ψ(θ) is to resort to DC programming. It

consists of solving a sequence of reweighted-ℓ1 problems [8]. A current estimate θn−1 is updated

as a solution of minθ∈Θ
1
N

∑N
i=1 fi(θ) + λ

∑p
j=1 ηj |θ[j]|, where ηj , 1/(|θn−1[j]|+ ε).

In contrast to this “batch” methodology, we can use our framework to address the problem online.
At iteration n of Algorithm 1, we define the function gn according to Proposition 3.5:

gn : θ 7→ fn(θn−1) +∇fn(θn−1)
⊤(θ − θn−1) +

L
2 ‖θ − θn−1‖22 + λ

∑p
j=1

|θ[j]|
|θn−1[j]|+ε

,

We compare our online DC programming algorithm against the batch one, and report the results in
Figure 2, with ε set to 0.01. We conclude that the batch reweighted-ℓ1 algorithm always converges
after 2 or 3 weight updates, but suffers from local minima issues. The stochastic algorithm exhibits
a slower convergence, but provides significantly better solutions. Whether or not there are good
theoretical reasons for this fact remains to be investigated. Note that it would have been more
rigorous to choose a bounded set Θ, which is required by Proposition 3.5. In practice, it turns not to
be necessary for our method to work well; the iterates θn have indeed remained in a bounded set.

0 5 10 15 20 25

-0.06

-0.04

-0.02

0

Iterations - Epochs / Dataset rcv1

O
bj

ec
tiv

e
on

 T
ra

in
 S

et

Online DC
Batch DC

0 5 10 15 20 25
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

Iterations - Epochs / Dataset rcv1

O
bj

ec
tiv

e
on

 T
es

t S
et

Online DC
Batch DC

0 5 10 15 20 25
-4.54

-4.535

-4.53

-4.525

-4.52

Iterations - Epochs / Dataset webspam

O
bj

ec
tiv

e
on

 T
ra

in
 S

et

Online DC
Batch DC

0 5 10 15 20 25

-4.385

-4.38

-4.375

-4.37

Iterations - Epochs / Dataset webspam

O
bj

ec
tiv

e
on

 T
es

t S
et

Online DC
Batch DC

Figure 2: Comparison between batch and online DC programming, with medium regularization for
the datasets rcv1 and webspam. Additional plots are provided in the supplemental material. Note
that each iteration in the batch setting can perform several epochs (passes over training data).

4.3 Online Structured Sparse Coding

In this section, we show that we can bring new functionalities to existing matrix factorization tech-
niques [13, 19]. We are given a large collection of signals (xi)

N
i=1 in R

m, and we want to find a

7

dictionary D in R
m×K that can represent these signals in a sparse way. The quality of D is mea-

sured through the loss ℓ(x,D) , min
α∈RK

1
2‖x−Dα‖22+λ1‖α‖1+ λ2

2 ‖α‖22, where the ℓ1-norm
can be replaced by any convex regularizer, and the squared loss by any convex smooth loss.

Then, we are interested in minimizing the following expected cost:

min
D∈Rm×K

Ex [ℓ(x,D)] + ϕ(D),

where ϕ is a regularizer for D. In the online learning approach of [19], the only way to regularize D
is to use a constraint set, on which we need to be able to project efficiently; this is unfortunately not
always possible. In the matrix factorization framework of [13], it is argued that some applications
can benefit from a structured penalty ϕ, but the approach of [13] is not easily amenable to stochastic
optimization. Our approach makes it possible by using the proximal gradient surrogate

gn : D 7→ ℓ(xn,Dn−1) + Tr
(

∇Dℓ(xn,Dn−1)
⊤(D−Dn−1)

)

+ L
2 ‖D−Dn−1‖2F + ϕ(D). (5)

It is indeed possible to show that D 7→ ℓ(xn,D) is differentiable, and its gradient is Lipschitz
continuous with a constant L that can be explicitly computed [18, 19].

We now design a proof-of-concept experiment. We consider a set of N =400 000 whitened natural
image patches xn of size m = 20 × 20 pixels. We visualize some elements from a dictionary D

trained by SPAMS [19] on the left of Figure 3; the dictionary elements are almost sparse, but have
some residual noise among the small coefficients. Following [13], we propose to use a regularization
function ϕ encouraging neighbor pixels to be set to zero together, thus leading to a sparse structured
dictionary. We consider the collection G of all groups of variables corresponding to squares of 4

neighbor pixels in {1, . . . ,m}. Then, we define ϕ(D) , γ1
∑K

j=1

∑

g∈G maxk∈g |dj [k]|+γ2‖D‖2F,

where dj is the j-th column of D. The penalty ϕ is a structured sparsity-inducing penalty that en-
courages groups of variables g to be set to zero together [13]. Its proximal operator can be computed
efficiently [20], and it is thus easy to use the surrogates (5). We set λ1 =0.15 and λ2 =0.01; after
trying a few values for γ1 and γ2 at a reasonable computational cost, we obtain dictionaries with the
desired regularization effect, as shown in Figure 3. Learning one dictionary of size K = 256 took
a few minutes when performing one pass on the training data with mini-batches of size 100. This
experiment demonstrates that our approach is more flexible and general than [13] and [19]. Note that
it is possible to show that when γ2 is large enough, the iterates Dn necessarily remain in a bounded
set, and thus our convergence analysis presented in Section 3.3 applies to this experiment.

Figure 3: Left: Two visualizations of 25 elements from a larger dictionary obtained by the toolbox
SPAMS [19]; the second view amplifies the small coefficients. Right: the corresponding views of
the dictionary elements obtained by our approach after initialization with the dictionary on the left.

5 Conclusion

In this paper, we have introduced a stochastic majorization-minimization algorithm that gracefully
scales to millions of training samples. We have shown that it has strong theoretical properties and
some practical value in the context of machine learning. We have derived from our framework
several new algorithms, which have shown to match or outperform the state of the art for solving
large-scale convex problems, and to open up new possibilities for non-convex ones. In the future,
we would like to study surrogate functions that can exploit the curvature of the objective function,
which we believe is a crucial issue to deal with badly conditioned datasets.

Acknowledgments

This work was supported by the Gargantua project (program Mastodons - CNRS).

8

References

[1] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM J. Imaging Sci., 2(1):183–202, 2009.

[2] J.M. Borwein and A.S. Lewis. Convex analysis and nonlinear optimization. Springer, 2006.

[3] L. Bottou. Online algorithms and stochastic approximations. In David Saad, editor, Online Learning and
Neural Networks. 1998.

[4] L. Bottou and O. Bousquet. The trade-offs of large scale learning. In Adv. NIPS, 2008.

[5] O. Cappé and E. Moulines. On-line expectation–maximization algorithm for latent data models. J. Roy.
Stat. Soc. B, 71(3):593–613, 2009.

[6] J. Duchi and Y. Singer. Efficient online and batch learning using forward backward splitting. J. Mach.
Learn. Res., 10:2899–2934, 2009.

[7] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for large linear
classification. J. Mach. Learn. Res., 9:1871–1874, 2008.

[8] G. Gasso, A. Rakotomamonjy, and S. Canu. Recovering sparse signals with non-convex penalties and DC
programming. IEEE T. Signal Process., 57(12):4686–4698, 2009.

[9] S. Ghadimi and G. Lan. Stochastic first- and zeroth-order methods for nonconvex stochastic programming.
Technical report, 2013.

[10] E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret algorithms for online convex optimization. Mach.
Learn., 69(2-3):169–192, 2007.

[11] E. Hazan and S. Kale. Beyond the regret minimization barrier: an optimal algorithm for stochastic
strongly-convex optimization. In Proc. COLT, 2011.

[12] C. Hu, J. Kwok, and W. Pan. Accelerated gradient methods for stochastic optimization and online learn-
ing. In Adv. NIPS, 2009.

[13] R. Jenatton, G. Obozinski, and F. Bach. Structured sparse principal component analysis. In Proc. AIS-
TATS, 2010.

[14] G. Lan. An optimal method for stochastic composite optimization. Math. Program., 133:365–397, 2012.

[15] K. Lange, D.R. Hunter, and I. Yang. Optimization transfer using surrogate objective functions. J. Comput.
Graph. Stat., 9(1):1–20, 2000.

[16] J. Langford, L. Li, and T. Zhang. Sparse online learning via truncated gradient. J. Mach. Learn. Res.,
10:777–801, 2009.

[17] N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential convergence
rate for finite training sets. In Adv. NIPS, 2012.

[18] J. Mairal. Optimization with first-order surrogate functions. In Proc. ICML, 2013. arXiv:1305.3120.

[19] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse coding. J.
Mach. Learn. Res., 11:19–60, 2010.

[20] J. Mairal, R. Jenatton, G. Obozinski, and F. Bach. Network flow algorithms for structured sparsity. In
Adv. NIPS, 2010.

[21] R.M. Neal and G.E. Hinton. A view of the EM algorithm that justifies incremental, sparse, and other
variants. Learning in graphical models, 89, 1998.

[22] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to
stochastic programming. SIAM J. Optimiz., 19(4):1574–1609, 2009.

[23] Y. Nesterov. Gradient methods for minimizing composite objective functions. Technical report, CORE
Discussion Paper, 2007.

[24] S. Shalev-Schwartz and T. Zhang. Proximal stochastic dual coordinate ascent. arXiv 1211.2717v1, 2012.

[25] S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan. Stochastic convex optimization. In Proc.
COLT, 2009.

[26] S. Shalev-Shwartz and A. Tewari. Stochastic methods for ℓ1 regularized loss minimization. In Proc.
ICML, 2009.

[27] A. W. Van der Vaart. Asymptotic Statistics. Cambridge University Press, 1998.

[28] M.J. Wainwright and M.I. Jordan. Graphical models, exponential families, and variational inference.
Found. Trends Mach. Learn., 1(1-2):1–305, 2008.

[29] S. Wright, R. Nowak, and M. Figueiredo. Sparse reconstruction by separable approximation. IEEE T.
Signal Process., 57(7):2479–2493, 2009.

[30] L. Xiao. Dual averaging methods for regularized stochastic learning and online optimization. J. Mach.
Learn. Res., 11:2543–2596, 2010.

9

A Mathematical Background and Useful Results

In this paper, we use subdifferential calculus for convex functions. The definition of subgradients
and directional derivatives can be found in classical textbooks, see, e.g., [2], [37]. We denote by
∂f(θ) the subdifferential of a convex function f at a point θ. Other definitions can be found in the
appendix of [18], which uses a similar notation as ours.

In this section, we present several classical optimization and probabilistic tools, which we use in
our paper. The first lemma is a classical quadratic upper-bound for differentiable functions with a
Lipschitz gradient. It can be found for instance in Lemma 1.2.3 of [35], or in the appendix of [18].

Lemma A.1 (Convex Surrogate for Functions with Lipschitz Gradient).
Let f : Rp → R be differentiable and ∇f be L-Lipschitz continuous. Then, for all θ, θ′ in R

p,

|f(θ′)− f(θ)−∇f(θ)⊤(θ′ − θ)| ≤ L

2
‖θ − θ′‖22. (6)

The next lemma is a simple relation, which will allow us to identify the subdifferential of a convex
function with the one of its surrogate at a particular point.

Lemma A.2 (Surrogate Functions and Subdifferential).

Assume that f, g : R
p → R are convex, and that h , g − f is differentiable at θ in R

p with
∇h(θ) = 0. Then, ∂f(θ) = ∂g(θ).

Proof. It is easy to show that g and f have the same directional derivatives at θ since h is differen-
tiable and ∇h(θ) = 0. This is sufficient to conclude that ∂g(θ) = ∂f(θ) by using Proposition 3.1.6
of [2], a simple lemma relating directional derivatives and subgradients.

The following lemma is a lower bound for strongly convex functions. It can be found for instance
in [36].

Lemma A.3 (Lower Bound for Strongly Convex Functions).
Let f : Rp → R be a µ-strongly convex function. Let z be in ∂f(κ) for some κ in R

p. Then, the
following inequality holds for all θ in R

p:

f(θ) ≥ f(κ) + z⊤(θ − κ) + µ

2
‖θ − κ‖22.

Proof. The function l : θ 7→ f(θ)− µ
2 ‖θ−κ‖22 is convex by definition of strong convexity, and l−f

is differentiable with∇(l− f)(κ) = 0. We apply Lemma A.2, which tells us that z is in ∂l(κ). This
is sufficient to conclude, by noticing that a convex function is always above its tangents.

The next lemma is also classical (see the appendix of [18]).

Lemma A.4 (Second-Order Growth Property).
Let f : R

p → R be a µ-strongly convex function and Θ ⊆ R
p be a convex set. Let θ⋆ be the

minimizer of f on Θ. Then, the following condition holds for all θ in Θ:

f(θ) ≥ f(θ⋆) + µ

2
‖θ − θ⋆‖22.

We now introduce a sequence of probabilistic tools, which we use in our convergence analysis for
non-convex functions. The first one is a classical theorem on quasi-martingales, which was used
in [3] for proving the convergence of the stochastic gradient descent algorithm.

Theorem A.1 (Convergence of Quasi-Martingales.).
This presentation follows [3] and Proposition 9.5 and Theorem 9.4 of [34]. The original theorem
is due to [33]. Let (Fn)n≥0 be an increasing family of σ-fields. Let (Xn)n≥0 be a real stochastic
process such that every random variable Xn is bounded below by a constant independent of n, and
Fn-measurable. Let

δn ,

{

1 if E[Xn+1 −Xn|Fn] > 0,
0 otherwise.

10

If the series
∑∞

n=0 E[δn(Xn+1 − Xn)] converges, then (Xn)n≥0 is a quasi-martingale and con-
verges almost surely to an integrable random variable X∞. Moreover,

∞
∑

n=0

E
[

|E[Xn+1 −Xn|Fn]|
]

<∞.

The next lemma is simple, but useful to prove the convergence of deterministic algorithms.

Lemma A.5. Deterministic Lemma on Non-negative Converging Series.
Let (an)n≥1, (bn)n≥1 be two non-negative real sequences such that the series

∑∞
n=1 an diverges,

the series
∑∞

n=1 anbn converges, and there exists K > 0 such that |bn+1 − bn| ≤ Kan. Then, the
sequence (bn)n≥1 converges to 0.

Proof. The proof is inspired by the one of Proposition 1.2.4 of [31]. Since the series
∑

n≥1 an
diverges, we necessarily have lim infn→+∞ bn = 0. Otherwise, it would be easy to contradict the
assumption

∑

n≥1 anbn < +∞.

Let us now proceed by contradiction and assume that lim supn→+∞ bn = λ > 0. We can then build
two sequences of indices (mj)j≥1 and (nj)j≥1 such that

• mj < nj < mj+1,

• λ
3 < bk, for mj ≤ k < nj ,

• bk ≤ λ
3 , for nj ≤ k < mj+1.

Let ε = λ2

9K and ̃ be large enough such that

∞
∑

n=m̃

anbn < ε.

Then, we have for all j ≥ ̃ and all m with mj ≤ m ≤ nj − 1,

|bnj
− bm| ≤

nj−1
∑

k=m

|bk+1 − bk| ≤
3K

λ

nj−1
∑

k=m

ak
λ

3
≤ 3K

λ

nj−1
∑

k=m

akbk ≤
3K

λ

+∞
∑

k=m

akbk

≤ 3Kε

λ
≤ λ

3
.

Therefore, by using the triangle inequality,

bm ≤ bnj
+
λ

3
≤ 2λ

3
.

and finally, for all m ≥ ̃,
bm ≤

2λ

3
,

which contradicts lim supn→+∞ bn = λ > 0. Therefore, bn −→
n→+∞

0.

We now provide a stochastic version of Lemma A.6.

Lemma A.6. Stochastic Lemma on Non-negative Converging Series.
Let (Xn)n≥1 be a sequence of non-negative measurable random variables on a probability space.
Let also an, bn be two non-negative sequences such that

∑

n≥1 an = +∞ and
∑

n≥1 anbn < +∞.

Assume that there exists a constant C such that for all n ≥ 1, E[Xn] ≤ bn and |Xn+1−Xn| ≤ Can
almost surely. Then Xn almost surely converges to zero.

11

Proof. The following series is convergent

E

∑

n≥1

anXn

 =
∑

n≥1

E [anXn] ≤
∑

n≥1

anbn < +∞,

where we use the fact that the random variables are non-negative to interchange the sum and the
expectation. We thus have that

∑

n≥1 anXn converges with probability one. Then, let us call

a′n = an and b′n = Xn; the conditions of Lemma A.5 are satisfied for a′n and b′n with probability
one, and Xn almost surely converges to zero.

B Auxiliary Lemmas

In this section, we present auxiliary lemmas for our convex and non-convex analyses. We start by
presenting a lemma which is useful for both of them, and which is in fact a core component for all
results presented in [18]. The proof of this lemma is simple and available in [18].

Lemma B.1 (Basic Properties of First-Order Surrogate Functions).

Let g be in SL,ρ(f, κ) for some κ in Θ. Define the approximation error function h , g−f and let θ′

be the minimizer of g over Θ. Then, for all θ in Θ,

• ∇h(κ) = 0;

• |h(θ)| ≤ L
2 ‖θ − κ‖22;

• f(θ′) ≤ g(θ′) ≤ f(θ) + L
2 ‖θ − κ‖22 −

ρ
2‖θ − θ′‖22.

B.1 Convex Analysis

We introduce, for all n ≥ 0, the quantity ξn , 1
2E[‖θ⋆ − θn‖22], where θ⋆ is a minimizer of f on Θ.

Our analysis also involves several quantities that are defined recursively for all n ≥ 1:

An , (1− wn)An−1 + wnξn−1

Bn , (1− wn)Bn−1 + wnE[f(θn−1)]

Cn , (1− wn)Cn−1 +
(Rwn)

2

2ρ

ḡn , (1− wn)ḡn−1 + wngn
f̄n , (1− wn)f̄n−1 + wnfn

, (7)

where A0 , 1
L
(ρξ0− f⋆), B0 , 0, C0 , 0, ḡ0 = f̄0 , θ 7→ ρ

2‖θ− θ0‖22. Note that ḡ0 is ρ-strongly
convex, and is minimized by θ0. The choice for A0, B0, C0 is driven by technical reasons, which
appear in the proof of Lemma B.4, a stochastic version of Lemma B.1.

Note that we also assume here that all the expectations above are well defined and finite-valued. In
other words, we do not deal with measurability or integrability issues for simplicity, as often done
in the literature [22].

Lemma B.2 (Auxiliary Lemma for Convex Analysis).
When the functions fn are convex, and the surrogates gn are in SL,ρ(fn, θn−1), we have under
assumption (A) that for all n ≥ 1,

ḡn(θn−1) ≤ ḡn(θn) +
(Rwn)

2

2ρ
.

Proof. First, we remark that the subdifferentials of gn and fn at θn−1 coincide by applying
Lemma A.2. Then, we choose zn in ∂gn(θn−1) = ∂fn(θn−1), which is bounded by R accord-

12

ing to assumption (A), and we have

ḡn(θn) = (1− wn)ḡn−1(θn) + wngn(θn)

≥ (1−wn)
(

ḡn−1(θn−1)+
ρ

2
‖θn−θn−1‖22

)

+wn

(

gn(θn−1)+z
⊤
n (θn−θn−1)+

ρ

2
‖θn−θn−1‖22

)

= ḡn(θn−1) + wnz
⊤
n (θn − θn−1) +

ρ

2
‖θn − θn−1‖22

≥ ḡn(θn−1)−Rwn‖θn − θn−1‖2 +
ρ

2
‖θn − θn−1‖22

≥ ḡn(θn−1)−
(Rwn)

2

2ρ
.

The first inequality uses Lemma A.4 and Lemma A.3 since gn is ρ-strongly convex by definition
(and by induction ḡn is ρ-strongly convex as well); the second inequality uses Cauchy-Schwarz’s
inequality and the fact that the subgradients of the functions fn are bounded by R.

Lemma B.3 (Another Auxiliary Lemma for Convex Analysis).
When the functions fn are convex, and the surrogates gn are in SL,ρ(fn, θn−1), we have under
assumption (A) that for all n ≥ 0,

Bn ≤ E[ḡn(θn)] + Cn, (8)

Proof. We proceed by induction, and start by showing that Eq. (8) is true for n = 0.

B0 = 0 = E[ḡ0(θ0)] = E[ḡ0(θ0)] + C0.

Let us now assume that it is true for n− 1, and show that it is true for n.

Bn = (1− wn)Bn−1 + wnE[f(θn−1)]

≤ (1− wn)(E[ḡn−1(θn−1)] + Cn−1) + wnE[f(θn−1)]

= (1− wn)(E[ḡn−1(θn−1)] + Cn−1) + wnE[fn(θn−1)]

= (1− wn)(E[ḡn−1(θn−1)] + Cn−1) + wnE[gn(θn−1)]

= E[ḡn(θn−1)] + (1− wn)Cn−1

≤ E[ḡn(θn)] +
(Rwn)

2

2ρ
+ (1− wn)Cn−1

= E[ḡn(θn)] + Cn.

The first inequality uses the induction hypothesis; the last inequality uses Lemma B.2 and
the definition of Cn. We also used the fact that E[fn(θn−1)] = E[E[fn(θn−1)]|Fn−1]] =
E[E[f(θn−1)]|Fn−1]] = E[f(θn−1)], where Fn−1 corresponds to the filtration induced by the past
information before time n, such that θn−1 is deterministic given Fn−1.

The next lemma is important; it is the stochastic version of Lemma B.1 for first-order surrogates.

Lemma B.4 (Basic Properties of Stochastic First-Order Surrogates).
When the functions fn are convex and the functions gn are in SL,ρ(fn, θn−1), we have under as-
sumption (A) that for all n ≥ 0,

Bn ≤ f⋆ + LAn − ρξn + Cn,

Proof. According to Lemma B.3, it is sufficient to show that E[ḡn(θn)] ≤ f⋆ + LAn − ρξn for all
n ≥ 0. Since ḡn is ρ-strongly convex and θn is the minimizer of ḡn over Θ, we have E[ḡn(θn)] ≤
E[ḡn(θ

⋆)] − ρξn, by using Lemma A.4. Thus, it is in fact sufficient to show that E[ḡn(θ
⋆)] ≤

f⋆ + LAn. For n = 0, this inequality holds since E[ḡ0(θ
⋆)] = ρξ0 = f⋆ + LA0. We can then

proceed again by induction: assume that E[ḡn−1(θ
⋆)] ≤ f⋆ + LAn−1. Then,

E[ḡn(θ
⋆)] = (1− wn)E[ḡn−1(θ

⋆)] + wnE[gn(θ
⋆)]

≤ (1− wn)(f
⋆ + LAn−1) + wn(E[fn(θ

⋆)] + Lξn−1)

= (1− wn)(f
⋆ + LAn−1) + wn(f

⋆ + Lξn−1)

= f⋆ + LAn,

where we have used Lemma B.1 to upper-bound the difference E[gn(θ
⋆)]−E[fn(θ

⋆)] by ξn−1.

13

For strongly-convex functions, we also have the following simple but useful relation between An

and Bn.

Lemma B.5 (Relation between An and Bn).
Under assumption (B), if w1 = 1, we have for all n ≥ 1,

f⋆ + µAn ≤ Bn.

Proof. This relation is true for n = 1 since we have f⋆ + µA1 = f⋆ + µξ0 ≤ f(θ0) = B1 by
applying Lemma A.4, since f is µ-strongly convex according to assumption (B). The rest follows
by induction.

B.2 Non-convex Analysis

When the functions fn are not convex, the convergence analysis becomes more involved. One key
tool we use is a uniform convergence result when the function class {x 7→ ℓ(θ,x) : θ ∈ Θ} is
“simple enough” in terms of entropy. Under the assumptions made in our paper, it is indeed possible
to use some results from empirical processes [27], which provides us the following lemma.

Lemma B.6 (Uniform Convergence).
Under assumptions (A), (C), and (D), we have the following uniform law of large numbers:

E

[

sup
θ∈Θ

∣

∣

∣

∣

∣

1

n

n
∑

i=1

fi(θ)− f(θ)
∣

∣

∣

∣

∣

]

≤ C√
n
, (9)

where C is a constant, and supθ∈Θ

∣

∣

1
n

∑n
i=1 fi(θ)− f(θ)

∣

∣ converges almost surely to zero.

Proof. We simply refer to Lemma 19.36 and Example 19.7 of [27], where assumptions (C) and (D)
ensure uniform boundness and squared integrability conditions. Note that we assume that the quan-
tities supθ∈Θ

∣

∣

1
n

∑n
i=1 fi(θ)− f(θ)

∣

∣ are measurable. This assumption does not incur a loss of gen-
erality, since measurability issues for empirical processes can be dealt with rigorously [27].

The next lemma shows that uniform convergence applies to the weighted empirical risk f̄n, defined
in Eq. (7), but with a different rate.

Lemma B.7 (Uniform Convergence for f̄n).
Under assumptions (A), (C), (D), and (E), we have for all n ≥ 1,

E

[

sup
θ∈Θ

∣

∣f̄n(θ)− f(θ)
∣

∣

]

≤ Cwn

√
n,

where C is the same as in Lemma B.6, and supθ∈Θ

∣

∣f̄n(θ)− f(θ)
∣

∣ converges almost surely to zero.

Proof. We prove the two parts of the lemma separately. As in Lemma B.6, we assume all the
quantities of interest to be measurable.

First part of the lemma:
Let us fix n > 0. It is easy to show that f̄n can be written as f̄n =

∑n
i=1 w

i
nfi for some non-negative

weights wi
n with wn

n = wn. Let us also define the empirical cost Fi ,
1

n−i+1

∑n
j=i fj . According

to (9), we have E [supθ∈Θ |Fi(θ)− f(θ)|] ≤ C√
n−i+1

. We now remark that

f̄n − f =
n
∑

i=1

(wi
n − wi−1

n)(n− i+ 1)(Fi − f),

14

where we have defined w0
n , 0. This relation can be proved by simple calculation. We obtain the

first part by using the triangle inequality, and the fact that wi
n ≥ wi−1

n for all i:

E

[

sup
θ∈Θ
|f̄n(θ)− f(θ)|

]

≤ E

[

n
∑

i=1

(wi
n − wi−1

n)(n− i+ 1) sup
θ∈Θ
|Fi(θ)− f(θ)|

]

=

n
∑

i=1

(wi
n − wi−1

n)(n− i+ 1)E

[

sup
θ∈Θ
|Fi(θ)− f(θ)|

]

≤
n
∑

i=1

(wi
n − wi−1

n)C
√
n− i+ 1

≤
√
nC

n
∑

i=1

(wi
n − wi−1

n)

= C
√
nwn.

This is unfortunately not sufficient to show that E
[

supθ∈Θ |f̄n(θ)− f(θ)|
]

converges to zero almost
surely. We will show this fact by using Lemma A.6.

Second part of the lemma:
We call Xn = supθ∈Θ |f̄n(θ)− f(θ)|. We have

Xn −Xn−1 = sup
θ∈Θ
|(1− wn)(f̄n−1(θ)− f(θ)) + wn(fn(θ)− f(θ))| −Xn−1

≤ sup
θ∈Θ

wn|fn(θ)− f(θ)| − wnXn−1 ≤ 2Mwn

Let us denote by θ⋆n a point in Θ such that Xn = |f̄n(θ⋆n)− f(θ⋆n)|. We also have

Xn −Xn−1 = sup
θ∈Θ
|(1− wn)(f̄n−1(θ)− f(θ)) + wn(fn(θ)− f(θ))| −Xn−1

≥ (1− wn)Xn−1 + wn(fn(θ
⋆
n−1)− f(θ⋆n−1))−Xn−1

≥ −wnXn−1 + wn(fn(θ
⋆
n−1)− f(θ⋆n−1))

≥ −wn4M,

where we use again the fact that all functions fn, f̄n and f are bounded byM . Thus, we have shown
that |Xn − Xn−1| ≤ 4Mwn. Call an = wn and bn = wn

√
n, then the conditions of Lemma A.6

are satisfied, and Xn converges almost surely to zero.

Finally, the next lemma illustrates why the strong convexity of the surrogates is important.

Lemma B.8 (Stability of the Estimates).
When gn is in SL,ρ(f, θn−1),

‖θn − θn−1‖2 ≤
2Rwn

ρ
.

Proof. Because the surrogates gn are ρ-strongly convex, we have from Lemma A.4

ρ

2
‖θn − θn−1‖22 ≤ ḡn(θn−1)− ḡn(θn)

= wn (gn(θn−1)− gn(θn)) + (1− wn) (ḡn−1(θn−1)− ḡn−1(θn))

≤ wn (gn(θn−1)− gn(θn))
≤ wn (fn(θn−1)− fn(θn))
≤ Rwn‖θn − θn−1‖2.

The second inequality comes from the fact that θn−1 is a minimizer of ḡn−1; the third inequality is
because gn(θn−1) = fn(θn−1) and gn ≥ fn. This is sufficient to conclude.

15

C Proofs of the Main Lemmas and Propositions

C.1 Proof of Proposition 3.1

Proof. According to Lemma B.4, we have for all n ≥ 1,

wnBn−1 ≤ wnf
⋆ + LwnAn−1 − Lwnξn−1 + wnCn−1.

By using the relations (7), this is equivalent to

Bn−1 −Bn + wnE[f(θn−1)] ≤ wnf
⋆ + L(An−1 −An) + Cn−1 − Cn +

(Rwn)
2

2L
.

By summing these inequalities between 1 and n, we obtain

B0 −Bn +

n
∑

k=1

wkE[f(θk−1)] ≤
(

n
∑

k=1

wk

)

f⋆ + LA0 − LAn − Cn +

n
∑

k=1

(Rwk)
2

2L
.

Note that we also have

Bn ≤ f⋆ + LAn + Cn = LAn + Cn +B0 − LA0 + Lξ0.

Therefore, by combining the two previous inequalities,

n
∑

k=1

wkE[f(θk−1)] ≤
(

n
∑

k=1

wk

)

f⋆ + Lξ0 +
n
∑

k=1

(Rwk)
2

2L
,

and by using Jensen’s inequality,

E[f(θ̄n−1)− f⋆] ≤
Lξ0 +

R2

2L

∑n
k=1 w

2
k

∑n
k=1 wk

.

C.2 Proof of Corollary 3.1

Proof.

We choose weights of the form wn ,
γ√
n

. Then, we have

n
∑

k=1

w2
k ≤ γ2(1 + log n),

by using the fact that
∑n

k=1
1
k
≤ 1 + log(n). We also have for n ≥ 2,

n
∑

k=1

wk ≥ 2γ(
√
n+ 1− 1) ≥ γ

√
n,

where we use the fact that
∑n

k=1
1√
k
≥ 2(
√
n+ 1− 1), and the fact that 2(

√
n+ 1− 1) ≥ √n for

all n ≥ 2. Plugging this inequalities into (3) yields the desired result.

C.3 Proof of Proposition 3.2

Proof. We proceed in several steps, proving the convergence rates of several quantities of interest.

Convergence rate of Cn:

Let us show by induction that we have Cn ≤ R2

ρ
wn for all n ≥ 1. This is obviously true for n = 1

16

by definitions of w1 = 1 and C1 = R2

2ρ . Let us now assume that it is true for n− 1. We have

Cn = (1− wn)Cn−1 +
R2

2ρ
w2

n

≤ R2

ρ
wn

(

(1− wn)
wn−1

wn

+
wn

2

)

≤ R2

ρ
wn

(

β(n− 1)

βn+ 1

βn+ 1

β(n− 1) + 1
+

1

βn+ 1

)

≤ R2

ρ
wn

(

β(n− 1)

β(n− 1) + 1
+

1

β(n− 1) + 1

)

=
R2

ρ
wn.

(10)

We conclude by induction that this is true for all n ≥ 1.

Convergence rate of An:
From Lemma B.5 and B.4, we have for all n ≥ 2,

µAn−1 ≤ LAn−1 − ρξn−1 + Cn−1.

Multiplying this inequality by wn,

2µwnAn−1 ≤ ρwn(An−1 − ξn−1) + wnCn−1,

where the factor 2 comes from the fact that ρ = L+ µ. By using the definition of An in Eq. (7), we
obtain the relation

An ≤
(

1− 2µwn

ρ

)

An−1 +
wn

ρ
Cn−1.

Let us now show by induction that we have, for all n ≥ 1, the convergence rate An ≤ δwn, where

δ , max
(

R2

ρµ
, ξ0

)

. For n = 1, we have that and w1 = 1, and thus A1 = ξ0 ≤ δ. Assume now

that we have An−1 ≤ δwn−1 for some n ≥ 1. Then, by using the convergence rate (10) and the
induction hypothesis,

An ≤ δwn

((

1− 2µwn

ρ

)

wn−1

wn

+
R2wn−1

ρ2δ

)

≤ δwn

((

1− 2µwn

ρ

)

wn−1

wn

+ µ
wn−1

ρ

)

≤ δwn

(

βn+ 1− 2µ(1+β)
ρ

βn+ 1

βn+ 1

β(n− 1) + 1
+

µ(1+β)
ρ

β(n− 1) + 1

)

= δwn

(

βn+ 1− µ(1+β)
ρ

β(n− 1) + 1

)

≤ δwn.

The last inequality uses the fact that
µ(1+β)

ρ
≥ β because β ≤ µ

L
. we conclude by induction that

An ≤ δwn for all n ≥ 1.

Convergence rate of E[f(θ̂n)− f⋆] + ρξn:
We use again Lemma B.4:

Bn − f⋆ + ρξn ≤ LAn + Cn,

and we consider two possible cases

17

• If R2

ρµ
≥ ξ0, then

Bn − f⋆ + ρξn ≤
R2

ρ

(

1 +
L

µ

)

wn

=
R2

µ
wn

≤ 2R2

µ(βn+ 1)
,

where we simply use the convergence rates of An and Cn computed before.

• If instead R2

ρµ
< ξ0, then

Bn − f⋆ + ρξn ≤
(

R2

ρ
+ Lξ0

)

wn

≤ ρξ0wn

≤ 2ρξ0
βn+ 1

.

It is then easy to prove that E[f(θ̂n)−f⋆] ≤ Bn by using Jensen’s inequality, which allows
us to conclude.

C.4 Proof of Proposition 3.3

Proof. We generalize the proof of convergence for online matrix factorization of [19]. The proof
exploits Theorem A.1 about the convergence of quasi-martingales [33], similarly as [3] for proving
the convergence of the stochastic gradient descent algorithm for non-convex functions.

Almost sure convergence of (ḡn(θn))n≥1:
The first step consists of applying a convergence theorem for the sequence (ḡn(θn))n≥1 by bounding

its positive expected variations. Define Yn , ḡn(θn). For n ≥ 2, we have

Yn−Yn−1 = ḡn(θn)−ḡn(θn−1)+ḡn(θn−1)−ḡn−1(θn−1)

= (ḡn(θn)−ḡn(θn−1))+wn(gn(θn−1)−ḡn−1(θn−1))

= (ḡn(θn)−ḡn(θn−1))+wn(f̄n−1(θn−1)−ḡn−1(θn−1))+wn(gn(θn−1)−f̄n−1(θn−1))

= (ḡn(θn)−ḡn(θn−1))+wn(f̄n−1(θn−1)−ḡn−1(θn−1))+wn(fn(θn−1)−f̄n−1(θn−1))

≤ wn(fn(θn−1)−f̄n−1(θn−1)).
(11)

The final inequality comes from the inequality ḡn ≥ f̄n, which is easy to show by induction starting
from n = 1 since w1 = 1. It follows,

E[ḡn(θn)− ḡn−1(θn−1)|Fn−1] ≤ wnE[fn(θn−1)− f̄n−1(θn−1)|Fn−1]

= wn(f(θn−1)− f̄n−1(θn−1))

≤ wn sup
θ∈Θ
|f(θ)− f̄n−1(θ)|,

where Fn−1 is the filtration representing the past information before time n. Call now

δn ,

{

1 if E[ḡn(θn)− ḡn−1(θn−1)|Fn−1] > 0
0 otherwise.

18

Then, the series below with non-negative summands converges:

∞
∑

n=1

E[δn(ḡn(θn)− ḡn−1(θn−1))] =

∞
∑

n=1

E[δnE[(ḡn(θn)− ḡn−1(θn−1))|Fn−1]]

≤
∞
∑

n=1

E

[

wn sup
θ∈Θ
|f(θ)− f̄n−1(θ)|

]

≤
∞
∑

n=1

Cw2
n

√
n < +∞,

The second inequality comes from Lemma B.7. Since in addition ḡn is bounded below by some
constant independent of n, we can apply Theorem A.1. This theorem tells us that (ḡn(θn))n≥1

converges almost surely to an integrable random variable g⋆ and that
∑∞

n=1 E[|E[ḡn(θn) −
ḡn−1(θn−1)|Fn−1]|] converges almost surely.

Almost sure convergence of (f̄n(θn))n≥1:

We will show by using Lemma A.5 that the non-positive term f̄n(θn) − ḡn(θn) almost surely con-
verges to zero, and thus (f̄n(θn))n≥1 is also converging almost surely to g⋆.

We observe that
∞
∑

n=1

E[|E[ḡn(θn)− ḡn−1(θn−1)|Fn−1]|] = E

[∞
∑

n=1

|E[ḡn(θn)− ḡn−1(θn−1)|Fn−1]|
]

< +∞.

Thus, the series
∑∞

n=1 |E[ḡn(θn) − ḡn−1(θn−1)|Fn−1]| is absolutely convergent with probability

one, and the series
∑∞

n=1 E[ḡn(θn)− ḡn−1(θn−1)|Fn−1] is also almost surely convergent.

We also remark that, using Lemma B.7,

E

[

+∞
∑

n=1

wn|f(θn−1)− f̄n−1(θn−1)|
]

≤ C
+∞
∑

n=1

w2
n

√
n < +∞,

and thus wn(f(θn−1)− f̄n−1(θn−1)) is the summand of an absolutely convergent series with prob-
ability one.

Taking the expectation of Eq. (11) conditioned on Fn−1, it remains that the non-positive term
wn(f̄n−1(θn−1)− ḡn−1(θn−1)) is also necessarily the summand of an almost surely convergent se-
ries, since all other terms in the equation are summands of almost surely converging sums. This is not
sufficient to immediately conclude that f̄n(θn)−ḡn(θn) converges to zero almost surely, and thus we

will use Lemma A.5. We have that
∑+∞

n=1 wn diverges, that
∑+∞

n=1 wn(ḡn−1(θn−1)− f̄n−1(θn−1))

converges almost surely. Define Xn , (ḡn−1(θn−1) − f̄n−1(θn−1)). By definition of the surro-

gate functions, the differences hn , gn − fn are differentiable and their gradients are L-Lipschitz
continuous. Since in addition Θ is compact and ∇hn(θn−1) = 0, ∇hn is bounded by some con-
stant R′ independent of n, and the function hn is R′-Lipschitz. This is therefore also the case for
h̄n = ḡn − f̄n.

|Xn+1 −Xn| = |h̄n(θn)− h̄n−1(θn−1)|
≤ |h̄n(θn)− h̄n(θn−1)|+ |h̄n(θn−1)− h̄n−1(θn−1)|
≤ R′‖θn − θn−1‖2 + |h̄n(θn−1)− h̄n−1(θn−1)|

≤ 2RR′

ρ
wn + wn|hn(θn−1)− h̄n−1(θn−1)|

=
2RR′

ρ
wn + wn|h̄n−1(θn−1)|

≤ O(wn).

The second inequality uses the fact that h̄n is R′-Lipschitz; The second inequality uses Lemma B.8;
the last equality uses the fact that the functions hn are also bounded by some constant independent
of n (using the fact that ∇hn is uniformly bounded). We can now apply Lemma A.5, and Xn

converges to zero with probability one. Thus, (f̄n(θn))n≥1 converges almost surely to g⋆.

19

Almost sure convergence of (f(θn))n≥1:

Since (f̄n(θn))n≥1 converges almost surely, we simply use Lemma A.6, which tells us that f̄n
converges uniformly to f . Then, (f(θn))n≥1 converges almost surely to g⋆.

Asymptotic Stationary Point Condition:

Let us call h̄n , ḡn − f̄n, which can be shown to be differentiable with a L-Lipschitz gradient by
definition of the surrogate gn. For all θ in Θ,

∇f̄n(θn, θ − θn) = ∇ḡn(θn, θ − θn)−∇h̄n(θn)⊤(θ − θn).
Since θn is the minimizer of ḡn, we have ∇ḡn(θn, θ − θn) ≥ 0.

Since h̄n is differentiable and its gradient is L-Lipschitz continuous, we can apply Lemma A.1 to
θ = θn and θ′ = θn− 1

L
∇h̄n(θn), which gives h̄n(θ

′) ≤ h̄n(θn)− 1
2L‖∇h̄n(θn)‖22. Since we have

shown that h̄n(θn) = ḡn(θn)− f̄(θn) converges to zero and h̄n(θ
′) ≥ 0, we have that ‖∇h̄n(θn)‖2

converges to zero. Thus,

inf
θ∈Θ

∇f̄n(θn, θ − θn)
‖θ − θn‖2

≥ −‖∇h̄n(θn)‖2 −→
n→+∞

0 a.s.

C.5 Proof of Proposition 3.4

Proof. Since Θ is compact according to assumption (C), the sequence (θn)n≥1 admits limit points.
Let us consider a converging subsequence (nk)k≥1 to a limit point θ∞ in Θ. In this converging
subsequence, we can also find a subsequence (nk′)k′≥1 such that κnk′

converges to a point κ∞ in K
(which is compact). For the sake of simplicity, and without loss of generality, we remove the indices
k and k′ from the notation and assume that θn converges to θ∞, while κn converges to κ∞. It is then

easy to see that the functions ḡn converge uniformly to ḡ∞ , gκ∞
, given the assumptions made in

the proposition.

Defining h̄∞ , ḡ∞ − f , we have for all θ in Θ:

∇f(θ∞, θ − θ∞) = ∇ḡ∞(θ∞, θ − θ∞)−∇h̄∞(θ∞, θ − θ∞).

To prove the proposition, we will first show that∇ḡ∞(θ∞, θ−θ∞) ≥ 0 and then that∇h̄∞(θ∞, θ−
θ∞) = 0.

Proof of ∇ḡ∞(θ∞, θ − θ∞) ≥ 0:
It is sufficient to show that θ∞ is a minimizer of ḡ∞. This is straightforward, by taking the limit
when n goes to infinity of

ḡn(θ) ≥ ḡn(θn),
where we use the uniform convergence of ḡn.

Proof of ∇h̄∞(θ∞, θ − θ∞) = 0:
Since both f̄n and ḡn converges uniformly (according to Lemma B.7 for f̄n), we have that h̄n
converges uniformly to h̄∞. Since h̄n is differentiable with a L-Lipschitz gradient, we have for all
vector z in R

p,
h̄n(θn + z) = h̄n(θn) +∇h̄n(θn)⊤z+O(‖z‖22),

where the constant in O is independent of n. By taking the limit when n goes to infinity, it remains

h̄∞(θ∞ + z) = h̄∞(θ∞) +O(‖z‖22),
since we have shown in the proof of Proposition 3.3 that ‖∇h̄n(θn)‖2 converges to zero. Since h̄∞
admits a first order extension around θ∞ it is differentiable at this point and furthermore,
∇h̄∞(θ∞) = 0. This is sufficient to conclude.

C.6 Proof of Proposition 3.5

Proof. First we notice that

• gn ≥ fn;

20

• gn(θn−1) = fn(θn−1);

• gn is ρ1-strongly convex since θ 7→ gk,n(γk(θ)) can be shown to be convex, following
elementary composition rules for convex functions (see [32], Section 3.2.4).

Thus, the only property missing is the smoothness of the approximation error hn , gn− fn. Rather
than writing again a full proof, we now simply review the different places where this property is
used, and which modifications should be made to the proofs of Propositions 3.3 and 3.4.

In the second step of this proof, we require the functions hn to be uniformly Lipschitz and uniformly
bounded. It easy to check that it is still the case with the assumptions we made in Proposition 3.5.

The last step about the asymptotic point condition is however more problematic, where we cannot
show anymore that the quantity∇h̄n(θn) converges to zero (since h̄n is not differentiable anymore).

Instead, we need to show that the directional derivative
∇h̄n(θn,θ−θn)

‖θ−θn‖ uniformly converges to zero

on Θ.

We will show the result for K = 1; it will be easy to extend it to any arbitrary K > 2. We remark
that

∇h̄n(θn, θ − θn) = ∇h̄0,n(θn)⊤(θ − θn) + lim
t→0+

h̄1,n(γ1(θn + t(θ − θn)))− h̄1,n(γ1(θn))
t

,

where h̄0,n and h̄1,n are defined similarly as h̄n for the functions h0,n , g0,n − f0,n and h1,n ,

g1,n − f1,n respectively. Since h̄n(θn) is shown to converge to zero, we have that the non-negative

quantities h̄0,n(θn) and h̄1,n(γ1(θn)) converge to zero as well. Since h̄0,n and h̄1,n are differentiable
and their gradients are Lipschitz, we use similar arguments as in the proof of Proposition 3.3, and
we have that ∇h̄0,n(θn) and h̄′1,n(γ1(θn)) converge to zero (where h̄′1,n is the derivative of h̄1,n.

Concerning the second term, we can make the following Taylor expansion for h̄1,n:

h̄1,n(γ1(θn+z)) = h̄1,n(γ1(θn))+h̄
′
1,n(γ1(θn))(γ1(θn+z)−γ1(θn))+O

(

(γ1(θn + z)− γ1(θn))2
)

,

where the constant in theO notation is independent of θn and z (since the derivative isL1-Lipschitz).

Plugging z , t(θ − θn) in this last equation, and using the Lipschitz property of γ1, we have

lim
t→0+

∣

∣

∣

∣

h̄1,n(γ1(θn + t(θ − θn)))− h̄1,n(γ1(θn))
t

∣

∣

∣

∣

≤ |h̄′1,n(γ1(θn))|‖θ − θn‖.

Since h̄′1,n(γ1(θn)) converges to zero, we can conclude the proof of the modified Proposition 3.3.

The proof of Proposition 3.4 can be modified with similar arguments.

D Additional Experimental Results

We present in Figures 4 and 5 some additional experimental comparisons, which complement the
ones of Section 4.1. Figures 6 and 7 present additional plots from the experiment of Section 4.2.
Finally, we present three dictionaries corresponding to the experiment of Section 4.3 in Figures 8, 9
and 10.

Supplementary References

[31] D.P. Bertsekas. Nonlinear programming. Athena Scientific Belmont, 1999. 2nd edition.

[32] S.P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[33] D. L. Fisk. Quasi-martingales. T. Am. Math. Soc., 120(3):359–388, 1965.

[34] M. Métivier. Semi-martingales. Walter de Gruyter, 1983.

[35] Y. Nesterov. Introductory lectures on convex optimization. Kluwer Academic Publishers, 2004.

[36] Y. Nesterov and J.-P. Vial. Confidence level solutions for stochastic programming. Automatica,
44(6):1559–1568, 2008.

[37] J. Nocedal and S.J. Wright. Numerical optimization. Springer Verlag, 2006. 2nd edition.

21

0 5 10 15 20 25
0.48

0.49

0.5

0.51

0.52

0.53

0.54

Epochs / Dataset rcv1

O
bj

ec
tiv

e
on

 T
ra

in
in

g
S

et

LIBLINEAR
SMM

0.48

0.49

0.5

0.51

0.52

0.53

0.54

Computation Time (sec) / Dataset rcv1

O
bj

ec
tiv

e
on

 T
ra

in
in

g
S

et

100 101 102

LIBLINEAR
SMM

0 5 10 15 20 25

0.5

0.51

0.52

0.53

0.54

0.55

Epochs / Dataset rcv1

O
bj

ec
tiv

e
on

 T
es

tin
g

S
et

LIBLINEAR
SMM

0 5 10 15 20 25

0.25

0.3

0.35

0.4

Epochs / Dataset webspam

O
bj

ec
tiv

e
on

 T
ra

in
in

g
S

et

LIBLINEAR
SMM

0.25

0.3

0.35

0.4

Computation Time (sec) / Dataset webspam

O
bj

ec
tiv

e
on

 T
ra

in
in

g
S

et

101 102 103

LIBLINEAR
SMM

0 5 10 15 20 25

0.25

0.3

0.35

0.4

Epochs / Dataset webspam

O
bj

ec
tiv

e
on

 T
es

tin
g

S
et

LIBLINEAR
SMM

0 5 10 15 20 25

0.1

0.15

0.2

0.25

0.3

Epochs / Dataset kddb

O
bj

ec
tiv

e
on

 T
ra

in
in

g
S

et

LIBLINEAR
SMM

0.1

0.15

0.2

0.25

0.3

Computation Time (sec) / Dataset kddb

O
bj

ec
tiv

e
on

 T
ra

in
in

g
S

et

101 102 103

LIBLINEAR
SMM

0 5 10 15 20 25

0.1

0.15

0.2

0.25

0.3

Epochs / Dataset kddb

O
bj

ec
tiv

e
on

 T
es

tin
g

S
et

LIBLINEAR
SMM

Figure 4: Comparison between LIBLINEAR and SMM in the high regularization regime for ℓ1-
logistic regression.

0 5 10 15 20 25

0.15

0.2

0.25

0.3

Epochs / Dataset rcv1

O
bj

ec
tiv

e
on

 T
ra

in
in

g
S

et

LIBLINEAR
SMM

0.15

0.2

0.25

0.3

Computation Time (sec) / Dataset rcv1

O
bj

ec
tiv

e
on

 T
ra

in
in

g
S

et

100 101 102

LIBLINEAR
SMM

0 5 10 15 20 25
0.15

0.2

0.25

0.3

Epochs / Dataset rcv1

O
bj

ec
tiv

e
on

 T
es

tin
g

S
et

LIBLINEAR
SMM

0 5 10 15 20 25

0

0.05

0.1

Epochs / Dataset webspam

O
bj

ec
tiv

e
on

 T
ra

in
in

g
S

et

LIBLINEAR
SMM

0

0.05

0.1

Computation Time (sec) / Dataset webspam

O
bj

ec
tiv

e
on

 T
ra

in
in

g
S

et

101 102 103

LIBLINEAR
SMM

0 5 10 15 20 25

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Epochs / Dataset webspam

O
bj

ec
tiv

e
on

 T
es

tin
g

S
et

LIBLINEAR
SMM

0 5 10 15 20 25

0

0.05

0.1

0.15

0.2

Epochs / Dataset kddb

O
bj

ec
tiv

e
on

 T
ra

in
in

g
S

et

LIBLINEAR
SMM

0

0.05

0.1

0.15

0.2

Computation Time (sec) / Dataset kddb

O
bj

ec
tiv

e
on

 T
ra

in
in

g
S

et

101 102 103

LIBLINEAR
SMM

0 5 10 15 20 25

0

0.05

0.1

0.15

0.2

Epochs / Dataset kddb

O
bj

ec
tiv

e
on

 T
es

tin
g

S
et

LIBLINEAR
SMM

Figure 5: Comparison between LIBLINEAR and SMM in the low regularization regime for ℓ1-
logistic regression.

22

0 5 10 15 20 25

-3.1

-3.05

-3

-2.95

-2.9

-2.85

-2.8

Iterations - Epochs / Dataset rcv1

O
bj

ec
tiv

e
on

 T
ra

in
 S

et

Online DC
Batch DC

0 5 10 15 20 25

-3.1

-3.05

-3

-2.95

-2.9

-2.85

-2.8

Iterations - Epochs / Dataset rcv1

O
bj

ec
tiv

e
on

 T
es

t S
et

Online DC
Batch DC

0 5 10 15 20 25

-412.55

-412.5

-412.45

-412.4

Iterations - Epochs / Dataset webspam

O
bj

ec
tiv

e
on

 T
ra

in
 S

et

Online DC
Batch DC

0 5 10 15 20 25

-399.2

-399.15

-399.1

-399.05

Iterations - Epochs / Dataset webspam
O

bj
ec

tiv
e

on
 T

es
t S

et

Online DC
Batch DC

Figure 6: Comparison between batch and online DC programming, with high regularization for
the datasets rcv1 and webspam. Note that each iteration in the batch setting can perform several
epochs.

0 5 10 15 20 25

0.105

0.11

0.115

0.12

0.125

Iterations - Epochs / Dataset rcv1

O
bj

ec
tiv

e
on

 T
ra

in
 S

et

Online DC
Batch DC

0 5 10 15 20 25

0.142

0.144

0.146

0.148

0.15

Iterations - Epochs / Dataset rcv1

O
bj

ec
tiv

e
on

 T
es

t S
et

Online DC
Batch DC

0 5 10 15 20 25

-0.14

-0.13

-0.12

-0.11

Iterations - Epochs / Dataset webspam

O
bj

ec
tiv

e
on

 T
ra

in
 S

et

Online DC
Batch DC

0 5 10 15 20 25

-0.12

-0.1

-0.08

-0.06

Iterations - Epochs / Dataset webspam

O
bj

ec
tiv

e
on

 T
es

t S
et

Online DC
Batch DC

Figure 7: Comparison between batch and online DC programming, with low regularization for the
datasets rcv1 and webspam. Note that each iteration in the batch setting can perform several
epochs.

23

Figure 8: Dictionary obtained using the toolbox SPAMS [19].

Figure 9: Sparse dictionary obtained by our approach, using the dictionary of Figure 8 as an initial-
ization.

24

Figure 10: Sparse dictionary obtained by our approach, using the dictionary of Figure 8 as an ini-
tialization, and with a higher regularization parameter than in Figure 9.

25

	Introduction
	Optimization with First-Order Surrogate Functions
	Stochastic Optimization
	Convergence Analysis - Convex Case
	Convergence Analysis - Strongly Convex Case
	Convergence Analysis - Non-Convex Case

	Applications and Experimental Validation
	Stochastic Proximal Gradient Descent Algorithm
	Online DC Programming for Non-Convex Sparse Estimation
	Online Structured Sparse Coding

	Conclusion
	Mathematical Background and Useful Results
	Auxiliary Lemmas
	Convex Analysis
	Non-convex Analysis

	Proofs of the Main Lemmas and Propositions
	Proof of Proposition 3.1
	Proof of Corollary 3.1
	Proof of Proposition 3.2
	Proof of Proposition 3.3
	Proof of Proposition 3.4
	Proof of Proposition 3.5

	Additional Experimental Results

