New Subsampling Algorithms for Fast Least Squares
Regression

Paramveer S. Dhillon' Yichao Lu?> Dean Foster’> Lyle Ungar!
!Computer & Information Science, 2Statistics (Wharton School)
University of Pennsylvania, Philadelphia, PA, U.S.A
{dhillon|ungar}@cis.upenn.edu
foster@wharton.upenn.edu, yichaolu@sas.upenn.edu

Abstract

We address the problem of fast estimation of ordinary least squares (OLS) from
large amounts of data (n > p). We propose three methods which solve the big
data problem by subsampling the covariance matrix using either a single or two
stage estimation. All three run in the order of size of input i.e. O(np) and our best

method, Uluru, gives an error bound of O(+/p/n) which is independent of the
amount of subsampling as long as it is above a threshold. We provide theoretical
bounds for our algorithms in the fixed design (with Randomized Hadamard pre-
conditioning) as well as sub-Gaussian random design setting. We also compare the
performance of our methods on synthetic and real-world datasets and show that if
observations are i.i.d., sub-Gaussian then one can directly subsample without the
expensive Randomized Hadamard preconditioning without loss of accuracy.

1 Introduction

Ordinary Least Squares (OLS) is one of the oldest and most widely studied statistical estimation
methods with its origins tracing back over two centuries. It is the workhorse of fields as diverse
as Machine Learning, Statistics, Econometrics, Computational Biology and Physics. To keep pace
with the growing amounts of data ever faster ways of estimating OLS are sought. This paper focuses
on the setting (n > p), where n is the number of observations and p is the number of covariates or
features, a common one for web scale data.

Numerous approaches to this problem have been proposed [[1} 23,4} 5]. The predominant approach
to solving big data OLS estimation involves using some kind of random projections, for instance,
transforming the data with a randomized Hadamard transform [[6] or Fourier transform and then
uniformly sampling observations from the resulting transformed matrix and estimating OLS on this
smaller data set. The intuition behind this approach is that these frequency domain transformations
uniformize the data and smear the signal across all the observations so that there are no longer
any high leverage points whose omission could unduly influence the parameter estimates. Hence,
a uniform sampling in this transformed space suffices. Another way of looking at this approach is
as preconditioning the design matrix with a carefully constructed data-independent random matrix
before subsampling. This approach has been used by a variety of papers proposing methods such as
the Subsampled Randomized Hadamard Transform (SRHT) [1} 4] and the Subsampled Randomized
Fourier Transform (SRFT) [2, 3]]. There is also publicly available software which implements these
ideas [7]. It is worth noting that these approaches assume a fixed design setting.

Following this line of work, in this paper we provide two main contributions:

1. Novel Subsampling Algorithms for OLS: We propose three noveﬂ algorithms for fast
estimation of OLS which work by subsampling the covariance matrix. Some recent re-
sults in [8] allow us to bound the difference between the parameter vector (w) we esti-
mate from the subsampled data and the frue underlying parameter (wg) which generates
the data. We provide theoretical analysis of our algorithms in the fixed design (with Ran-
domized Hadamard preconditioning) as well as sub-Gaussian random design setting. The
error bound of our best algorithm, Uluru, is independent of the fraction of data subsampled
(above a minimum threshold of sub-sampling) and depends only on the characteristics of
the data/design matrix X.

2. Randomized Hadamard preconditioning not always needed: We show that the error
bounds for all the three algorithms are similar for both the fixed design and the sub-
Gaussian random design setting. In other words, one can either transform the data/design
matrix via Randomized Hadamard transform (fixed design setting) and then use any of our
three algorithms or, if the observations are i.i.d. and sub-Gaussian, one can directly use
any of our three algorithms. Thus, another contribution of this paper is to show that if
the observations are i.i.d. and sub-Gaussian then one does not need the slow Randomized
Hadamard preconditioning step and one can get similar accuracies much faster.

The remainder of the paper is organized as follows: In the next section, we formally define nota-
tion for the regression problem, then in Sections 3 and 4, we describe our algorithms and provide
theorems characterizing their performance. Finally, we compare the empirical performance of our
methods on synthetic and real world data.

2 Notation and Preliminaries

Let X be the n X p design matrix. For the random design case we assume the rows of X are n i.i.d
samples from the 1 X p independent variable (a.k.a. “covariates” or “predictors”) X. Y is the real
valued n x 1 response vector which contains n corresponding values of the dependent variable Y
(in general we use bold letter for samples and normal letter for random variables or vectors). € is
the n x 1 homoskedastic noise vector with common variance o2. We want to infer wg i.e. the p x 1
population parameter vector that generated the data.

More formally, we can write the true model as:
Y = Xwg + €
2

€ ~iid N (0, o)
The sample solution to the above equation (in matrix notation) is given by
Wsample = (XTX)~1XTY and by consistency of the OLS estimator we know that Wsample —>d W0
as n — oo. Classical algorithms to estimate Wsample Use QR decomposition or bidiagonalization [9]
and they require O(np?) floating point operations.

Since our algorithms are based on subsampling the covariance matrix, we need some extra notation.
Let 7 = ngps/n (< 1) be the subsampling ratio, giving the ratio of the number of observations
(nsubs) in the subsampled matrix X, fraction to the number of observations (n) in the original
X matrix. Le., r is the fraction of the observations sampled. Let X;e, Yiem denote the data and

response vector for the remaining 7 — ngps observations. In other words X T = [X[, ; X[] and
T_yvT .vT
Y = [Ysubs ’ Yrem]'

Also, let X x xbe the covariance of X and X xy be the covariance between X and Y. Then, for
the fixed design setting X xx = XX /n and Zxy = XY /n and for the random design setting
EXX = E(XTX) and EXY =]E(XTY)
The bounds presented in this paper are expressed in terms of the Mean Squared Error (or Risk) for
the /5 loss. For the fixed design setting,

MSE = (’LUQ — @)TXTX(IUO — I/U\)/TL = (’LUO — ’l/l}\)—rzxx(wo — I/U\)
For the random design setting

MSE = EXHXwO — X’l/l)\||2 = (’wo — ’L/U\)TEXX(U]O — ’L/U\>

'One of our algorithms (FS) is similar to [4] as we describe in Related Work. However, even for that
algorithm, our theoretical analysis is novel.

2.1 Design Matrix and Preconditioning

Thus far, we have not made any assumptions about the design matrix X. In fact, our algorithms and
analysis work for both fixed design and random design settings.

As mentioned earlier, our algorithms involve subsampling the observations, so we have to ensure
that we do not leave behind any observations which are outliers/high leverage points; This is done
differently for fixed and random designs. For the fixed design setting the design matrix X is arbitrary
and may contain high leverage points. Therefore before subsampling we precondition the matrix by
a Randomized Hadamard/Fourier Transform [1} 4] and after conditioning, the probability of having
high leverage points in the new design matrix becomes very small. On the other hand, if we assume
X to be random design and its rows are i.i.d. draws from some nice distribution like sub-Gaussian,
then the probability of having high leverage points is very small and we can happily subsample X
without preconditioning.

In this paper we analyze both the fixed as well as sub-Gaussian random design settings. Since the
fixed design analysis would involve transforming the design matrix with a preconditioner before
subsampling, some background on SRHT is warranted.

Subsampled Randomized Hadamard Transform (SRHT): In the fixed design setting we pre-
condition and subsample the data with a ngps X n randomized hadamard transform matrix ©(=

/—2—RHD)as © - X.
Tsubs

The matrices R, H, and D are defined as:

e R € R"subs*™ ig a set of ngyps rows from the n x n identity matrix, where the rows are
chosen uniformly at random without replacement.

e D € R™ " is a random diagonal matrix whose entries are independent random signs, i.e.
random variables uniformly distributed on {£1}.

e H ¢ R™*" is a normalized Walsh-Hadamard matrix, defined as: H,, = H”/ 2 H"/ 2
Hn/2 _Hn/2
with, Hy = {i% tﬂ .H = ﬁHn is a rescaled version of H,,.

It is worth noting that HD is the preconditioning matrix and R is the subsampling matrix.

The running time of SRHT is n p log(p) floating point operations (FLOPS) [4]. [4] mention fix-
ing nsups = O(p). However, in our experiments we vary the amount of subsampling, which is
not something recommended by their theory. With varying subsampling, the run time becomes
O(n p log(nsups))-

3 Three subsampling algorithms for fast linear regression

All our algorithms subsample the X matrix followed by a single or two stage fitting and are described
below. The algorithms given below are for the random design setting. The algorithms for the fixed
design are exactly the same as below, except that X,ps, Ysubs are replaced by © - X, © - Y and
Xrems Yrem With Opep, - X, Oep - Y, where © is the SRHT matrix defined in the previous section
and O,..,, is the same as O, except that R is of size n,¢,, X n. Still, for the sake of completeness,
the algorithms are described in detail in the Supplementary material.

Full Subsampling (FS): Full subsampling provides a baseline for comparison; In it we simply
r-subsample (X,Y) as (Xsubs, Ysubs) and use the subsampled data to estimate both the X x x and
3 xy covariance matrices.

Covariance Subsampling (CovS): In Covariance Subsampling we r-subsample X as X only to
estimate the 3 x x covariance matrix; we use all the n observations to compute the 3 xy covariance
matrix.

Uluru : Ulunﬂis a two stage fitting algorithm. In the first stage it uses the r-subsampled (X,Y)
to get an initial estimate of w (i.e., Wrg) via the Full Subsampling (FS) algorithm. In the sec-
ond stage it uses the remaining data (X em, Yrem) to estimate the bias of the first stage estimator
Weorreet = Wo — Wrg. The final estimate (wyry,) 18 taken to be a weighted combination (gener-
ally just the sum) of the FS estimator and the second stage estimator (Wepprect). Uluru is described
in Algorithm 1.

In the second stage, since Wrg is known, on the remaining data we have Yiem = XiemWo + €rems
hence

Riem = Yem— Xem - Wrs

= Xrem(wo - 7:U\FS) + €rem

The above formula shows we can estimate Weorrect = Wo — Wrs With another regression, i.e.

Deorrect = (XpbmXrem) XL Reem. Since computing X, X, takes too many FLOPS, we use

XsTubXsub instead (which has already been computed). Finally we correct Wrg and Weoprect O get
Wy lurw- The estimate weq,rect Can be seen as an almost unbiased estimation of the error wg — Wsyps,

so we correct almost all the error, hence reducing the bias.

Input: X, Y, r

Output: @

AFS = (X;bsxsubs)_lxg;bsYsubs;
rem — Yrem — Xrem . {EFS;

A~ __ Mgubs T -1y T .
correct — Tfr‘uan'f . (Xsubsxsubs) XremRrem5

Uluru = WEFS + Weorrect
return w = Wyjyry;

Algorithm 1: Uluru Algorithm
4 Theory

In this section we provide the theoretical guarantees of the three algorithms we discussed in the
previous sections in the fixed as well as random design setting. All the theorems assume OLS
setting as mentioned in Section 2. Without loss of generality we assume that X is whitened, i.e.
Y x,x = I, (see Supplementary Material for justification). For both the cases we bound the square
root of Mean Squared Error which becomes ||wy — @]|, as described in Section 2.

4.1 Fixed Design Setting

Here we assume preconditioning and subsampling with SRHT as described in previous sections.
(Please see the Supplementary Material for all the Proofs)

Theorem 1 Assume X € n x pand XX = n-1I,. Let’ Y = Xwg + € where ¢ € n x 1 is i.i.d.
gaussian noise with standard deviation o.

If we use algorithm FS, then with failure probability at most 22 + 26,

lwo — bps|| < Coy/In(nr + 1/5)% (1)

Theorem 2 Assuming our data comes from the same model as Theorem 1 and we use CovS, then
with failure probability at most 36 + 3%

epr’

) 2 2
[wo—tcous|| < (1-7) (CH /1n(§)% + Oy /1n(f)n(1p_r)> l[wol|+Cs0y [log(n + 1/5)%

2

2Uluru is a rock that is shaped like a quadratic and is solid. So, if your estimate of the quadratic term is as
solid as Uluru, you do not need use more data to make it more accurate.

Theorem 3 Assuming our data comes from the same model as Theorem 1 and we use Uluru, then
with failure probability at most 56 + 5%

epr’

||w0_wUluru|| < o In (TLT-F]./(S (V 2£ £+C2“1n 1—’/")

+003\/ n(n(l—r) +1/3) -

(1—7‘)

Remark 1 The probability 25 becomes really small for large p, hence it can be ignored and the
In terms can be viewed as constants Lets consider the case Ngyps <K Nrem, Since only in this
situation subsampling reduces computational cost significantly. Then, keeping only the dominating
terms, the result of the above three theorems can be summarized as: With some failure probability
less than some fixed number, the error of FS algorithm is O(c /L"), the error of CovS algorithm is

O(/E|wll + o+/E) and the error of Uluru algorithm is O(c 2 + o/E)

nr

4.2 Sub-gaussian Random Design Setting
4.2.1 Definitions

The following two definitions from [10] characterize what it means to be sub-gaussian.

Definition 1 A random variable X is sub-gaussian with sub-gaussian norm || X ||y, if and only if
(BIX")? < | Xlyovp forallp>1 3)

Here || X||y, is the minimal constant for which the above condition holds.

Definition 2 A random vector X € R™ is sub-gaussian if the one dimensional marginals x' X are
sub-gaussian for all x € R™. The sub-gaussian norm of random vector X is defined as

T
HX||T/12 = Ssup ”"17 X”ll)z 4)

llzlI?=1
Remark 2 Since the sum of two sub-gaussian variables is sub-gaussian, it is easy to conclude that

a random vector X = (X1,..X,,) " is a sub-gaussian random vector when the components X1, ..X,
are sub-gaussian variables.

4.2.2 Sub-gaussian Bounds

Under the assumption that the rows of the design matrix X are i.i.d draws for a p dimensional
sub-Gaussian random vector X with ¥ xx = I,,, we have the following bounds (Please see the
Supplementary Material for all the Proofs):

Theorem 4 If we use the FS algorithm, then with failure probability at most 6,

. -In(2p/d
o — Brs | < Coy/22P/0) 5)
nr
Theorem 5 If we use the CovS algorithm, then with failure probability at most 9,
lwo — Woous|| < (1—1) (CI\/ +C21/) [|wo |
1 2)/6)
b Oy [P RCE DD ©

Theorem 6 If we use Uluru, then with failure probability at most 9,

p-In(2(2p +2)/9) [p [D
Cs W—FCS (lr)«n]

lwo — Woiura| < 010\/

n-r

p-In(2(2p +2)/9)
+ 040'\/ (1 — ’I“) n

Remark 3 Here also, the In terms can be viewed as constants. Consider the case r < 1, since this
is the only case where subsampling reduces computational cost significantly. Keeping only dominat-
ing terms, the result of the above three theorems can be summarized as: With failure probability less
than some fixed number, the error of the FS algorithm is O(o \/g), the error of the CovS algorithm

is O(\/Z||w|| + o+/E) and the error of the Uluru algorithm is O(c L + /). These errors are
exactly the same as in the fixed design case.

4.3 Discussion

We can make a few salient observations from the error expressions for the algorithms presented in
Remarks 1 & 3.

The second term for the error of the Uluru algorithm does not contain 7 at all. If it is the dominating

term, which is the case if
r > O(\/p/n) (7N

then the error of Uluru is approximately O(o \/g), which is completely independent of . Thus, if
r is not too small (i.e., when Eq. holds), the error bound for Uluru is not a function of 7. In other
words, when Eq.[7|holds, we do not increase the error by using less data in estimating the covariance
matrix in Uluru. FS Algorithm does not have this property since its error is proportional to #

Similarly, for the CovS algorithm, when

[|wo||?

r > O(

) ®)

o2
the second term dominates and we can conclude that the error does not change with . However,
Eq. depends on how large the standard deviation o of the noise is. We can assume ||wg||? = O(p)

since it is p dimensional. Hence if o < O(,/p), Eq.[8]fails since it implies 7 > O(1) and the error
bound of CovS algorithm increases with r.

To sum this up, Uluru has the nice property that its error bound does not increase as r gets smaller
as long as r is greater than a threshold. This threshold is completely independent of how noisy the
data is and only depends on the characteristics of the design/data matrix (n, p).

4.4 Run Time complexity

Table [T] summarizes the run time complexity and theoretically predicted error bounds for all the
methods. We use these theoretical run times (FLOPS) in our plots.

S Experiments

In this section we elucidate the relative merits of our methods by comparing their empirical perfor-
mance on both synthetic and real world datasets.

5.1 Methodology

We can compare our algorithms by allowing them each to have about O(np) CPU time (ignoring
the log factors). This is of order the same time as it takes to read the data. Our target accuracy is

\/p/n, namely what a full least squares algorithm would generate. We will assume n > p. The

Methods Running Time Error

Methods O(FLOPS) bound

OLS O(n p?) O(y/p/n)
FS O(nsubs p2) O(\/M)
CovS O(ngups P* + 1 p) *

Uluru O(nsubs p* + 1 p) O(\/p/n)
SRHT-FS O(maz(n plog(p), neps p*)) O(\/p?/n)
SRHT-CovS O(maz(n p log(p), nws p> + np)) *
SRHT-Uluru O(max(n p log(p), nsws p* +np)) O(y/p/n)

Table 1: Runtime complexity. ngups iS the number of observations in the subsample, n is the number of
observations, and p is the number of predictors. * indicates that no uniform error bounds are known.

subsample size, ngps, for FS should be O(n/p) to keep the CPU time O(np), which leads to an
accuracy of /p?/n. For the CovS method, the accuracy depends on how noisy our data is (i.e. how
big o is). When o is large, it performs as well as /p/n, which is the same as full least squares.

When o is small, it performs as poorly as \/p?/n. For Uluru, to keep the CPU time O(np), nsups
should be O(n/p) or equivalently » = O(1/p). As stated in the discussions after the theorems,

when r > O(y/p/n) (in this set up we want r = O(1/p), which implies n > O(p?)), Uluru has
error bound O(1/p/n) no matter what signal noise ratio the problem has.

5.2 Synthetic Datasets

We generated synthetic data by distributing the signal uniformly across all the p singular values,
picking the p singular values to be \; = 1/i?,i = 1 : p, and further varying the amount of signal.

5.3 Real World Datasets

We also compared the performance of the algorithms on two UCI datasets ﬂ CPUSMALL (n=8192,
p=12) and CADATA (n=20640, p=8) and the PERMA sentiment analysis dataset described in [11]]
(n=1505, p=30), which uses LR-MVL word embeddings [[12]] as features.E]

5.4 Results

The results for synthetic data are shown in Figure 1 (top row) and for real world datasets are also
shown in Figure 1 (bottom row).

To generate the plots, we vary the amount of data used in the subsampling, ngps, from 1.1p to n.
For FS, this simply means using a fraction of the data; for CovS and Uluru, only the data for the
covariance matrix is subsampled. We report the Mean Squared Error (MSE), which in the case of
squared loss is the same as the risk, as was described in Section 2. For the real datasets we do not
know the true population parameter, wg, so we replace it with its consistent estimator wps 1, g, which
is computed using standard OLS on the entire dataset.

The horizontal gray line in the figures is the overfitting point; it is the error generated by w vector of
all zeros. The vertical gray line is the n - p point; thus anything which is faster than that must look
at only some of the data.

Looking at the results, we can see two trends for the synthetic data. Firstly, our algorithms with
no preconditioning are much faster than their counterparts with preconditioning and give similar
accuracies. Secondly, as we had expected, CovS performs best for high noise setting being slightly
better than Uluru, and Uluru is significantly better for low noise setting.

For real world datasets also, Uluru is almost always better than the other algorithms, both with and
without preconditioning. As earlier, the preconditioned alternatives are slower.

*http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html
*We also compared our approaches against coordinate ascent methods from [13]] and our algorithms outper-
form them. Due to paucity of space we relegated that comparison to the supplementary material.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html

1e+06
|
1e+05
1e+06
|

MSE/Risk
le+04
I
1e+03
1e+03
I

1e+02
I
MSE/Risk
Ll e £
MSE/Risk

le+01
o

=
1e+00
|

1e+00
1le-01

T T T T T T T T T T T T T T T T T T
0.02 0.05 0.20 0.50 2.00 5.00 0.02 0.05 0.20 0.50 2.00 5.00 0.02 0.05 0.20 0.50
#FLOPS/n*p #FLOPS/n*p # FLOPS/n*p

le-03

T T
2.00 5.00

1e+03 1e+05
I |
I |
MSE/Risk
le+01 le+04
I |

MSE/Risk
le+01
I
MSE/Risk
1e-05 1e-02 1e+01 1e+04 1e+07
F
le-02

I
&
%

le-01

|
o
P
1e-05
|
& "

T T T T T T T T T T T
1 2 5 10 0.02 0.05 0.20 0.50 2.00 5.00 5e-03 5e-02 5e-01 5e+00

FLOPS/n*p # FLOPS/n*p # FLOPS/n*p

Figure 1: Results for synthetic datasets (n=4096, p=8) in top row and for (PERMA, CPUSMALL, CADATA,
left-right) bottom row. The three columns in the top row have different amounts of signal, 2, % and %

respectively. In all settings, we varied the amount of subsampling from 1.1 p to n in multiples of 2. Color
scheme: [+ (Green)-FS, . (Blue)-CovsS, . (Red)-Uluru. The solid lines indicate no preconditioning (i.e.
random design) and dashed lines indicate fixed design with Randomized Hadamard preconditioning. The
FLOPS reported are the theoretical values (see Supp. material), the actual values were noisy due to varying
load settings on CPUs.

6 Related Work

The work that comes closest to our work is the set of approaches which precondition the matrix by
either Subsampled Randomized Hadamard Transform (SRHT) [1} 4], or Subsampled Randomized
Fourier Transform (SRFT) [2| 3], before subsampling uniformly from the resulting transformed
matrix.

However, this line of work is different our work in several ways. They are doing their analysis in a
mathematical set up, i.e. solving an overdetermined linear system (1) = arg min,cg» || Xw — Y ||?),
while we are working in a statistical set up (a regression problem ¥ = Xj + ¢) which leads to
different error analysis.

Our FS algorithm is essentially the same as the subsampling algorithm proposed by [4]. However,
our theoretical analysis of it is novel, and furtheremore they only consider it in fixed design setting
with Hadamard preconditioning.

The CovS and Uluru are entirely new algorithms and as we have seen differ from FS in a key sense,
namely that CovS and Uluru make use of all the data but FS uses only a small proportion of the data.

7 Conclusion

In this paper we proposed three subsampling methods for faster least squares regression. All three
run in O(size of input) = np. Our best method, Uluru, gave an error bound which is independent of
the amount of subsampling as long as it is above a threshold.

Furthermore, we argued that for problems arising from linear regression, the Randomized Hadamard
transformation is often not needed. In linear regression, observations are generally i.i.d. If one fur-
ther assumes that they are sub-Gaussian (perhaps as a result of a preprocessing step, or simply
because they are 0/1 or Gaussian), then subsampling methods without a Randomized Hadamard
transformation suffice. As shown in our experiments, dropping the Randomized Hadamard trans-
formation significantly speeds up the algorithms and in i.i.d sub-Gaussian settings, does so without
loss of accuracy.

References

[1] Boutsidis, C., Gittens, A.: Improved matrix algorithms via the subsampled randomized
hadamard transform. CoRR abs/1204.0062 (2012)

[2] Tygert, M.: A fast algorithm for computing minimal-norm solutions to underdetermined sys-
tems of linear equations. CoRR abs/0905.4745 (2009)

[3] Rokhlin, V., Tygert, M.: A fast randomized algorithm for overdetermined linear least-squares
regression. Proceedings of the National Academy of Sciences 105(36) (September 2008)
13212-13217

[4] Drineas, P., Mahoney, M.W., Muthukrishnan, S., Sarlés, T.: Faster least squares approxima-
tion. CoRR abs/0710.1435 (2007)

[5] Mahoney, M.W.: Randomized algorithms for matrices and data. (April 2011)

[6] Ailon, N., Chazelle, B.: Approximate nearest neighbors and the fast johnson-lindenstrauss
transform. In: STOC. (2006) 557-563

[7] Avron, H., Maymounkov, P., Toledo, S.: Blendenpik: Supercharging lapack’s least-squares
solver. SIAM J. Sci. Comput. 32(3) (April 2010) 1217-1236

[8] Vershynin, R.: How Close is the Sample Covariance Matrix to the Actual Covariance Matrix?
Journal of Theoretical Probability 25(3) (September 2012) 655-686

[9] Golub, G.H., Van Loan, C.F.: Matrix Computations (Johns Hopkins Studies in Mathematical
Sciences)(3rd Edition). 3rd edn. The Johns Hopkins University Press (October 1996)

[10] Vershynin, R.: Introduction to the non-asymptotic analysis of random matrices. CoRR
abs/1011.3027 (2010)

[11] Dhillon, P.S., Rodu, J., Foster, D., Ungar, L.: Two step cca: A new spectral method for
estimating vector models of words. In: Proceedings of the 29th International Conference on
Machine learning. ICML’ 12 (2012)

[12] Dhillon, P.S., Foster, D., Ungar, L.: Multi-view learning of word embeddings via cca. In:
Advances in Neural Information Processing Systems (NIPS). Volume 24. (2011)

[13] Shalev-Shwartz, S., Zhang, T.: Stochastic dual coordinate ascent methods for regularized loss
minimization. CoRR abs/1209.1873 (2012)

