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Abstract

We consider the stochastic multi-armed bandit problem witha prior distribution
on the reward distributions. We are interested in studying prior-free and prior-
dependent regret bounds, very much in the same spirit than the usual distribution-
free and distribution-dependent bounds for the non-Bayesian stochastic bandit.
We first show that Thompson Sampling attains an optimal prior-free bound in the
sense that for any prior distribution its Bayesian regret isbounded from above by
14
√
nK. This result is unimprovable in the sense that there exists aprior dis-

tribution such that any algorithm has a Bayesian regret bounded from below by
1
20

√
nK. We also study the case of priors for the setting ofBubeck et al.[2013]

(where the optimal mean is known as well as a lower bound on thesmallest gap)
and we show that in this case the regret of Thompson Sampling is in fact uniformly
bounded over time, thus showing that Thompson Sampling can greatly take advan-
tage of the nice properties of these priors.

1 Introduction

In this paper we are interested in the Bayesian multi-armed bandit problem which can be described
as follows. Letπ0 be a known distribution over some setΘ, and letθ be a random variable dis-
tributed according toπ0. For i ∈ [K], let (Xi,s)s≥1 be identically distributed random variables
taking values in[0, 1] and which are independent conditionally onθ. Denoteµi(θ) := E(Xi,1|θ).
Consider now an agent facingK actions (or arms). At each time stept = 1, . . . n, the agent pulls
an armIt ∈ [K]. The agent receives the rewardXi,s when he pulls armi for thesth time. The arm
selection is based only on past observed rewards and potentially on an external source of random-
ness. More formally, let(Us)s≥1 be an i.i.d. sequence of random variables uniformly distributed
on [0, 1], and letTi(s) =

∑s
t=1 1It=i, thenIt is a random variable measurable with respect to

σ(I1, X1,1, . . . , It−1, XIt−1,TIt−1
(t−1), Ut). We measure the performance of the agent through the

Bayesian regret defined as

BRn = E

n∑

t=1

(
max
i∈[K]

µi(θ)− µIt(θ)

)
,

where the expectation is taken with respect to the parameterθ, the rewards(Xi,s)s≥1, and the
external source of randomness(Us)s≥1. We will also be interested in the individual regretRn(θ)
which is defined similarly except thatθ is fixed (instead of being integrated overπ0). When it is
clear from the context we drop the dependency onθ in the various quantities defined above.

1



Given a priorπ0 the problem of finding an optimal strategy to minimize the Bayesian regretBRn

is a well defined optimization problem and as such it is merelya computational problem. On the
other hand the point of view initially developed inRobbins[1952] leads to a learning problem. In
this latter view the agent’s strategy must have a low regretRn(θ) for anyθ ∈ Θ. Both formulations
of the problem have a long history and we refer the interestedreader toBubeck and Cesa-Bianchi
[2012] for a survey of the extensive recent literature on the learning setting. In the Bayesian setting
a major breakthrough was achieved inGittins [1979] where it was shown that when the prior
distribution takes aproduct forman optimal strategy is given by the Gittins indices (which are
relatively easy to compute). The product assumption on the prior means that the reward processes
(Xi,s)s≥1 are independent across arms. In the present paper we are precisely interested in the
situations where this assumption is not satisfied. Indeed webelieve that one of the strength of the
Bayesian setting is that one can incorporate prior knowledge on the arms in very transparent way.
A prototypical example that we shall consider later on in this paper is when one knows the dis-
tributions of the arms up to a permutation, in which case the reward processes are strongly dependent.

In general without the product assumption on the prior it seems hopeless (from a computational
perspective) to look for the optimal Bayesian strategy. Thus, despite being in a Bayesian setting,
it makes sense to view it as a learning problem and to evaluatethe agent’s performance through its
Bayesian regret. In this paper we are particularly interested in studying the Thompson Sampling
strategy which was proposed in the very first paper on the multi-armed bandit problemThompson
[1933]. This strategy can be described very succinctly: letπt be the posterior distribution onθ
given the historyHt = (I1, X1,1, . . . , It−1, XIt−1,TIt−1

(t−1)) of the algorithm up to the beginning

of roundt. Then Thompson Sampling first draws a parameterθ(t) from πt (independently from the
past givenπt) and it pullsIt ∈ argmaxi∈[K] µi(θ

(t)).

Recently there has been a surge of interest for this simple policy, mainly because of its flexibility to
incorporate prior knowledge on the arms, see for exampleChapelle and Li[2011]. For a long time the
theoretical properties of Thompson Sampling remained elusive. The specific case of binary rewards
with a Beta prior is now very well understood thanks to the papers Agrawal and Goyal[2012a],
Kaufmann et al.[2012], Agrawal and Goyal[2012b]. However as we pointed out above here we
are interested in proving regret bounds for the more realistic scenario where one runs Thompson
Sampling with a hand-tuned prior distribution, possibly very different from a Beta prior. The first
result in that spirit was obtained very recently byRusso and Roy[2013] who showed that for any
prior distributionπ0 Thompson Sampling always satisfiesBRn ≤ 5

√
nK log n. A similar bound

was proved inAgrawal and Goyal[2012b] for the specific case of Beta prior1. Our first contribution
is to show in Section2 that the extraneous logarithmic factor in these bounds can be removed by
using ideas reminiscent of the MOSS algorithm ofAudibert and Bubeck[2009].

Our second contribution is to show that Thompson Sampling can take advantage of the properties of
some non-trivial priors to attain much better regret guarantees. More precisely in Section2 and3 we
consider the setting ofBubeck et al.[2013] (which we call the BPR setting) whereµ∗ andε > 0 are
known values such that for anyθ ∈ Θ, first there is a unique best arm{i∗(θ)} = argmaxi∈[K] µi(θ),
and furthermore

µi∗(θ)(θ) = µ∗, and∆i(θ) := µi∗(θ)(θ)− µi(θ) ≥ ε, ∀i 6= i∗(θ).

In other words the value of the best arm is known as well as a non-trivial lower bound on the gap
between the values of the best and second best arms. For this problem a new algorithm was proposed
in Bubeck et al.[2013] (which we call the BPR policy), and it was shown that the BPR policy satisfies

Rn(θ) = O


 ∑

i6=i∗(θ)

log(∆i(θ)/ε)

∆i(θ)
log log(1/ε)


 , ∀θ ∈ Θ, ∀n ≥ 1.

Thus the BPR policy attains a regret uniformly bounded over time in the BPR setting, a feature that
standard bandit algorithms such as UCB ofAuer et al.[2002] cannot achieve. It is natural to view

1Note however that the result ofAgrawal and Goyal[2012b] applies to the individual regretRn(θ) while
the result ofRusso and Roy[2013] only applies to the integrated Bayesian regretBRn.
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the assumptions of the BPR setting as a prior over the reward distributions and to ask what regret
guarantees attain Thompson Sampling in that situation. More precisely we consider Thompson Sam-
pling with Gaussian reward distributions and uniform priorover the possible range of parameters.
We then prove individual regret bounds for any sub-Gaussiandistributions (similarly toBubeck et al.
[2013]). We obtain that Thompson Sampling uses optimally the prior information in the sense that
it also attains uniformly bounded over time regret. Furthermore as an added bonus we remove the
extraneous log-log factor of the BPR policy’s regret bound.

The results presented in Section2 and3 can be viewed as a first step towards a better understanding
of prior-dependent regret bounds for Thompson Sampling. Generalizing these results to arbitrary
priors is a challenging open problem which is beyond the scope of our current techniques.

2 Optimal prior-free regret bound for Thompson Sampling

In this section we prove the following result.

Theorem 1 For any prior distributionπ0 over reward distributions in[0, 1], Thompson Sampling
satisfies

BRn ≤ 14
√
nK.

Remark that the above result is unimprovable in the sense that there exist prior distributionsπ0 such
that for any algorithm one hasRn ≥ 1

20

√
nK (see e.g. [Theorem 3.5,Bubeck and Cesa-Bianchi

[2012]]). This theorem also implies an optimal rate of identification for the best arm, see
Bubeck et al.[2009] for more details on this.

Proof We decompose the proof into three steps. We denotei∗(θ) ∈ argmaxi∈[K] µi(θ), in
particular one hasIt = i∗(θt).

Step 1: rewriting of the Bayesian regret in terms of upper confidence bounds.This step is given
by [Proposition 1,Russo and Roy[2013]] which we reprove for sake of completeness. LetBi,t be a
random variable measurable with respect toσ(Ht). Note that by definitionθ(t) andθ are identically
distributed conditionally onHt. This implies by the tower rule:

EBi∗(θ),t = EBi∗(θ(t)),t = EBIt,t.

Thus we obtain:

E
(
µi∗(θ)(θ)− µIt(θ)

)
= E

(
µi∗(θ)(θ)−Bi∗(θ),t

)
+ E (BIt,t − µIt(θ)) .

Inspired by the MOSS strategy ofAudibert and Bubeck[2009] we will now take

Bi,t = µ̂i,Ti(t−1) +

√√√√ log+

(
n

KTi(t−1)

)

Ti(t− 1)
,

whereµ̂i,s = 1
s

∑s
t=1 Xi,t, andlog+(x) = log(x)1x≥1. In the following we denoteδ0 = 2

√
K
n .

From now on we work conditionally onθ and thus we drop all the dependency onθ.

Step 2: control ofE
(
µi∗(θ)(θ)−Bi∗(θ),t|θ

)
. By a simple integration of the deviations one has

E (µi∗ −Bi∗,t) ≤ δ0 +

∫ 1

δ0

P(µi∗ −Bi∗,t ≥ u)du.

Next we extract the following inequality fromAudibert and Bubeck[2010] (see p2683–2684), for
anyi ∈ [K],

P(µi −Bi,t ≥ u) ≤ 4K

nu2
log

(√
n

K
u

)
+

1

nu2/K − 1
.
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Now an elementary integration gives
∫ 1

δ0

4K

nu2
log

(√
n

K
u

)
du =

[
−4K

nu
log

(
e

√
n

K
u

)]1

δ0

≤ 4K

nδ0
log

(
e

√
n

K
δ0

)
= 2(1+log 2)

√
K

n
,

and
∫ 1

δ0

1

nu2/K − 1
du =

[
−1

2

√
K

n
log

(√
n
Ku+ 1√
n
Ku− 1

)]1

δ0

≤ 1

2

√
K

n
log

(√
n
K δ0 + 1√
n
K δ0 − 1

)
=

log 3

2

√
K

n
.

Thus we proved:E
(
µi∗(θ)(θ)−Bi∗(θ),t|θ

)
≤
(
2 + 2(1 + log 2) + log 3

2

)√
K
n ≤ 6

√
K
n .

Step 3: control of
∑n

t=1 E (BIt,t − µIt(θ)|θ). We start again by integrating the deviations:

E

n∑

t=1

(BIt,t − µIt) ≤ δ0n+

∫ +∞

δ0

n∑

t=1

P(BIt,t − µIt ≥ u)du.

Next we use the following simple inequality:

n∑

t=1

1{BIt,t − µIt ≥ u} ≤
n∑

s=1

K∑

i=1

1



µ̂i,s +

√
log+

(
n
Ks

)

s
− µi ≥ u



 ,

which implies

n∑

t=1

P(BIt,t − µIt ≥ u) ≤
K∑

i=1

n∑

s=1

P


µ̂i,s +

√
log+

(
n
Ks

)

s
− µi ≥ u


 .

Now for u ≥ δ0 let s(u) = ⌈3 log
(

nu2

K

)
/u2⌉ where⌈x⌉ is the smallest integer large thanx. Let

c = 1− 1√
3
. It is is easy to see that one has:

n∑

s=1

P


µ̂i,s +

√
log+

(
n
Ks

)

s
− µi ≥ u


 ≤

3 log
(

nu2

K

)

u2
+

n∑

s=s(u)

P (µ̂i,s − µi ≥ cu) .

Using an integration already done in Step 2 we have

∫ +∞

δ0

3 log
(

nu2

K

)

u2
≤ 3(1 + log(2))

√
n

K
≤ 5.1

√
n

K
.

Next using Hoeffding’s inequality and the fact that the rewards are in[0, 1] one has foru ≥ δ0
n∑

s=s(u)

P (µ̂i,s − µi ≥ cu) ≤
n∑

s=s(u)

exp(−2sc2u2)1u≤1/c ≤
exp(−12c2 log 2)

1− exp(−2c2u2)
1u≤1/c.

Now using that1− exp(−x) ≥ x− x2/2 for x ≥ 0 one obtains
∫ 1/c

δ0

1

1− exp(−2c2u2)
du =

∫ 1/(2c)

δ0

1

1− exp(−2c2u2)
du+

∫ 1/c

1/(2c)

1

1− exp(−2c2u2)
du

≤
∫ 1/(2c)

δ0

1

2c2u2 − 2c4u4
du+

1

2c(1− exp(−1/2))

≤
∫ 1/(2c)

δ0

2

3c2u2
du+

1

2c(1− exp(−1/2))

=
2

3c2δ0
− 4

3c
+

1

2c(1− exp(−1/2))

≤ 1.9

√
n

K
.
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Putting the pieces together we proved

E

n∑

t=1

(BIt,t − µIt) ≤ 7.6
√
nK,

which concludes the proof together with the results of Step 1and Step 2.

3 Thompson Sampling in the two-armed BPR setting

Following [Section 2,Bubeck et al.[2013]] we consider here the two-armed bandit problem with
sub-Gaussian reward distributions (that is they satisfyEeλ(X−µ) ≤ eλ

2/2 for all λ ∈ R) and such
that one reward distribution has meanµ∗ and the other one has meanµ∗ − ∆ whereµ∗ and∆ are
known values.

In order to derive the Thompson Sampling strategy for this problem we further assume that the
reward distributions are in fact Gaussian with variance1. In other words letΘ = {θ1, θ2}, π0(θ1) =
π0(θ2) = 1/2, and underθ1 one hasX1,s ∼ N (µ∗, 1) andX2,s ∼ N (µ∗ − ∆, 1) while underθ2
one hasX2,s ∼ N (µ∗, 1) andX1,s ∼ N (µ∗ − ∆, 1). Then a straightforward computation (using
Bayes rule and induction) shows that one has for some normalizing constantc > 0:

πt(θ1) = c exp


−1

2

T1(t−1)∑

s=1

(µ∗ −X1,s)
2 − 1

2

T2(t−1)∑

s=1

(µ∗ −∆−X2,s)
2


 ,

πt(θ2) = c exp


−1

2

T1(t−1)∑

s=1

(µ∗ −∆−X1,s)
2 − 1

2

T2(t−1)∑

s=1

(µ∗ −X2,s)
2


 .

Recall that Thompson Sampling drawsθ(t) from πt and then pulls the best arm for the environment
θ(t). Observe that underθ1 the best arm is arm1 and underθ2 the best arm is arm2. In other words
Thompson Sampling drawsIt at random with the probabilities given by the posteriorπt. This leads
to a general algorithm for the two-armed BPR setting with sub-Gaussian reward distributions that
we summarize in Figure1. The next result shows that it attains optimal performancesin this setting
up to a numerical constant (seeBubeck et al.[2013] for lower bounds), for any sub-Gaussian reward
distribution (not necessarily Gaussian) with largest meanµ∗ and gap∆.

For roundst ∈ {1, 2}, select armIt = t.
For each roundt = 3, 4, . . . play It at random frompt where

pt(1) = c exp


−1

2

T1(t−1)∑

s=1

(µ∗ −X1,s)
2 − 1

2

T2(t−1)∑

s=1

(µ∗ −∆−X2,s)
2


 ,

pt(2) = c exp


−1

2

T1(t−1)∑

s=1

(µ∗ −∆−X1,s)
2 − 1

2

T2(t−1)∑

s=1

(µ∗ −X2,s)
2


 ,

andc > 0 is such thatpt(1) + pt(2) = 1.

Figure 1: Policy inspired by Thompson Sampling for the two-armed BPR setting.

Theorem 2 The policy of Figure1 has regret bounded asRn ≤ ∆+ 578
∆ , uniformly inn.
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Figure 2: Empirical comparison of the policy of Figure1 and Policy 1 ofBubeck et al.[2013] on Gaussian
reward distributions with variance1.

Note that we did not try to optimize the numerical constant inthe above bound. Figure2 shows
an empirical comparison of the policy of Figure1 with Policy 1 of Bubeck et al.[2013]. Note in
particular that a regret bound of order16/∆ was proved for the latter algorithm and the (limited)
numerical simulation presented here suggests that Thompson Sampling outperforms this strategy.

Proof Without loss of generality we assume that arm1 is the optimal arm, that isµ1 = µ∗ and
µ2 = µ∗ − ∆. Let µ̂i,s = 1

s

∑s
t=1 Xi,t, γ̂1,s = µ1 − µ̂1,s and γ̂2,s = µ̂2,s − µ2. Note that large

(positive) values of̂γ1,s or γ̂2,s might mislead the algorithm into bad decisions, and we will need to
control what happens in various regimes for theseγ coefficients. We decompose the proof into three
steps.

Step 1.This first step will be useful in the rest of the analysis, it shows how the probability ratio of
a bad pull over a good pull evolves as a function of theγ coefficients introduced above. One has:

pt(2)

pt(1)
= exp



−
1

2

T1(t−1)∑

s=1

[
(µ2 − X1,s)

2 − (µ1 − X1,s)
2

]
−

1

2

T2(t−1)∑

s=1

[
(µ1 − X2,s)

2 − (µ2 − X2,s)
2

]



= exp

(
−

T1(t − 1)

2

[
µ
2
2 − µ

2
1 − 2(µ2 − µ1)µ̂1,T1(t−1)

]
−

T2(t − 1)

2

[
µ
2
1 − µ

2
2 − 2(µ1 − µ2)µ̂2,T2(t−1)

])

= exp

(
−

T1(t − 1)

2

[
∆

2 − 2∆(µ1 − µ̂1,T1(t−1))

]
−

T2(t − 1)

2

[
∆

2 − 2∆(µ̂2,T2(t−1) − µ2)

])

= exp

(

−
t∆2

2
+ T1(t − 1)∆γ̂1,T1(t−1) + T2(t − 1)∆γ̂2,T2(t−1)

)

.

Step 2.We decompose the regretRn as follows:

Rn

∆
= 1 + E

n∑

t=3

1{It = 2}

= 1 + E

n∑

t=3

1

{
γ̂2,T2(t−1) >

∆

4
, It = 2

}
+ E

n∑

t=3

1

{
γ̂2,T2(t−1) ≤

∆

4
, γ̂1,T1(t−1) ≤

∆

4
, It = 2

}

+E

n∑

t=3

1

{
γ̂2,T2(t−1) ≤

∆

4
, γ̂1,T1(t−1) >

∆

4
, It = 2

}
.

We use Hoeffding’s inequality to control the first term:

E

n∑

t=3

1

{
γ̂2,T2(t−1) >

∆

4
, It = 2

}
≤ E

n∑

s=1

1

{
γ̂2,s >

∆

4

}
≤

n∑

s=1

exp

(
−s∆2

32

)
≤ 32

∆2
.
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For the second term, using the rewriting of Step 1 as an upper bound onpt(2), one obtains:

E

n∑

t=3

1

{
γ̂2,T2(t−1) ≤

∆

4
, γ̂1,T1(t−1) ≤

∆

4
, It = 2

}
=

n∑

t=3

E

(
pt(2)1

{
γ̂2,T2(t−1) ≤

∆

4
, γ̂1,T1(t−1) ≤

∆

4

})

≤
n∑

t=3

exp

(

−
t∆2

4

)

≤
4

∆2
.

The third term is more difficult to control, and we further decompose the corresponding event as
follows:{

γ̂2,T2(t−1) ≤
∆

4
, γ̂1,T1(t−1) >

∆

4
, It = 2

}

⊂
{
γ̂1,T1(t−1) >

∆

4
, T1(t− 1) > t/4

}
∪
{
γ̂2,T2(t−1) ≤

∆

4
, It = 2, T1(t− 1) ≤ t/4

}
.

The cumulative probability of the first event in the above decomposition is easy to control thanks to
Hoeffding’s maximal inequality2 which states that for anym ≥ 1 andx > 0 one has

P(∃ 1 ≤ s ≤ m s.t.s γ̂1,s ≥ x) ≤ exp

(
− x2

2m

)
.

Indeed this implies

P

(
γ̂1,T1(t−1) >

∆

4
, T1(t− 1) > t/4

)
≤ P

(
∃ 1 ≤ s ≤ t s.t.s γ̂1,s >

∆t

16

)
≤ exp

(
− t∆2

512

)
,

and thus

E

n∑

t=3

1

{
γ̂1,T1(t−1) >

∆

4
, T1(t− 1) > t/4

}
≤ 512

∆2
.

It only remains to control the term

E

n∑

t=3

1

{
γ̂2,T2(t−1) ≤

∆

4
, It = 2, T1(t − 1) ≤ t/4

}
=

n∑

t=3

E

(
pt(2)1

{
γ̂2,T2(t−1) ≤

∆

4
, T1(t − 1) ≤ t/4

})

≤
n∑

t=3

E exp

(

−
t∆2

4
+ ∆ max

1≤s≤t/4
sγ̂1,s

)

,

where the last inequality follows from Step 1. The last step is devoted to bounding from above this
last term.

Step 3.By integrating the deviations and using again Hoeffding’s maximal inequality one obtains

E exp

(
∆ max

1≤s≤t/4
sγ̂1,s

)
≤ 1+

∫ +∞

1

P

(

max
1≤s≤ t

4

sγ̂1,s ≥
log x

∆

)

dx ≤ 1+

∫ +∞

1

exp

(
−
2(log x)2

∆2t

)
dx.

Now, straightforward computation gives
n∑

t=3

exp

(

−
t∆2

4

)(

1 +

∫ +∞

1

exp

(

−
2(log x)2

∆2t

)

dx

)

≤
n∑

t=3

exp

(

−
t∆2

4

)

1 +

√
π∆2t

2
exp

(
t∆2

8

)



≤
4

∆2
+

∫ +∞

0

√
π∆2t

2
exp

(

−
t∆2

8

)

dt

≤
4

∆2
+

16
√
π

∆2

∫ +∞

0

√
u exp(−u) du

≤
30

∆2
.

which concludes the proof by putting this together with the results of the previous step.

2It is an easy exercise to verify that Azuma-Hoeffding holds for martingale differences with sub-Gaussian
increments, which implies Hoeffding’s maximal inequality for sub-Gaussian distributions.
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4 Optimal strategy for the BPR setting inspired by Thompson Sampling

In this section we consider the general BPR setting. That is the reward distributions are sub-Gaussian
(they satisfyEeλ(X−µ) ≤ eλ

2/2 for all λ ∈ R), one reward distribution has meanµ∗, and all the other
means are smaller thanµ∗ − ε whereµ∗ andε are known values.

Similarly to the previous section we assume that the reward distributions are Gaussian with variance
1 for the derivation of the Thompson Sampling strategy (but wedo not make this assumption for the
analysis of the resulting algorithm). Then the set of possible parameters is described as follows:

Θ = ∪K
i=1Θi whereΘi = {θ ∈ R

K s.t.θi = µ∗ andθj ≤ µ∗ − ε for all j 6= i}.
Assuming a uniform prior over the index of the best arm, and a prior λ over the mean of a suboptimal
arm one obtains by Bayes rule that the probability density function of the posterior is given by:

dπt(θ) ∝ exp


−1

2

K∑

j=1

Tj(t−1)∑

s=1

(Xj,s − θj)
2




K∏

j=1,j 6=i∗(θ)

dλ(θj).

Now remark that with Thompson Sampling armi is played at timet if and only if θ(t) ∈ Θi. In other
wordsIt is played at random from probabilitypt where

pt(i) = πt(Θi) ∝ exp



−
1

2

Ti(t−1)∑

s=1

(Xi,s − µ
∗)2




∏

j 6=i




∫ µ∗−ε

−∞

exp



−
1

2

Tj(t−1)∑

s=1

(Xj,s − v)2



 dλ(v)





∝
exp

(
− 1

2

∑Ti(t−1)
s=1 (Xi,s − µ∗)2

)

∫ µ∗−ε

−∞
exp

(
− 1

2

∑Ti(t−1)
s=1 (Xi,s − v)2

)
dλ(v)

.

Taking inspiration from the above calculation we consider the following policy, whereλ is the
Lebesgue measure and we assume a slightly larger value for the variance (this is necessary for the
proof).

For roundst ∈ [K], select armIt = t.
For each roundt = K + 1,K + 2, . . . play It at random frompt where

pt(i) = c
exp

(
− 1

3

∑Ti(t−1)
s=1 (Xi,s − µ∗)2

)

∫ µ∗−ε

−∞ exp
(
− 1

3

∑Ti(t−1)
s=1 (Xi,s − v)2

)
dv

,

andc > 0 is such that
∑K

i=1 pt(i) = 1.

Figure 3: Policy inspired by Thompson Sampling for the BPR setting.

The following theorem shows that this policy attains the best known performance for the BPR setting,
shaving off a log-log term in the regret bound of the BPR policy.

Theorem 3 The policy of Figure3 has regret bounded asRn ≤ ∑
i:∆i>0

(
∆i +

80+log(∆i/ε)
∆i

)
,

uniformly inn.

The proof of this result is fairly technical and it is deferred to the supplementary material.

8



References

S. Agrawal and N. Goyal. Analysis of Thompson sampling for the multi-armed bandit problem. In
Proceedings of the 25th Annual Conference on Learning Theory (COLT), 2012a.

S. Agrawal and N. Goyal. Further optimal regret bounds for thompson sampling, 2012b.
arXiv:1209.3353.

J.-Y. Audibert and S. Bubeck. Minimax policies for adversarial and stochastic bandits. InProceed-
ings of the 22nd Annual Conference on Learning Theory (COLT), 2009.

J.-Y. Audibert and S. Bubeck. Regret bounds and minimax policies under partial monitoring.Journal
of Machine Learning Research, 11:2635–2686, 2010.

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem.
Machine Learning Journal, 47(2-3):235–256, 2002.

S. Bubeck and N. Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-armed bandit
problems.Foundations and Trends in Machine Learning, 5(1):1–122, 2012.

S. Bubeck, R. Munos, and G. Stoltz. Pure exploration in multi-armed bandits problems. InProceed-
ings of the 20th International Conference on Algorithmic Learning Theory (ALT), 2009.

S. Bubeck, V. Perchet, and P. Rigollet. Bounded regret in stochastic multi-armed bandits. InPro-
ceedings of the 26th Annual Conference on Learning Theory (COLT), 2013.

O. Chapelle and L. Li. An empirical evaluation of Thompson sampling. In Advances in Neural
Information Processing Systems (NIPS), 2011.

J.C. Gittins. Bandit processes and dynamic allocation indices. Journal Royal Statistical Society
Series B, 14:148–167, 1979.

E. Kaufmann, N. Korda, and R. Munos. Thompson sampling: an asymptotically optimal finite-time
analysis. InProceedings of the 23rd International Conference on Algorithmic Learning Theory
(ALT), 2012.

H. Robbins. Some aspects of the sequential design of experiments.Bulletin of the American Mathe-
matics Society, 58:527–535, 1952.

D. Russo and B. Van Roy. Learning to optimize via posterior sampling, 2013. arXiv:1301.2609.

W. Thompson. On the likelihood that one unknown probabilityexceeds another in view of the
evidence of two samples.Bulletin of the American Mathematics Society, 25:285–294, 1933.

9


