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Abstract

Conditional random fields, which model the distribution of a multivariate response
conditioned on a set of covariates using undirected graphs, are widely used in a
variety of multivariate prediction applications. Popular instances of this class of
models, such as categorical-discrete CRFs, Ising CRFs, and conditional Gaus-
sian based CRFs, are not well suited to the varied types of response variables in
many applications, including count-valued responses. We thus introduce a novel
subclass of CRFs, derived by imposing node-wise conditional distributions of re-
sponse variables conditioned on the rest of the responses and the covariates as
arising from univariate exponential families. This allows us to derive novel multi-
variate CRFs given any univariate exponential distribution, including the Poisson,
negative binomial, and exponential distributions. Also in particular, it addresses
the common CRF problem of specifying “feature” functions determining the inter-
actions between response variables and covariates. We develop a class of tractable
penalized M -estimators to learn these CRF distributions from data, as well as a
unified sparsistency analysis for this general class of CRFs showing exact struc-
ture recovery can be achieved with high probability.

1 Introduction

Conditional random fields (CRFs) are a popular class of models that combine the advantages of
discriminative modeling and undirected graphical models. They are widely used across structured
prediction domains such as natural language processing, computer vision, and bioinformatics. The
key idea in this class of models is to represent the joint distribution of a set of response variables
conditioned on a set of covariates using a product of clique-wise compatibility functions. Given an
underlying graph over the response variables, each of these compatibility functions depends on all
the covariates, but only on a subset of response variables within any clique of the underlying graph.
They are thus a discriminative counterpart of undirected graphical models, where we have covariates
that provide information about the multivariate response, and the underlying graph structure encodes
conditional independence assumptions among the responses conditioned on the covariates.

There is a key model specification question that arises, however, in any application of CRFs: how
do we specify the clique-wise sufficient statistics, or compatibility functions (sometimes also called
feature functions), that characterize the conditional graphical model between responses? In par-



ticular, how do we tune these to the particular types of variables being modeled? Traditionally,
these questions have been addressed either by hand-crafted feature functions, or more generally by
discretizing the multivariate response vectors into a set of indicator vectors and then letting the com-
patibility functions be linear combinations of the product of indicator functions [1]. This approach,
however, may not be natural for continuous, skewed continuous or count-valued random variables.
Recently, spurred in part by applications in bioinformatics, there has been much research on other
sub-classes of CRFs. The Ising CRF which models binary responses, was studied by [2] and ex-
tended to higher-order interactions by [3]. Several versions and extensions of Gaussian-based CRFs
have also been proposed [4, 5, 6, 7, 8]. These sub-classes of CRFs, however, are specific to Gaussian
and binary variable types, and may not be appropriate for multivariate count data or skewed con-
tinuous data, for example, which are increasingly seen in big-data settings such as high-throughput
genomic sequencing.

In this paper, we seek to (a) formulate a novel subclass of CRFs that have the flexibility to model
responses of varied types, (b) address how to specify compatibility functions for such a family of
CRFs, and (c) develop a tractable procedure with strong statistical guarantees for learning this class
of CRFs from data. We first show that when node-conditional distributions of responses conditioned
on other responses and covariates are specified by univariate exponential family distributions, there
exists a consistent joint CRF distribution, that necessarily has a specific form: with terms that are
tensorial products of functions over the responses, and functions over the covariates.This subclass
of “exponential family” CRFs can be viewed as a conditional extension of the MRF framework
of [9, 10]. As such, this broadens the class of off-the-shelf CRF models to encompass data that
follows distributions other than the standard discrete, binary, or Gaussian instances. Given this
new family of CRFs, we additionally show that if covariates also follow node-conditional univariate
exponential family distributions, then the functions over features in turn are precisely specified by the
exponential family sufficient statistics. Thus, our twin results definitively answer for the first time
the key model specification question of specifying compatibility or feature functions for a broad
family of CRF distributions. We then provide a unified M -estimation procedure, via penalized
neighborhood estimation, to learn our family of CRFs from i.i.d. observations that simultaneously
addresses all three sub-tasks of CRF learning: feature selection (where we select a subset of the
covariates for any response variable), structure recovery (where we learn the graph structure among
the response variables), and parameter learning (where we learn the parameters specifying the CRF
distribution). We also present a single theorem that gives statistical guarantees saying that with high-
probability, our M -estimator achieves each of these three sub-tasks. Our result can be viewed as an
extension of neighborhood selection results for MRFs [11, 12, 13]. Overall, this paper provides a
family of CRFs that generalizes many of the sub-classes in the existing literature and broadens the
utility and applicability of CRFs to model many other types of multivariate responses.

2 Conditional Graphical Models via Exponential Families

Suppose we have a p-variate random response vector Y = (Y7,...,Y},), with each response vari-
able Y; taking values in a set ;. Suppose we also have a set of covariates X = (X1,...,X,)
associated with this response vector Y. Suppose G = (V, E) is an undirected graph over p nodes
corresponding to the p response variables. Given the underlying graph G, and the set of cliques
(fully-connected sub-graphs) C of the graph G, the corresponding conditional random field (CRF)
is a set of distributions over the response conditioned on the covariates that satisfy Markov indepen-
dence assumptions with respect to the graph G. Specifically, letting {¢p.(Y., X)}.cc denote a set
of clique-wise sufficient statistics, any strictly positive distribution of Y conditioned on X within
the conditional random field family takes the form: P(Y'|X) oc exp{}_ cc #c(Ye, X)}. With a
pair-wise conditional random field distribution, the set of cliques consists of the set of nodes V' and
the set of edges F, so that

P(Y|X)ocexp{Z¢S(YS7X)+ Z ¢st(Ys,Yt7X)}-

seV (s,t)EE

A key model specification question is how to select the class of sufficient statistics, ¢. We have a
considerable understanding of how to specify univariate distributions over various types of variables
as well as on how to model their conditional response through regression. Consider the univariate
exponential family class of distributions: P(Z) = exp( B(Z) + C(Z) — D(9)), with sufficient



statistics B(Z), base measure C'(Z), and log-normalization constant D(#). Such exponential fam-
ily distributions include a wide variety of commonly used distributions such as Gaussian, Bernoulli,
multinomial, Poisson, exponential, gamma, chi-squared, beta, any of which can be instantiated with
particular choices of the functions B(-), and C(-). Such univariate exponential family distributions
are thus used to model a wide variety of data types including skewed continuous data and count data.
Additionally, through generalized linear models, they are used to model the response of various data
types conditional on a set of covariates. Here, we seek to use our understanding of univariate expo-
nential families and generalized linear models to specify a conditional graphical model distribution.

Consider the conditional extension of the construction in [14, 9, 10]. Suppose that the node-
conditional distributions of response variables, Y, conditioned on the rest of the response variables,
Y-\ s, and the covariates, X, is given by an univariate exponential family:

P(Y;‘YV\mX) = eXp{Es(YV\saX) Bs(}/s) + CS(YS) - DS(YV\S7X)}' (1)

Here, the functions B;(-), Cs(+) are specified by the choice of the exponential family, and the pa-
rameter F,(Yyn\4, X) is an arbitrary function of the variables Y; in N(s) and the covariates X;
N(s) is the set of neighbors of node s according to an undirected graph G = (V, E). Would these
node-conditional distributions be consistent with a joint distribution? Would this joint distribution
factor according a conditional random field given by graph G? And would there be restrictions on
the form of the functions F,(Yy\s, X)? The following theorem answers these questions. We note
that it generalizes the MRF framework of [9, 10] in two ways: it allows for the presence of condi-
tional covariates, and moreover allows for heterogeneous types and domains of distributions with
the different choices of B(-) and C;(-) at each individual node.

Theorem 1. Consider a p-dimensional random vector Y = (Y1,Ys,...,Y,) denoting the set of
responses, and let X = (X1,...,X,) be a q-dimensional covariate vector. Consider the follow-
ing two assertions: (a) the node-conditional distributions of each P(Y,|Yy\,, X) are specified by
univariate exponential family distributions as detailed in (1); and (b) the joint multivariate condi-
tional distribution P(Y'|X) factors according to the graph G = (V, E) with clique-set C, but with
factors over response-variable-cliques of size at most k. These assertions on the conditional and
Jjoint distributions respectively are consistent if and only if the conditional distribution in (1) has the
tensor-factorized form:

P(Ya|Virs, X;0) =exp {BS(YS) (GS(X) + 3 0.(X)Bu(Ye) + ...
tEN(s)

k
+ Y O (X) [ By (Ytj)) +Cs(Ya) — DS(YV\S)}, )
to,...,t, EN(s) j=2

where 05.(X) := {05(X),0s(X),...,0st,..4,(X)} is a set of functions that depend only on the
covariates X. Moreover, the corresponding joint conditional random field distribution has the form:

P<Y|X;e>:exp{Zes<X>Bs<Y;>+Z S 0,0(X) Bo(Y2) Bu(Y:)
s )

s€V teN (s

k
oo+ D Otl...tk(X)HBtj(Yt])JrZCS(YS)—A(a(X))}, 3)

(t1,eees t)EC

where A(0(X)) is the log-normalization constant.

Theorem 1 specifies the form of the function ES(YV\S, X) defining the canonical parameter in the
univariate exponential family distribution (1). This function is a tensor factorization of products of
sufficient statistics of YV\ss and “observation functions”, §(X), of the covariates X alone. A key
point to note is that the observation functions, (X ), in the CRF distribution (3) should ensure that
the density is normalizable, that is, A(H(X )) < +o00. We also note that we can allow different
exponential families for each of the node-conditional distributions of the response variables, mean-
ing that the domains, )s, or the sufficient statistics functions, B;(-), can vary across the response
variables Y. A common setting of these sufficient statistics functions however, for many popular
distributions (Gaussian, Bernoulli, etc.), is a linear function, so that Bs(Y;) = Y.



An important special case of the above result is when the joint CRF has response-variable-clique
factors of size at most two. The node conditional distributions (2) would then have the form:

+ Y 0a(X) B(VD)) + CS(YS)},

POV Yo, X30) exp { B, (Y2) - (00X
teN(s)

while the joint distribution in (3) has the form:

P(Y|X;9):exp{295(X) Z Ost(X Ys) Be(Y:) +ZC A(Q(X))}7 )

sEV (s,t)EE seV

with the log-partition function, A(#(X)), given the covariates, X, defined as

A(O(X))::log/y exp{Z@(X )+ > 0s(X) By(Y:) Bi(Ya) + Y Cs(Y- } 5)

seV (s,t)EE seV

Theorem 1 then addresses the model specification question of how to select the compatibility func-
tions in CRFs for varied types of responses. Our framework permits arbitrary observation functions,
6(X), with the only stipulation that the log-partition function must be finite. (This only provides a
restriction when the domain of the response variables is not finite). In the next section, we address
the second model specification question of how to set the covariate functions.

2.1 Setting Covariate Functions

A candidate approach to specifying the observation functions, 6(X), in the CRF distribution above
would be to make distributional assumptions on X. Since Theorem 1 specifies the conditional
distribution P(Y'|X), specifying the marginal distribution P(X) would allow us to specify the
joint distribution P(Y, X) without further restrictions on P(Y'|X) using the simple product rule:
P(X,Y) = P(Y|X) P(X). As an example, suppose that the covariates X follow an MRF distri-
bution with graph G’ = (V’, E’), and parameters 9:

uev’ (u,v)eV’/ XV’

Then, for any CRF distribution P (Y| X) in (4), we have

P(X,Y) :exp{zlguﬁbu + Z ﬁuvﬁbuv XuaX +Za Ys+zoet(x))/s}/t
(u,v) (s,t)

+ZC () — A(Q(X))}.

The joint distribution, P(X,Y"), is valid provided P(Y|X) and P(X) are valid distributions. Thus,
a distributional assumption on P(X) does not restrict the set of covariate functions in any way.

On the other hand, specifying the conditional distribution, P(XY"), naturally entails restrictions on
the form of P(Y'|X). Consider the case where the conditional distributions P(X,|Xy,,Y’) are
also specified by univariate exponential families:

P(Xu|XV’\uv Y) = eXp{Eu(XV’\uv Y) Bu(Xu) + Cu(Xu) - DU(XV’\uv Y)}, (6)

where B, (Xy1\,,Y) is an arbitrary function of the rest of the variables, and By, (-), Cy,(+), Dy (-) are
specified by the univariate exponential family. Under these additional distributional assumptions in
(6), what form would the CRF distribution in Theorem 1 take? Specifically, what would be the form
of the observation functions 6(X)? The following theorem provides an answer to this question. (In
the following, we use the shorthand s}* to denote the sequence (s1,. .., $m)-)

Theorem 2. Consider the following assertions: (a) the conditional CRF distribution of the re-
sponses Y = (Y1,...,Y,) given covariates X = (X1,..., X,) is given by the family (4); and (b)
the conditional distributions of individual covariates given rest of the variables P(Xy| Xy, Y') is
given by an exponential family of the form in (6); and (c) the joint distribution P(X,Y") belongs to
a graphical model with graph G = (V U V', E), with clique-set C, with factors of size at most k.
These assertions are consistent if and only if the CRF distribution takes the form:
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so that the observation functions 0, ..+ (X) in the CRF distribution (4) are tensor products of

k I—r
univariate functions: 0y, . (X) = Z Z Qyr gi=r H B, (Xs,).
=1 g-rey’ J=1
(t7,si"Mec
Let us examine the consequences of this theorem for the pair-wise CRF distributions (4). Theorem 2

then entails that the observation functions, {04(X), 6:(X)}, have the following form when the
distribution has factors of size at most two:

0s(X) =05+ > OuBu(Xy), 0:(X) =0, ®)
ueV’

for some constant parameters 0y, 0, and 6. Similarly, if the joint distribution has factors of size
at most three, we have:

0s(X) =0s+ Y OuBu(Xu)+ Y OeuwBu(Xu)By(X,),

ueV’ (u,w)EV’/ XV’
est(X) =05 + Z estuBu(Xu) 9)
ueV’

(Remark 1) While we have derived the covariate functions in Theorem 2 by assuming a distribu-
tional form on X, using the resulting covariate functions do not necessarily impose distributional
assumptions on X . This is similar to “generative-discriminative” pairs of models [15]: a “gener-
ative” Naive Bayes distribution for P(X|Y") corresponds to a “discriminative” logistic regression
model for P(Y|X), but the converse need not hold. We can thus leverage the parametric CRF
distributional form in Theorem 2 without necessarily imposing stringent distributional assump-
tions on X.

(Remark 2) Consider the form of the covariate functions given by (8) compared to (9). What does
sparsity in the parameters entail in terms of conditional independence assumptions? 6s; = 0
in (8) entails that Y is conditionally independent of Y; given the other responses and all the
covariates. Thus, the parametrization in (8) corresponds to pair-wise conditional independence
assumptions between the responses (structure learning) and between the responses and covariates
(feature selection). In contrast, (9) lets the edges weights between the responses, 0, (X) vary
as a linear combination of the covariates. Letting 64, = 0 entails the lack of a third-order
interaction between the pair of responses Y and Y; and the covariate X,,, conditioned on all
other responses and covariates.

(Remark 3) Our general subclasses of CRFs specified by Theorems 1 and 2 encompass many ex-
isting CRF families as special cases, in addition to providing many novel forms of CRFs.

e The Gaussian CRF presented in [7] as well as the reparameterization in [8] can be viewed
as an instance of our framework by substituting in Gaussian sufficient statistics in (8): here
the Gaussian mean of the CRF depends on the covariates, but not the covariance. We can
correspondingly derive a novel Gaussian CRF formulation from (9), where the Gaussian
covariance of Y| X would also depend on X.

e By using the Bernoulli distribution as the node-conditional distribution, we can derive the
Ising CREF, recently studied in [2] with an application to studying tumor suppressor genes.

e Several novel forms of CRFs can be derived by specifying node-conditional distributions
as Poisson or exponential, for example. With certain distributions, such as the multivari-
ate Poisson for example, we would have to enforce constraints on the parameters to ensure
normalizability of the distribution. For the Poisson CRF distribution, it can be verified that
for the log-partition function to be finite, A(Gst(X )) < o0, the observation functions are
constrained to be non-positive, 6 (X) < 0. Such restrictions are typically needed for cases
where the variables have infinite domains.



3 Graphical Model Structure Learning

We now address the task of learning a CRF distribution from our general family given i.i.d. ob-
servations of the multivariate response vector and covariates. Structure recovery and estimation for
CRFs has not attracted as much attention as that for MRFs. Schmidt et al. [16], Torralba et al.
[17] empirically study greedy methods and block ¢; regularized pseudo-likelihood respectively to
learn the discrete CRF graph structure. Bradley and Guestrin [18], Shahaf et al. [19] provide guar-
antees on structure recovery for low tree-width discrete CRFs using graph cuts, and a maximum
weight spanning tree based method respectively. Cai et al. [4], Liu et al. [6] provide structure recov-
ery guarantees for their two-stage procedure for recovering (a reparameterization of) a conditional
Gaussian based CRF; and the semi-parameteric partition based Gaussian CRF respectively. Here,
we provide a single theorem that provides structure recovery guarantees for any CRF from our class
of exponential family CRFs, which encompasses not only Ising, and Gaussian based CRFs, but all
other instances within our class, such as Poisson CRFs, exponential CRFs, and so on.

We are given n i.i.d. samples Z := {X ) Y }7_, from a pair-wise CRF distribution, of the form
specified by Theorems 1 and 2 with covariate functions as given in (8):

P(Y|X;6%) o<exp{ ST(0:+ D 05.Bu(XW))Bo(Ya) + > 05 Bo(Ys) Bi(Vy) +ZO(YS)}, (10)
seV u€eEN'(s) (s,t)EE s

with unknown parameters, 8*. The task of CRF parameter learning corresponds to estimating the
parameters 6%, structure learning corresponds to recovering the edge-set F/, and feature selection
corresponds to recovering the neighborhoods N’(s) in (10). Note that the log-partition function
A(6*) is intractable to compute in general (other than special cases such as Gaussian CRFs). Ac-
cordingly, we adopt the node-based neighborhood estimation approach of [12, 13, 9, 10]. Given the
joint distribution in (10), the node-wise conditional distribution of Y, given the rest of the nodes
and covariates, is given by P(Y,|Yy\s, X;0%) = exp{n - B,(Y) + Cs(Ys) — Ds(n)} which is a
univariate exponential family, with parameter n = 05 + >_, v 05, Bu(Xu) + 2 ic1n s 05 Be(Y2),
as discussed in the previous section. The corresponding negative log-conditional-likelihood can be
written as £(0; Z) := —L log [T"", Py \Yy\)s, X)),
For each node s, we have three components of the parameter set, 8 := (6,,0%,0"): a scalar 05, a
length g vector 8 := Uycv0sy, and a length p — 1 vector ¥ := U,y ;05¢. Then, given samples
Z, these parameters can be selected by the following ¢, regularized M -estimator:

min - £(0) + X n[|07]|1 + Ay.nl|67]1, (11)

OcR1+(p—1)+q
where \; ,, Ay are the regularization constants. Note that A, ,, and ), ,, do not need to be the
same as ), , determines the degree of sparsity between Y and Yy, and similarly A, , does
the degree of sparsity between Y, and covariates X. Given this M -estimator, we can recover the
response-variable-neighborhood of response Yy as N(s) = {t € V\s | 6%, # 0}, and the feature-
neighborhood of the response Yy as N'(s) = {t € V' | 6%, # 0}.

Armed with this machinery, we can provide the statistical guarantees on successful learning of all
three sub-tasks of CRFs:

Theorem 3. Consider a CRF distribution as specified in (10). Suppose that the regularization
parameters in (11) are chosen such that

! /1
)\z,n 2 Ml %7 )\y,n 2 Ml % and max{)\z,nyAy,n} S M27

where My and Ms are some constants depending on the node conditional distribution in the form of
exponential family. Further suppose that min,e y (s |05 > 10 hax {\/dx/\x,n, A /dy/\y,n} where

StT = Pmin
Prmin is the minimum eigenvalue of the Hessian of the loss function at 6", 0", and d,, d,, are the
number of nonzero elements in 0" and 0V, respectively. Then, for some positive constants L, cy,
co, and cs, if n > L(d, + dy)*(logp + log q) (max{logn, log(p + q)})% then with probability at
least 1 — ¢y max{n,p + q} =2 — exp(—can) — exp(—csn), the following statements hold.

(@) (Parameter Error) For each node s € V, the solution 0 of the M-estimation problem in (11) is
unique with parameter error bound

nz T* Y * 5
10° — 0|2 + [0 — 672 <

S max (VAo s Vdghy .t

1
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Figure 1: (a) ROC curves averaged over 50 simulations from a Gaussian CRF with p = 50 responses,
q = 50 covariates, and (left) n = 100 and (right) n = 250 samples. Our method (G-CRF) is
compared to that of [7] (cGGM) and [8] (pGGM). (b) ROC curves for simulations from an Ising
CRF with p = 100 responses, ¢ = 10 covariates, and (left) n = 50 and (right) n = 150 samples.
Our method (I-CRF) is compared to the unconditional Ising MRF (I-MRF). (c) ROC curves for
simulations from a Poisson CRF with p = 100 responses, ¢ = 10 covariates, and (left) n = 50 and
(right) n = 150 samples. Our method (P-CRF) is compared to the Poisson MRF (P-MRF).

(b) (Structure Recovery) The M-estimate recovers the response-feature neighborhoods exactly, so
that J/\F’(s) = N'(s), foralls € V.

(¢) (Feature Selection) The M-estimate recovers the true response neighborhoods exactly, so that
N(s) = N(s), forall s € V.

The proof requires modifying that of Theorem 1 in [9, 10] to allow for two different regularization
parameters, A, , and A, ,, and for two distinct sets of random variables (responses and covariates).
This introduces subtleties related to interactions in the analyses. Extending our statistical analysis
in Theorem 3 for pair-wise CRFs to general CRF distributions (3) as well as general covariate
functions, such as in (9), are omitted for space reasons and left for future work.

4 Experiments

Simulation Studies. In order to evaluate the generality of our framework, we simulate data from
three different instances of our model: those given by Gaussian, Bernoulli (Ising), and Poisson
node-conditional distributions. We assume the true conditional distribution, P(Y|X), follows (7)
with the parameters: 0,(X) = 0, + > v OsuXu , 0t(X) = 05 + >, c 050Xy for some
constant parameters 0, 0, 05 and O,,,. In other words, we permit both the mean, 6,(X) and the
covariance or edge-weights, 0.:(X), to depend on the covariates.

For the Gaussian CRFs, our goal is to infer the precision (or inverse covariance) matrix. We first
generate covariates as X ~ U[—0.05,0.05]. Given X, the precision matrix of Y, ©(X), is generated
as follows. All the diagonal elements are set to 1. For each node s, 4 nearest neighbors in the
/D X /P lattice structure are selected, and 65, = 0 for non-neighboring nodes. For a given edge
structure, the strength is now a function of covariates, X, by letting 05:(X) = ¢ + (ws, X ) where
c is a constant bias term and wy; is target vector of length ¢q. Data of size p = 50 responses and
q = 50 covariates was generated for n = 100 and n = 250 samples. Figure 1(a) reports the receiver-
operator curves (ROC) averaged over 50 trials for three different methods: the model of [7] (denoted
as cGGM), the model of [8] (denoted as pGGM), and our method (denoted as G-CRF). Results show
that our method outperforms competing methods as their edge-weights are restricted to be constants,
while our method allows them to linearly depend on the covariates. Data was similarly generated
using a 4 nearest neighbor lattice structure for Ising and Poisson CRFs with p = 100 responses,
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Figure 2: From left to right: Gaussian MRF, mean-specified Gaussian CRF, and the set correspond-
ing to the covariance-specified Gaussian CRF. The latter shows the third-order interactions between
gene-pairs and each of the five common aberration covariates (EGFR, PTEN, CDKN2A, PDGFRA,
and CDK4). The models were learned from gene expression array data of Glioblastoma samples,
and the plots display the response neighborhoods of gene TWIST1.

g = 10 covariates, and n = 50 or n = 150 samples. Figure 1(b) and Figure 1(c) report the ROC
curves averaged over 50 trials for the Ising and Poisson CRFs respectively. The performance of our
method is compared to that of the unconditional Ising and Poisson MRFs of [9, 10].

Real Data Example: Genetic Networks of Glioblastoma. We demonstrate the performance of
our CRF models by learning genetic networks of Glioblastoma conditioned on common copy num-
ber aberrations. Level III gene expression data measured by Aglient arrays for n = 465 Glioblas-
toma tumor samples as well as copy number variation measured by CGH-arrays were downloaded
from the Cancer Genome Atlas data portal [20]. The data was processed according to standard
techniques, and we only consider genes from the C2 Pathway Database. The five most common
copy number aberrations across all subjects were taken as covariates. We fit our Gaussian “mean-
specified” CRFs (with covariate functions given in (8)) and Gaussian “covariance-specified” CRFs
(with covariate functions given in (9)) by penalized neighborhood estimation to learn the graph
structure of gene expression responses, p = 876, conditional on ¢ = 5 aberrations: EGFR, PTEN,
CDKN2A, PDGFRA, and CDK4. Stability selection [21] was used to determine the sparsity of the
network.

Due to space limitations, the entire network structures are not shown. Instead, we show the results of
the mean- and covariance-specified Gaussian CRFs and that of the Gaussian graphical model (GGM)
for one particularly important gene neighborhood: TWIST1 is a transcription factor for epithelial
to mesenchymal transition [22] and has been shown to promote tumor invasion in multiple cancers
including Glioblastoma [23]. The neighborhoods of TWIST1 learned by GGMs and mean-specified
CRFs share many of the known interactors of TWIST1, such as SNAI2, MGP, and PMAIPI1 [24].
The mean-specified CRF is more sparse as conditioning on copy number aberrations may explain
many of the conditional dependencies with TWIST1 that are captured by GGMs, demonstrating the
utility of conditional modeling via CRFs. For the covariance-specified Gaussian CRF, we plot the
neighborhood given by 6, in (9) for the five values of u corresponding to each aberration. The
results of this network denote third-order effects between gene-pairs and aberrations, and are thus
even more sparse with no neighbors for the interactions between TWIST1 and PTEN, CDK4, and
EGFR. TWIST1 has different interactions between PDGFRA and CDKN2A, which have high fre-
quency for proneual subtypes of Glioblastoma tumors. Thus, our covariance-specified CRF network
may indicate that these two aberrations are the most salient in interacting with pairs of genes that in-
clude the gene TWIST1. Overall, our analysis has demonstrated the applied advantages of our CRF
models; namely, one can study the network structure between responses conditional on covariates
and/or between pairs of responses that interact with particular covariates.
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