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Abstract

Graph matching is a challenging problem with very important applications in a
wide range of fields, from image and video analysis to biological and biomedical
problems. We propose a robust graph matching algorithm inspired in sparsity-
related techniques. We cast the problem, resembling group or collaborative spar-
sity formulations, as a non-smooth convex optimization problem that can be ef-
ficiently solved using augmented Lagrangian techniques. The method can deal
with weighted or unweighted graphs, as well as multimodal data, where different
graphs represent different types of data. The proposed approach is also naturally
integrated with collaborative graph inference techniques, solving general network
inference problems where the observed variables, possibly coming from differ-
ent modalities, are not in correspondence. The algorithm is tested and compared
with state-of-the-art graph matching techniques in both synthetic and real graphs.
We also present results on multimodal graphs and applications to collaborative in-
ference of brain connectivity from alignment-free functional magnetic resonance
imaging (fMRI) data. The code is publicly available.

1 Introduction
Problems related to graph isomorphisms have been an important and enjoyable challenge for the
scientific community for a long time. The graph isomorphism problem itself consists in determining
whether two given graphs are isomorphic or not, that is, if there exists an edge preserving bijection
between the vertex sets of the graphs. This problem is also very interesting from the computational
complexity point of view, since its complexity level is still unsolved: it is one of the few problems in
NP not yet classified as P nor NP-complete (Conte et al., 2004). The graph isomorphism problem is
contained in the (harder) graph matching problem, which consists in finding the exact isomorphism
between two graphs. Graph matching is therefore a very challenging problem which has several
applications, e.g., in the pattern recognition and computer vision areas. In this paper we address the
problem of (potentially multimodal) graph matching when the graphs are not exactly isomorphic.
This is by far the most common scenario in real applications, since the graphs to be compared are
the result of a measuring or description process, which is naturally affected by noise.

Given two graphs GA and GB with p vertices, which we will characterize in terms of their p × p
adjacency matrices A and B, the graph matching problem consists in finding a correspondence
between the nodes of GA and GB minimizing some matching error. In terms of the adjacency
matrices, this corresponds to finding a matrix P in the set of permutation matrices P , such that
it minimizes some distance between A and PBPT. A common choice is the Frobenius norm
||A−PBPT||2F , where ||M||2F =

∑
ij M2

ij . The graph matching problem can be then stated as

min
P∈P
||A−PBPT||2F = min

P∈P
||AP−PB||2F . (1)
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The combinatorial nature of the permutation search makes this problem NP in general, although
polynomial algorithms have been developed for a few special types of graphs, like trees or planar
graphs for example (Conte et al., 2004).

There are several and diverse techniques addressing the graph matching problem, including spectral
methods (Umeyama, 1988) and problem relaxations (Zaslavskiy et al., 2009; Vogelstein et al., 2012;
Almohamad & Duffuaa, 1993). A good review of the most common approaches can be found in
Conte et al. (2004). In this paper we focus on the relaxation techniques for solving an approximate
version of the problem. Maybe the simplest one is to relax the feasible set (the permutation matrices)
to its convex hull, the set of doubly stochastic matrices D, which consist of the matrices with non-
negative entries such that each row and column sum up one: D = {M ∈ Rp×p : Mij ≥ 0,M1 =

1,MT1 = 1}, 1 being the p-dimensional vector of ones. The relaxed version of the problem is

P̂ = arg min
P∈D
||AP−PB||2F ,

which is a convex problem, though the result is a doubly stochastic matrix instead of a per-
mutation. The final node correspondence is obtained as the closest permutation matrix to P̂:
P∗ = arg minP∈P ||P− P̂||2F , which is a linear assignment problem that can be solved inO(p3) by
the Hungarian algorithm (Kuhn, 1955). However, this last step lacks any guarantee about the graph
matching problem itself. This approach will be referred to as QCP for quadratic convex problem.

One of the newest approximate methods is the PATH algorithm by Zaslavskiy et al. (2009), which
combines this convex relaxation with a concave relaxation. Another new technique is the FAQ
method by Vogelstein et al. (2012), which solves a relaxed version of the Quadratic Assignment
Problem. We compare the method here proposed to all these techniques in the experimental section.

The main contributions of this work are two-fold. Firstly, we propose a new and versatile formu-
lation for the graph matching problem which is more robust to noise and can naturally manage
multimodal data. The technique, which we call GLAG for Group lasso graph matching, is inspired
by the recent works on sparse modeling, and in particular group and collaborative sparse coding.
We present several experimental evaluations to back up these claims. Secondly, this proposed for-
mulation fits very naturally into the alignment-free collaborative network inference problem, where
we collaborative exploit non-aligned (possibly multimodal) data to infer the underlying common
network, making this application never addressed before to the best of our knowledge. We assess
this with experiments using real fMRI data.

The rest of this paper is organized as follows. In Section 2 we present the proposed graph matching
formulation, and we show how to solve the optimization problem in Section 3. The joint collabo-
rative network and permutation learning application is described in Section 4. Experimental results
are presented in Section 5, and we conclude in Section 6.

2 Graph matching formulation

We consider the problem of matching two graphs that are not necessarily perfectly isomorphic. We
will assume the following model: Assume that we have a noise free graph characterized by an
adjacency matrix T. Then we want to match two graphs with adjacency matrices A = T + OA and
B = PT

o TPo + OB, where OA and OB have a sparse number of non-zero elements of arbitrary
magnitude. This realistic model is often used in experimental settings, e.g., (Zaslavskiy et al., 2009).

In this context, the QCP formulation tends to find a doubly stochastic matrix P which minimizes the
“average error” between AP and PB. However, these spurious mismatching edges can be thought
of as outliers, so we would want a metric promoting that AP and PB share the same active set (non
zero entries representing edges), with the exception of some sparse entries. This can be formulated
in terms of the group Lasso penalization (Yuan & Lin, 2006). In short, the group Lasso takes a set
of groups of coefficients and promotes that only some of these groups are active, while the others
remain zero. Moreover, the usual behavior is that when a group is active, all the coefficients in the
group are non-zero. In this particular graph matching application, we form p2 groups, one per matrix
entry (i, j), each one consisting of the 2-dimensional vector

(
(AP)ij , (PB)ij

)
. The proposed cost

function is then the sum of the l2 norms of the groups:

f(P ) =
∑
i,j

∣∣∣∣((AP)ij , (PB)ij
)∣∣∣∣

2
. (2)
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Ideally we would like to solve the graph matching problem by finding the minimum of f over the
set of permutation matrices P . Of course this formulation is still computationally intractable, so we
solve the relaxed version, changing P by its convex hull D, resulting in the convex problem

P̃ = arg min
P∈D

f(P). (3)

As with the Frobenius formulation, the final step simply finds the closest permutation matrix to P̃.

Let us analyze the case when A and B are the adjacency matrices of two isomorphic undirected
unweighted graphs with e edges and no self-loops. Since the graphs are isomorphic, there exist a
permutation matrix Po such that A = PoBPT

o .

Lemma 1 Under the conditions stated above, the minimum value of the optimization problem (3)
is 2
√

2e and it is reached by Po, although the solution is not unique in general. Moreover, any
solution P of problem (3) satisfies AP = PB.

Proof: Let (a)k denote all the p2 entries of AP, and (b)k all the entries of PB. Then f(P) can be
re-written as f(P) =

∑
k

√
a2k + b2k .

Observing that
√
a2 + b2 ≥

√
2
2 (a+ b), we have

f(P ) =
∑
k

√
a2k + b2k ≥

∑
k

√
2

2
(ak + bk) . (4)

Now, since P is doubly stochastic, the sum of all the entries of AP is equal to the sum of all
the entries of A, which is two times the number of edges. Therefore

∑
k ak =

∑
k bk = 2e and

f(P) ≥ 2
√

2e.

The equality in (4) holds if and only if ak = bk for all k, which means that AP = PB. In particular,
this is true for the permutation Po, which completes the proof of all the statements. �

This Lemma shows that the fact that the weights in A and B are not compared in magnitude does
not affect the matching performance when the two graphs are isomorphic and have equal weights.
On the other hand, this property places a fundamental role when moving away from this setting.
Indeed, since the group lasso tends to set complete groups to zero, and the actual value of the
non-zero coefficients is less important, this allows to group very dissimilar coefficients together,
if that would result in fewer active groups. This is even more evident when using the l∞ norm
instead of the l2 norm of the groups, and the optimization remains very similar to the one presented
below. Moreover, the formulation remains valid when both graphs come from different modalities,
a fundamental property when for example addressing alignment-free collaborative graph inference
as presented in Section 4 (the elegance with which this graph matching formulation fits into such
problem will be further stressed there). In contrast, the Frobenious-based approaches mentioned
in the introduction are very susceptible to differences in edge magnitudes and not appropriate for
multimodal matching1.

3 Optimization

The proposed minimization problem (3) is convex but non-differentiable. Here we use an efficient
variant of the Alternating Direction Method of Multipliers (ADMM) (Bertsekas & Tsitsiklis, 1989).
The idea is to write the optimization problem as an equivalent artificially constrained problem, using
two new variables α,β ∈ Rp×p:

min
P∈D

∑
i,j

||
(
αij ,βij

)
||2 s.t. α = AP, β = PB. (5)

The ADMOM method generates a sequence which converges to the minimum of the augmented
Lagrangian of the problem:

L(P,α,β,U,V) =
∑
i,j

||
(
αij ,βij

)
||2 +

c

2
||α−AP + U||2 +

c

2
||β −PB + V||2 ,

1If both graphs are binary and we limit to permutation matrices (for which there are no algorithms known to
find the solution in polynomial time), then the minimizers of (2) and (1) are the same (Vince Lyzinski, personal
communication).
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where U and V are related to the Lagrange multipliers and c is a fixed constant.

The decoupling produced by the new artificial variables allows to update their values one at a time,
minimizing the augmented Lagrangian L. We first update the pair (α,β) while keeping fixed
(P,U,V); then we minimize for P; and finally update U and V, as described next in Algorithm 1.

Input : Adjacency matrices A,B, c > 0.
Output: Permutation matrix P∗

Initialize U = 0, V = 0, P = 1
p
1T1

while stopping criterion is not satisfied do
(αt+1,βt+1) = argminα,β

∑
i,j ||

(
αij ,βij

)
||2 + c

2
||α−APt + Ut||2F + c

2
||β −PtB + Vt||2F

Pt+1 = argminP∈D
1
2
||αt+1 −AP + Ut||2F + 1

2
||βt+1 −PB + Vt||2F

Ut+1 = Ut +αt+1 −APt+1

Vt+1 = Vt + βt+1 −Pt+1B
end
P∗ = argminQ∈P ||Q−P||2F
Algorithm 1: Robust graph matching algorithm. See text for implementation details of each step.

The first subproblem is decomposable into p2 scalar problems (one for each matrix entry),

min
αij ,βij

||
(
αij ,βij

)
||2 +

c

2
(αij − (APt)ij + Ut

ij)
2 +

c

2
(βij − (PtB)ij + Vt

ij)
2.

From the optimality conditions on the subgradient of this subproblem, it can be seen that this can
be solved in closed form by means of the well know vector soft-thresholding operator (Yuan & Lin,
2006): Sv(b, λ) =

[
1− λ

||b||2

]
+

b .

The second subproblem is a minimization of a convex differentiable function over a convex set, so
general solvers can be chosen for this task. For instance, a projected gradient descent method can
be used. However, this would require to compute several projections onto D per iteration, which is
one of the computationally most expensive steps. Nevertheless, we can choose to solve a linearized
version of the problem while keeping the convergence guarantees of the algorithm (Lin et al., 2011).
In this case, the linear approximation of the first term is:

1

2
||αt+1 −AP + Ut||2F ≈

1

2
||αt+1 −APk + Ut||2F + 〈gk,P−Pk〉+

1

2τ
||P−Pk||2F ,

where gk = −AT(αt+1 + Ut−APk) is the gradient of the linearized term, 〈·, ·〉 is the usual inner
product of matrices, and τ is any constant such that τ < 1

ρ(ATA)
, with ρ(·) being the spectral norm.

The second term can be linearized analogously, so the minimization of the second step becomes

min
P∈D

1

2
||P−

(
Pk + τAT(αt+1 + Ut −APk)

)︸ ︷︷ ︸
fixed matrix C

||2F+
1

2
||P−

(
Pk + τ(βt+1 + Vt −PkB)BT

)︸ ︷︷ ︸
fixed matrix D

||2F

which is simply the projection of the matrix 1
2 (C + D) over D.

Summarizing, each iteration consists of p2 vector thresholdings when solving for (α,β), one pro-
jection over D when solving for P, and two matrix multiplications for the update of U and V. The
code is publicly available at www.fing.edu.uy/˜mfiori.

4 Application to joint graph inference of not pre-aligned data
Estimating the inverse covariance matrix is a very active field of research. In particular the inference
of the support of this matrix, since the non-zero entries have information about the conditional de-
pendence between variables. In numerous applications, this matrix is known to be sparse, and in this
regard the graphical Lasso has proven to be a good estimator for the inverse covariance matrix (Yuan
& Lin, 2007; Fiori et al., 2012) (also for non-Gaussian data (Loh & Wainwright, 2012)). Assume
that we have a p-dimensional multivariate normal distributed variable X ∼ N (0,Σ); let X ∈ Rk×p
be a data matrix containing k independent observations of X , and S its empirical covariance matrix.
The graphical Lasso estimator for Σ−1 is the matrix Θ which solves the optimization problem

min
Θ�0

tr(SΘ)− log det Θ + λ
∑
i,j

|Θij | , (6)

4
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which corresponds to the maximum likelihood estimator for Σ−1 with an l1 regularization.

Collaborative network inference has gained a lot of attention in the last years (Chiquet et al., 2011),
specially with fMRI data, e.g., (Varoquaux et al., 2010). This problem consist of estimating two (or
more) matrices Σ−1A and Σ−1B from data matrices XA and XB as above, with the additional prior
information that the inverse covariance matrices share the same support. The joint estimation of ΘA

and ΘB is performed by solving

min
ΘA�0,ΘB�0

tr(SAΘA)− log det ΘA + tr(SBΘB)− log det ΘB + λ
∑
i,j

∣∣∣∣(ΘA
ij ,Θ

B
ij

)
||2 , (7)

where the first four terms correspond to the maximum likelihood estimators for ΘA,ΘB , and the
last term is the group Lasso penalty which promotes that ΘA and ΘB have the same active set.

This formulation relies on the limiting underlying assumption that the variables in both datasets
(the columns of XA and XB) are in correspondence, i.e., the graphs determined by the adjacency
matrices ΘA and ΘB are aligned. However, this is in general not the case in practice. Motivated
by the formulation presented in Section 2, we propose to overcome this limitation by incorporating
a permutation matrix into the optimization problem, and jointly learn it on the estimation process.
The proposed optimization problem is then given by

min
ΘA,ΘB�0

P∈P

tr(SAΘA)− log det ΘA + tr(SBΘB)− log det ΘB + λ
∑
i,j

∣∣∣∣((ΘAP)ij , (PΘB)ij
)
||2.

(8)
Even after the relaxation of the constraint P ∈ P to P ∈ D, the joint minimization of (8) over
(ΘA,ΘB) and P is a non-convex problem. However it is convex when minimized only over
(ΘA,ΘB) or P leaving the other fixed. Problem (8) can be then minimized using a block-coordinate
descent type of approach, iteratively minimizing over (ΘA,ΘB) and P.

The first subproblem (solving (8) with P fixed) is a very simple variant of (7), which can be solved
very efficiently by means of iterative thresholding algorithms (Fiori et al., 2013). In the second
subproblem, since (ΘA,ΘB) are fixed, the only term to minimize is the last one, which corresponds
to the graph matching formulation presented in Section 2.

5 Experimental results

We now present the performance of our algorithm and compare it with the most recent techniques
in several scenarios including synthetic and real graphs, multimodal data, and fMRI experiments.
In the cases where there is a “ground truth,” the performance is measured in terms of the matching
error, defined as ||Ao −PBoP

T||2F , where P is the obtained permutation matrix and (Ao,Bo) are
the original adjacency matrices.

5.1 Graph matching: Synthetic graphs

We focus here in the traditional graph matching problem of undirected weighted graphs, both with
and without noise. More precisely, let Ao be the adjacency matrix of a random weighted graph and
Bo a permuted version of it, generated with a random permutation matrix Po, i.e., Bo = PT

o AoPo.
We then add a certain number N of random edges to Ao with the same weight distribution as the
original weights, and anotherN random edges to Bo, and from these noisy versions we try to recover
the original matching (or any matching between Ao and Bo, since it may not be unique).

We show the results using three different techniques for the generation of the graphs: the Erdős-
Rényi model (Erdős & Rényi, 1959), the model by Barabási & Albert (1999) for scale-free graphs,
and graphs with a given degree distribution generated with the BTER algorithm (Seshadhri et al.,
2012). These models are representative of a wide range of real-world graphs (Newman, 2010). In
the case of the BTER algorithm, the degree distribution was generated according to a geometric law,
that is: Prob(degree = t) = (1− e−µ)eµt.

We compared the performance of our algorithm with the technique by Zaslavskiy et al. (2009)
(referred to as PATH), the FAQ method described in Vogelstein et al. (2012), and the QCP approach.
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Figure 1 shows the matching error as a function of the noise level for graphs with p = 100 nodes
(top row), and for p = 150 nodes (bottom row). The number of edges varies between 200 and 400
for graphs with 100 nodes, and between 300 and 600 for graphs with 150 nodes, depending on the
model. The performance is averaged over 100 runs. This figure shows that our method is more
stable, and consistently outperforms the other methods (considered state-of-the-art), specially for
noise levels in the low range (for large noise levels, is not clear what a “true” matching is, and in
addition the sparsity hypothesis is no longer valid).

0 5 10 15 20 25

2

6

10

14

18

Noise

M
at

ch
in

g
er

ro
r

(a) Erdős-Rényi graphs
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(b) Scale-free graphs
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(c) BTER graphs
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(d) Erdős-Rényi graphs
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(e) Scale-free graphs
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(f) BTER graphs
Figure 1: Matching error for synthetic graphs with p = 100 nodes (top row) and p = 150 nodes (bottom row).
In solid black our proposed GLAG algorithm, in long-dashed blue the PATH algorithm, in short-dashed red the
FAQ method, and in dotted black the QCP.

5.2 Graph matching: Real graphs

We now present similar experiments to those in the previous section but with real graphs. We use
the C. elegans connectome. Caenorhabditis elegans is an extensively studied roundworm, whose so-
matic nervous system consists of 279 neurons that make synapses with other neurons. The two types
of connections (chemical and electrical) between these 279 neurons have been mapped (Varshney
et al., 2011), and their corresponding adjacency matrices, Ac and Ae, are publicly available.

We match both the chemical and the electrical connection graphs against noisy artificially permuted
versions of them. The permuted graphs are constructed following the same procedure used in Section
5.1 for synthetic graphs. The weights of the added noise follow the same distribution as the original
weights. The results are shown in Figure 2. These results suggest that from the prior art, the PATH
algorithm is more suitable for the electrical connection network, while the FAQ algorithm works
better for the chemical one. Our method outperforms both of them for both types of connections.

5.3 Multimodal graph matching

One of the advantages of the proposed approach is its capability to deal with multimodal data. As
discussed in Section 2, the group Lasso type of penalty promotes the supports of AP and PB to be
identical, almost independently of the actual values of the entries. This allows to match weighted
graphs where the weights may follow completely different probability distributions. This is com-
monly the case when dealing with multimodal data: when a network is measured using significantly
different modalities, one expects the underlying connections to be the same but no relation can be
assumed between the actual weights of these connections. This is even the case for example for
fMRI data when measured with different instruments. In what follows, we evaluate the performance
of the proposed method in two examples of multimodal graph matching.
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(a) Electrical connection graph
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(b) Chemical connection graph
Figure 2: Matching error for the C. elegans connectome, averaged over 50 runs. In solid black our proposed
GLAG algorithm, in long-dashed blue the PATH algorithm, and in short-dashed red the FAQ method. Note that
in the chemical connection graph, the matching error of our algorithm is zero until noise levels of ≈ 50.

We first generate an auxiliary binary random graph Ab and a permuted version Bb = PT
o AbPo.

Then, we assign weights to the graphs according to distributions pA and pB (that will be specified
for each experiment), thus obtaining the weighted graphs A and B. We then add noise consisting
of spurious weighted edges following the same distribution as the original graphs (i.e., pA for A
and pB for B). Finally, we run all four graph matching methods to recover the permutation. The
matching error is measured in the unweighted graphs as ||Ab − PBbP

T ||F . Note that while this
metric might not be appropriate for the optimization stage when considering multimodal data, it
is appropriate for the actual error evaluation, measuring mismatches. Comparing with the original
permutation matrix may not be very informative since there is no guarantee that the matrix is unique,
even for the original noise-free data.

Figures 3(a) and 3(b) show the comparison when the weights in both graphs are Gaussian distributed,
but with different means and variances. Figures 3(c) and 3(d) show the performances when the
weights of A are Gaussian distributed, and the ones of B follow a uniform distribution. See captions
for details. These results confirm the intuition described above, showing that our method is more
suitable for multimodal graphs, specially in the low range of noise.
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(a) Erdős-Rényi graphs
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(b) Scale-free graphs

0 5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

Noise

M
at

ch
in

g
er

ro
r
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(d) Scale-free graphs
Figure 3: Matching error for multimodal graphs with p = 100 nodes. In (a) and (b), weights in A are
N (1, 0.4) and weights in B are N (4, 1). In (c) and (d), weights in A are N (1, 0.4) and weights in B are
uniform in [1, 2]. In solid black our proposed GLAG algorithm, in long-dashed blue the PATH algorithm, in
short-dashed red the FAQ method, and in dotted black the QCP.
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5.4 Collaborative inference
In this last experiment, we illustrate the application of the permuted collaborative graph inference
presented in Section 4 with real resting-state fMRI data, publicly available (Nooner, 2012). We con-
sider here test-retest studies, that is, the same subject undergoing resting-state fMRI in two different
sessions separated by a break. Each session consists of almost 10 minutes of data, acquired with
a sampling period of 0.645s, producing about 900 samples per study. The CC200 atlas (Craddock
et al., 2012) was used to extract the time-series for the ≈ 200 regions of interest (ROIs), resulting in
two data matrices XA,XB ∈ R900×200, corresponding to test and retest respectively.

To illustrate the potential of the proposed framework, we show that using only part of the data in
XA and part of the data in a permuted version of XB , we are able to infer a connectivity matrix
almost as accurately as using the whole data. Working with permuted data is very important in this
application in order to handle possible miss-alignments to the atlas.

Since there is no ground truth for the connectivity, and as mentioned before the collaborative setting
(7) has already been proven successful, we take as ground truth the result of the collaborative infer-
ence using the empirical covariance matrices of XA and XB , denoted by SA and SB . The result of
this collaborative inference procedure are the two inverse covariance matrices ΘA

GT and ΘB
GT . In

short, the gold standard built for this experiment are found by solving (obtained with the entire data)

min
ΘA�0,ΘB�0

tr(SAΘA)− log det ΘA + tr(SBΘB)− log det ΘB + λ
∑
i,j

∣∣∣∣(ΘA
ij ,Θ

B
ij

)
||2 .

Now, let XA
H be the first 550 samples of XA, and XB

H the first 550 samples of XB , which correspond
to a little less than 6 minutes of study. We compute the empirical covariance matrices SAH and SBH

of these data matrices, and we artificially permute the second one: S̃
B

H = PT
o SBHPo. With these two

matrices SAH and S̃
B

H we run the algorithm described in Section 4, which alternately computes the
inverse covariance matrices ΘA

H and ΘB
H and the matching P between them.

We compare this approach against the computation of the inverse covariance matrix using only one
of the studies. Let ΘA

s and ΘB
s be the results of the graphical Lasso (6) using SA and SB :

ΘK
s = argmin

Θ�0
tr(SKΘ)− log det Θ + λ

∑
i,j

|Θij | , for K = {A,B}.

This experiment is repeated for 5 subjects in the database. The errors ||ΘA
GT −ΘA

s ||F and ||ΘA
GT −

ΘA
H ||F are shown in Figure 4. The errors for ΘB are very similar. Using less than 6 minutes of each

study, with the variables not pre-aligned, the permuted collaborative inference procedure proposed
in Section 4 outperforms the classical graphical Lasso using the full 10 minutes of study.
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Figure 4: Inverse covariance matrix
estimation for fMRI data. In blue,
error using one complete 10 minutes
study: ||ΘA

GT − ΘA
s ||F . In red, er-

ror ||ΘA
GT − ΘA

H ||F with collabora-
tive inference using about 6 minutes
of each study, but solving for the un-
known node permutations at the same
time.

6 Conclusions
We have presented a new formulation for the graph matching problem, and proposed an optimization
algorithm for minimizing the corresponding cost function. The reported results show its suitability
for the graph matching problem of weighted graphs, outperforming previous state-of-the-art meth-
ods, both in synthetic and real graphs. Since in the problem formulation the weights of the graphs
are not compared explicitly, the method can deal with multimodal data, outperforming the other
compared methods. In addition, the proposed formulation naturally fits into the pre-alignment-free
collaborative network inference framework, where the permutation is estimated together with the
underlying common network, with promising preliminary results in applications with real data.
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