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1 Proofs of Theorems

Theorem 1. If f = 1 4 is the indicator function of a subset A C 'V then

| fllrv __2Cut(4, A°)
[f —medx(f)ll,, min{\A[[A[}

Proof. The fact that || f||7yv = 2 Cut(A, A°) follows directly from the definition of the total varia-
tion. Indeed, a straightforward computation shows

N N
Ifllrv = D0 3wyt = fx)I+ D D wilfx)l= Y Y wij+ >, D> wy.
x;, €A j=1 x; €A j=1 X €EAX;EA® X;EACx;EA
Thus || fll7v = 2 Cut(A, A°) as W is symmetric. Let B(f) := || f — medx(f)|; . To show that
B(f) = min {\| A, |A¢|}, suppose first that A\|A| < |A°|. This inequality implies A\|A| < N — |A],
or equivalently that |[A| < N/(1 4+ A). Thus |A] < k := [N/(1+ A)], and since f = 14 for
|A| < K it follows immediately that the (k + 1) largest entry in the range of f equals zero. Thus
medy (f) = 0 by definition. A direct computation then yields that B(f) = >,y [ f(x:)[x = A|A].
In the converse case, the fact that |A°| < A|A| implies |A| > N/(1+ A) > k. Thus |A] > k+1
and med,(f) = 1. Direct computation then shows that B(f) = > .., |f(xi) — 1|x = |A°] as
claimed. O

Lemma 1. Let h € RY and suppose v € RN satisfies

A ifh(x;) > 0
v(x;) € [-1,A\] ifh(x;))=0 (1
1 ifh(xi) <0.

Then v € O||h||1 x-
Proof. Note that |h(x;)|x» = v(x;)h(x;) for each x;, so that for arbitrary g € RY and each x; the
inequality

lg(xa)[x = [h(x4)[x = v(xi) (9(xi) — h(x4))
holds. Summing both sides over all x; € V then gives the claim. [



Theorem 2. The functions B and T are convex. Moreover, given f € RY the vector v € RV
defined by

A if f(xi) > medx(f) n? =[{x; € Vi f(x;) = medx(f)}|
v(x;) = "7;§”+ if f(x;) =medy(f) where n~ =|{x; € V: f(x;) < medy(f)}|

-1 if f(x;) < medx(f) nt =|{x; € V: f(x;) > medy(f)}|
belongs to OB(f).

Proof. The convexity of T'( f) follows directly from its definition and a straightforward computation
using the definition of convexity. Due to the continuity B(f), to show convexity it suffices to
establish the existence of a subdifferential at every point.

To this end note that med,(f) € range(f), so that in particular n® > 1 by definition. Let 1 <
k := |[N/(1 + \)] < N denote that entry of f so that f(xx) = med,(f). By definition of
med (f) there exist at most k elements of f larger than med (f), so thatn™ < k < N/(1 + ).

As N = n= +n° + n™ this implies )‘"tlgn_ < 1. Similarly there exist at most N — (k + 1)
elements of f smaller than med(f), sothatn™ < N — (k+ 1) < N — N/(1 + \). The fact that
N =n~ +n° +n* then implies ”7;# < A. Combining this with the previous inequality yields
1< 71’;73\71* <A

Put h := f — med(f)1, and note that the vector v defined above satisfies v € 9||h| 1,x by the
preceeding lemma. Thus for any g € R” it holds that

[lg —medx(g)1[[1,x = [[f = medr(F)1][1,x = (v, g — f + (meds(f) — medx(g))1)
by definition of the subdifferential. Note also that (v, 1) = 0, so that in fact
B(g) = B(f) = [lg — medx(g)1[1,x = [[f — medx(f)1][1,x = (v,9 = f)

for g € RY arbitrary. Thus v € B(f) by definition of the subdifferential. In particular 9B(f) is
always non-empty, so B(f) is convex. O

Theorem 3 (Estimate of the energy descent). Each of the F* belongs to C, and if BF # 0 then
R Bk+1
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where BE, E¥ stand for B(f*), E(fF).

T

Proof. Let VF € OB*(F¥). Then by definition of the subdifferential it follows that

Bk(F]C+1) Z Bk(Fk) + <Fk)+1 ka,Vk>. (3)
As FF1 = prox 5. (F* + V) the definition of the proximal operator implies that F**! € C
and that also

FE 4+ VP — FML e (T + 60)(FF).
The definition of the subdifferential and the fact that ¢ (F*) = dc(F¥*1) = 0 then combine to
imply
Tk(Fk) > Tk(Fk+1) + <Fk . FkJrl,Fk + Vk _ Fk+1>

= THFE) 4 | FE = PR 4 (PF = PEELVE) @)

Adding (3) and (@) yields
Tk(Fk) + Bk(Flc-‘rl) > Tk(Fk-‘rl) + Bk(Flc) + ”Fk _ F]H_l”?,

or equivalently that B (Fk+1) > TF(Fk+t1) ||k — FF+1)|2 gince B*(F¥) = T*(F*) by con-
struction. Expanding this last inequality shows

R

Z Ak ket k+1 k k412
ﬁ(E’I‘BT _Tr ) 2 ||F —F || )
r=1"7T
which yields the claim after by B5*1 in each term of the summation. O



2 Primal-Dual Formulation

Consider the minimization
k+1 . _ k
FP = proxgu, 5. (G7).

We may write this as the saddle-point problem

i Ku) + G(u) — F*(p).
nin, max, (p, Ku) + G(u) (p)

Here the vector u = (f1, ..., fr)" is a “vectorized” version of F' and the matrix K denotes the block
diagonal matrix

AF AF
K := blkdlag (kK7 ceey k‘K)
Bl BE

where K is the gradient matrix of the graph. We define the convex function G (u) as

R

SOU1f = g5 1P + bo(w),

r=1

1

G(u) := 3

where d¢ denotes the barrier function of the convex set C' (either the simplex or simplex with labels)
as before. The convex function F*(p) denotes the barrier function of the {*° unit ball, so that

0 if pil <1 V1<i<MR
+00 otherwise.

) - {

Note also that G(u) is uniformly convex, in that if v € 0G(u) denotes any subdifferential then for
any v’ € RV E the inequality

1
G(u) = Gu) = (v, 0 —u) + S |lu—/|]”

holds. We may therefore apply algorithm 2 of [[1]] with v = 1 with to solve the saddle-point problem.
This algorithm consists in the iterations

pn+1 = ProX, , - (pn 4 O'n]Cﬂn)
U™ = prox . (u — 7K
1
an — 7_nJrl — 9717_77. O,nJrl — O,n/@n
V142"

ﬂn+1 — un+1 4 on(un+1 _ un)

and converges provided the inequality 0® < (7°]|/K||3)~! holds for the initial timesteps. We may
compute the inner proximal operators analytically to find

(ProX,n s (2)); = z;/ max{1, |z;|} V1<i<MR,

and by completing the square that

. (z+T"g
prox..g(z) = projc ( ) ,

147
where g = (g%, ..., g%)! denotes G* in vectorized form. The inner loop of algorithm 1 then follows
by re-writing these computations in matrix form.
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