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Proof of Lemma 3.2:

Proof. Recall that Dii = θi[DB ]zi and [Θτ ]ii = θi
Dii

Dii+τ
. The ij’th element of Lτ :

[Lτ ]ij =
Aij√

(Dii + τ)(Djj + τ)
=
θiθjBzizj√

DiiDjj

√
Dii

Dii + τ

Djj

Djj + τ
=

Bzizj√
[DB ]zi [DB ]zj

∗
√

[Θτ ]ii[Θτ ]jj .

Hence,
Lτ = Θ

1
2
τ ZBLZ

TΘ
1
2
τ .

Proof of Lemma 3.3:

Proof. Let C = (ZTΘτZ)1/2BL(ZTΘτZ)1/2. If θi > 0, i = 1, ..., N , then C � 0 since B � 0
by assumption. Let λ1 ≥ ... ≥ λK > 0 be the eigenvalues of C. Let Λ ∈ RK×K be a diagonal
matrix with its ss’th element to be λs. Let U ∈ RK×K be an orthogonal matrix where its s’th
column is the eigenvector of C corresponding λs, s = 1, ...,K. By eigen-decomposition, we have
C = UΛUT . Define Xτ = Θ

1
2
τ Z(ZTΘτZ)−1/2U , then

X T
τ Xτ = UT (ZTΘτZ)−1/2(ZTΘτZ)(ZTΘτZ)−1/2U = UTU = I.

On the other hand,

XτΛX T
τ = Θ

1
2
τ Z(ZTΘτZ)−1/2C(ZTΘτZ)−1/2ZTΘ

1
2
τ = Θ

1
2
τ ZBLZ

TΘ
1
2
τ = Lτ .

Hence, λs, s = 1, ...,K are Lτ ’s positive eigenvalues and Xτ contains Lτ ’s eigenvectors corre-
sponding to its nonzero eigenvalues. For part 2, notice that ||X i

τ ||2 = ( [Θτ ]ii
[ZTΘτZ]zizi

)1/2, then

[X ∗
τ ]i =

X i
τ

||X i
τ ||2

=
( [Θτ ]ii

[ZTΘτZ]zizi
)1/2ZiU

||X i
τ ||2

= ZiU.

Therefore, X ∗
τ = ZU .

Proof of Theorem 4.1:

Proof. We extend the proof of Theorem 2 in Chung and Radcliffe [1] to the case of regularized
graph laplacian. Let H = D

−1/2
τ AD

−1/2
τ . Then ||Lτ − Lτ || ≤ ||H − Lτ || + ||Lτ − H||. We

bound the two terms separately.

For the first term, we apply the concentration inequality for matrix:

Lemma 1.1. Let X1, X2, ..., Xm be independent random N × N Hermitian matrices. Moreover,
assunme that ||Xi − E(Xi)|| ≤ M for all i, and put v2 = ||

∑
var(Xi)||. Let X =

∑
Xi. Then

for any a > 0,

pr(||X − E(X)|| ≥ a) ≤ 2N exp
(
− a2

2v2 + 2Ma/3

)
.

Notice that ||H −Lτ || = D
−1/2
τ (A−A )D

−1/2
τ . Let Eij ∈ RN×N be the matrix with 1 in the ij

and ji’th positions and 0 everywhere else. Let

Xij = D−1/2
τ ((Aij − pij)Eij)D−1/2

τ

=
Aij − pij√

(Dii + τ)(Djj + τ)
Eij .
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H − Lτ =
∑
Xij . Then we can apply the matrix concentration theorem on {Xij}. By similar

argument as in [1], we have

||Xij || ≤ [(Dii + τ)(Djj + τ)]−1/2 ≤ 1

δ + τ
, v2 = ||

∑
E(X2

ij)|| ≤
1

δ + τ
.

Take a =
√

3 ln(4N/ε)
δ+τ . By assumption δ + τ > 3 lnN + 3 ln(4/ε), it implies a < 1. Applying

Lemma 1.1, we have

pr(||H −Lτ || ≥ a) ≤ 2N exp

(
−

3 ln(4N/ε)
δ+τ

2/(δ + τ) + 2a/[3(δ + τ)]

)
≤ 2N exp(−3 ln(4N/ε)

3
)

≤ ε/2.

For the second term, first we apply the two sided concentration inequality for each i, (see for example
Chung and Lu [2, chap. 2])

pr(|Dii −Dii| ≥ λ) ≤ exp{− λ2

2Dii
}+ exp{− λ2

2Dii + 2
3λ
}

Let λ = a(Dii + τ), where a is the same as in the first part.

pr(|Dii −Dii| ≥ a(Dii + τ)) ≤ exp{−a
2(Dii + τ)2

2Dii
}+ exp{− a2(Dii + τ)2

2Dii + 2
3a(Dii + τ)

}

≤ 2 exp{− a2(Dii + τ)2

(2 + 2
3a)(Dii + τ)

}

≤ 2 exp{−a
2(Dii + τ)

3
}

≤ 2 exp{− ln(4N/ε)
(Dii + τ)

δ + τ
}

≤ 2 exp{− ln(4N/ε)}
≤ ε/2N.

||D−1/2
τ D1/2

τ − I|| = maxi|
√
Dii + τ

Dii + τ
− 1| ≤ maxi|

Dii + τ

Dii + τ
− 1|.

pr(||D−1/2
τ D1/2

τ − I|| ≥ a) ≤ pr(maxi|
Dii + τ

Dii + τ
− 1| ≥ a)

≤ pr(∪i{|(Dii + τ)− (Dii + τ)| ≥ b(Dii + τ)})
≤ ε/2.

Note that ||Lτ || ≤ 1, therefore, with probability at least 1− ε/2, we have

||Lτ −H|| = ||D−1/2
τ AD−1/2

τ −D−1/2
τ AD−1/2

τ ||
= ||Lτ −D−1/2

τ D1/2
τ LτD

1/2
τ D−1/2

τ ||
= ||(I −D−1/2

τ D1/2
τ )LτD

1/2
τ D−1/2

τ + Lτ (I −D1/2
τ D−1/2

τ )||
≤ ||D−1/2

τ D1/2
τ − I||||D−1/2

τ D1/2
τ ||+ ||D−1/2

τ D1/2
τ − I||

≤ a2 + 2a.

Combining the two part, we have that with probability at least 1− ε,
||Lτ −Lτ || ≤ a2 + 3a ≤ 4a,

where a =
√

3 ln(4N/ε)
δ+τ .
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Proof of Theorem 4.2:

Proof. First we apply a lemma from McSherry [3]:

Lemma 1.2. For any matrixA, let PA denotes the projection onto the span ofA’s firstK left sigular
vectors. Then PAA is the optimal rank K approximation to A in the following sense. For any rank
K matrix X, ||A− PAA|| ≤ ||L−X||. Further, for any rank K matrix B,

||PAA−B||2F ≤ 8K||A−B||2. (1)

Let W ∈ RK×K be a diagonal matrix that contains the K largest eigenvalues of Lτ , w1 ≥ w2 ≥
... ≥ wK . Let Λ ∈ RK×K be the diagonal matrix that contains all positive eigenvalues of Lτ . Take
A = Lτ and B = Lτ in Lemma 1.2. then PLτLτ = XτWXT

τ and the previous inequality can be
rewritten as

||PLτLτ −Lτ ||2F = ||XτWXT
τ −XτΛX T

τ ||2F ≤ 8K||Lτ −Lτ ||2.
Then we apply a modified version of the Davis-Kahan theorem (Rohe et al. [4]) to Lτ .

Proposition 1.3. Let S ⊂ R be an interval. Denote Xτ as an orthonormal matrix whose column
space is equal to the eigenspace of Lτ corresponding to the eigenvalues in λS(Lτ ) (more formally,
the column space of Xτ is the image of the spectral projection of Lτ induced by λS(Lτ )). Denote
by Xτ the analogous quantity for PLτLτ . Define the distance between S and the spectrum of Lτ

outside of S as
∆ = min{|λ− s|;λ eigenvalue of Lτ , λ 6∈ S, s ∈ S}.

if Xτ and Xτ are of the same dimension, then there is an orthogonal matrix O , that depends on Xτ

and Xτ , such that

||Xτ −XτO||2F ≤
2||PLτLτ −Lτ ||2F

∆2
.

Take S = (λK/2, 2), then ∆ = λK/2. By assumption (a)
√

K ln(4N/ε)
δ+τ ≤ 1

8
√

3
λK , we have that

when N is sufficiently large, with probability at least 1− ε,

|λK − wK | ≤ ||Lτ −Lτ || ≤ 4

√
3 ln(4N/ε)

δ + τ
≤ λK/2.

Hence wK ∈ S. X and X are of the same dimension.

||Xτ −XτO||F ≤
√

2||PLτLτ −Lτ ||F
∆

≤ 2
√

2||PLτLτ −Lτ ||F
λK

≤ 8
√
K||Lτ −Lτ ||

λK

≤ C

λK

√
K ln(4N/ε)

δ + τ
.

holds for C = 32
√

3 with probability at least 1− ε.
For part 2, note that for any i,

||[X∗τ ]i − [X ∗
τ ]iO||2 ≤

||Xi
τ −X i

τ O||2
min{||Xi

τ ||2, ||X i
τ ||2}

,

We have that

||X∗τ −X ∗
τ O||F ≤

||Xτ −XτO||F
m

,

where m = mini{min{||Xi
τ ||2, ||X i

τ ||2}}.

Proof of Main Theorem
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Proof. Recall that the set of misclustered nodes is defined as:

M = {i : ∃j 6= i, s.t.||CiOT − Ci||2 > ||CiOT − Cj ||2}.

Note that Lemma 3.3 implies that the population centroid corresponding to i’th row of X ∗
τ

Ci = ZiU.

Since all population centroids are of unit length and are orthogonal to each other, a simple calculation
gives a sufficient condition for one observed centroid to be closest to the population centroid:

||CiOT − Ci||2 < 1/
√

2⇒ ||CiOT − Ci||2 < ||CiOT − Cj ||2 ∀Zj 6= Zi.

Define the following set of nodes that do not satisfy the sufficient condition,

U = {i : ||CiOT − Ci||2 ≥ 1/
√

2}.

The mis-clustered nodes M ∈ U .

Define Q ∈ RN×K , where the i’th row of Q is Ci, the observed centroid of node i from k-means.
By definition of k-means, we have

||X∗τ −Q||2 ≤ ||X∗τ −X ∗
τ O||2.

By triangle inequality,

||Q− ZUO||2 = ||Q−X ∗
τ O||2 ≤ ||X∗τ −Q||2 + ||X∗τ −X ∗

τ O||2 ≤ 2||X∗τ −X ∗
τ O||2.

We have with probability at least 1− ε,

|M |
N
≤ |U |

N
=

1

N

∑
i∈U

1

≤ 2

N

∑
i∈U

||CiOT − Ci||22

=
2

N

∑
i∈U

||Ci − ZiUO||22

≤ 2

N
||Q− ZUO||2F

≤ 8

N
||X∗τ −X ∗

τ O||2F

≤ c1
K ln(N/ε)

Nm2(δ + τ)λ2
K

.
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