
Reinforcement Learning in Robust Markov Decision
Processes

Shiau Hong Lim
Department of Mechanical Engineering

National University of Singapore
Singapore

mpelsh@nus.edu.sg

Huan Xu
Department of Mechanical Engineering

National University of Singapore
Singapore

mpexuh@nus.edu.sg

Shie Mannor
Department of Electrical Engineering

Technion, Israel
shie@ee.technion.ac.il

Abstract

An important challenge in Markov decision processes is to ensure robustness with
respect to unexpected or adversarial system behavior while taking advantage of
well-behaving parts of the system. We consider a problem setting where some
unknown parts of the state space can have arbitrary transitions while other parts
are purely stochastic. We devise an algorithm that is adaptive to potentially ad-
versarial behavior and show that it achieves similar regret bounds as the purely
stochastic case.

1 Introduction

Markov decision processes (MDPs) [Puterman, 1994] have been widely used to model and solve
sequential decision problems in stochastic environments. Given the parameters of an MDP, namely,
the rewards and transition probabilities, an optimal policy can be computed. In practice, these
parameters are often estimated from noisy data and furthermore, they may change during the exe-
cution of a policy. Hence, the performance of the chosen policy may deteriorate significantly; see
[Mannor et al., 2007] for numerical experiments.

The robust MDP framework has been proposed to address this issue of parameter uncertainty (e.g.,
[Nilim and El Ghaoui, 2005] and [Iyengar, 2005]). The robust MDP setting assumes that the true
parameters fall within some uncertainty set U and seeks a policy that performs the best under the
worst realization of the parameters. These solutions, however, can be overly conservative since they
are based on worst-case realization. Variants of robust MDP formulations have been proposed to
mitigate the conservativeness when additional information on parameter distribution [Strens, 2000,
Xu and Mannor, 2012] or coupling among the parameters [Mannor et al., 2012] are known. A major
drawback of previous work on robust MDPs is that they all focused on the planning problem with
no effort to learn the uncertainty. Since in practice it is often difficult to accurately quantify the
uncertainty, the solutions to the robust MDP can be conservative if a too large uncertainty set is
used.

In this work, we make the first attempt to perform learning in robust MDPs. We assume that some of
the state-action pairs are adversarial in the sense that their parameters can change arbitrarily within
U from one step to another. However, others are benign in the sense that they are fixed and behave
purely stochastically. The learner, however, is given only the uncertainty set U and knows neither
the parameters nor the true nature of each state-action pair.

1

In this setting, a traditional robust MDP approach would be equivalent to assuming that all parame-
ters are adversarial and therefore would always execute the minimax policy. This is too conservative
since it could be the case that most of the parameters are stochastic. Alternatively, one could use an
existing online learning algorithm such as UCRL2 [Jaksch et al., 2010] and assume that all parame-
ters are stochastic. This, as we show in the next section, may lead to suboptimal performance when
some of the states are adversarial.

Instead, we propose an online learning approach to robust MDPs. We show that the cumulative
reward obtained from this method is as good as the minimax policy that knows the true nature of
each state-action pair. This means that by incorporating learning in robust MDPs, we can effectively
resolve the “conservativeness due to not knowing the uncertainty” effect.

The rest of the paper is structured as follows. Section 2 discusses the key difficulties in our setting
and explains why existing solutions are not applicable. In subsequent sections, we present our
algorithm, its theoretical performance bound and its analysis. Sections 3 and 4 cover the finite-
horizon case while Section 5 deals with the infinite-horizon case. We present some experiment
results in Section 6 and conclude in Section 7.

2 Problem setting

We consider an MDP M with a finite state space S and a finite action space A. Let S = |S| and
A = |A|. Executing action a in state s results in a random transition according to a distribution
ps,a(·) where ps,a(s′) gives the probability of transitioning to state s′, and accumulate an immediate
reward r(s, a).

A robust MDP considers the case where the transition probability is determined in an adversarial
way. That is, when action a is taken at state s, the transition probability ps,a(·) can be an arbitrary
element of the uncertainty set U(s, a). In particular, for different visits of same (s, a), the realization
of ps,a can be different, possibly depends on the history. This can model cases where the system
dynamics are influenced by competitors or exogeneous factors that are hard to model, or the MDP
is a simplification of a complicated dynamic system.

Previous research in robust MDPs focused exclusively on the planning problem. Here, the power of
the adversary – the uncertainty set of the parameter – is precisely known, and the goal is to find the
minimax policy – the policy with the best performance under the worst admissible parameters.

This paper considers the learning problem of robust MDPs. We ask the following question: suppose
the power of the adversary (the extent to which it can affect the system) is not completely revealed
to the decision maker, if we are allowed to play the MDP many times, can we still obtain an optimal
policy as if we knew the true extent of its power? Or to put it that way, can we develop a procedure
that provides the exact amount of protection against the unknown adversary?

Our specific setup is as follows: for each (s, a) ∈ S×A an uncertainty set U(s, a) is given. However,
not all states are adversarial. Only a subset F ⊂ S ×A is truly adversarial while all the other state-
action pairs behave purely stochastically, i.e., with a fixed unknown ps,a. Moreover, the set F is not
known to the algorithm.

This setting differs from existing setups, and is challenging for the following reasons:

1. The adversarial actions ps,a are not directly observable.
2. The adversarial behavior is not constrained, except it must belong to the uncertainty set.
3. Ignoring the adversarial component results in sub-optimal behavior.

The first challenge precludes the use of algorithm based on stochastic games such as R-Max
[Brafman and Tennenholtz, 2002]. The R-Max algorithm deals with stochastic games where the
opponent’s action-set for each state is known and the opponent’s actions are always observable. In
our setting, only the outcome (i.e., the next-state and the reward) of each transition is observable.
The algorithm does not observe the action ps,a taken by the adversary. Indeed, because the set F is
unknown, even the action set of the adversary is unknown to the algorithm.

The second challenge is due to unconstrained adversarial behavior. For state-action pairs (s, a) ∈ F ,
the opponent is free to choose any ps,a ∈ U(s, a) for each transition, possibly depends on the his-

2

tory and the strategy of the decision maker (i.e., non-oblivious). This affects the sort of performance
guarantee one can reasonably expect from any algorithms. In particular, when considering the regret
against the best stationary policy “in hindsight”, [Yu and Mannor, 2009] show that small change in
transition probabilities can cause large regret. Even with additional constraints on the allowed ad-
versarial behavior, they showed that the regret bound still does not vanish with respect to the number
of steps. Indeed, most results for adversarial MDPs [Even-Dar et al., 2005, Even-Dar et al., 2009,
Yu et al., 2009, Neu et al., 2010, Neu et al., 2012] only deal with adversarial rewards while the tran-
sitions are assumed stochastic and fixed, which is considerably simpler than our setting.

Since it is not possible to achieve vanishing regret against best stationary policy in hindsight, we
choose to measure the regret against the performance of a minimax policy that knows exactly which
state-actions are adversarial (i.e., the set F) as well as the true ps,a for all stochastic state-action
pairs. Intuitively, this means that if the adversary chooses to play “nicely”, we are not constrained
to exploit this.

Finally, given that we are competing against the minimax policy, one might ask whether we could
simply apply existing algorithms such as UCRL2 [Jaksch et al., 2010] and treat every state-action
pair as stochastic. The following example shows that ignoring any adversarial behavior may lead to
large regret compared to the minimax policy.

s0

s1

s3

s2

s4

g∗ g∗ + β

g∗ − α

g∗ + β

a1 a2

a3

Figure 1: Example MDP with adversarial transitions.

Consider the MDP in Figure 1. Suppose that a UCRL2-like algorithm is used, where all transitions
are assumed purely stochastic. There are 3 alternative policies, each corresponds to choosing action
a1, a2 and a3 respectively in state s0. Action a1 leads to the optimal minimax average reward of
g∗. State s2 leads to average reward of g∗ + β for some β > 0. State s1 has adversarial transition,
where both s2 and s4 are possible next states. s4 has a similar behavior, where it may either lead to
g∗ + β or a “bad” region with average reward g∗ − α for some 2β < α < 3β.

We consider two phases. In phase 1, the adversary behaves “benignly” by choosing all solid-line
transitions. Since both a2 and a3 lead to similar outcome, we assume that in phase 1, both a2 and a3
are chosen for T steps each. In phase 2, the adversary chooses the dashed-line transitions in both s1
and s4. Due to a2 and a3 having similar values (both g∗ + β > g∗) we can assume that a2 is always
chosen in phase 2 (if a3 is ever chosen in phase 2 its value will quickly drop below that of a2).
Suppose that a2 also runs for T steps in phase 2. A little algebra (see the supplementary material
for details) shows that at the end of phase 2 the expected value of s4 (from the learner’s point of
view) is g4 = g∗ + β−α

2 and therefore the expected value of s1 is g1 = g∗ + 3β−α
4 > g∗. The total

accumulated rewards over both phases is however 3Tg∗ + T (2β − α). Let c = α − 2β > 0. This
means that the overall total regret is cT which is linear in T .

Note that in the above example, the expected value of a2 remains greater than the minimax value
g∗ throughout phase 2 and therefore the algorithm will continue to prefer a2, even though the actual
accumulated average value is already way below g∗. The reason behind this is that the Markov
property, which is crucial for UCRL2-like algorithms to work, has been violated due to s1 and s4
behaving in a non-independent way caused by the adversary.

3 Algorithm and main result

In this section, we present our algorithm and the main result for the finite-horizon case with the total
reward as the performance measure. Section 5 provides the corresponding algorithm and result for
the infinite-horizon average-reward case.

3

For simplicity, we assume without loss of generality a deterministic and known reward function
r(s, a). We also assume that rewards are bounded such that r(s, a) ∈ [0, 1]. It is straight-forward,
by introducing additional states, to extend the algorithm and analysis to the case where the reward
function is random, unknown and even adversarial.

In the finite horizon case, we consider an episodic setting where each episode has a fixed and known
length T . The algorithm starts at a (possibly random) state s0 and executes T stages. After that,
a new episode begins, with an arbitrarily chosen start state (it can simply be the last state of the
previous episode). This goes on indefinitely.

Let π be a finite-horizon (non-stationary) policy where πt(s) gives the action to be executed in state
s at step t in an episode, where t = 0, . . . , (T − 1). Let Pt be a particular choice of ps,a ∈ U(s, a)
for every (s, a) ∈ F at step t. For each t = 0, . . . , (T − 1), we define

V πt (s) = min
Pt,...,PT−2

EPt,...,PT−2

T−1∑
t′=t

r(st′ , πt′(st′)) and V ∗t (s) = max
π

V πt (s),

where st = s and st+1, . . . , sT−1 are random variables due to the random transitions. We as-
sume that U is such that the minimum above exists (e.g., compact set). It is not hard to show that
given state s, there exists a policy π with V π0 (s) = V ∗0 (s) and we can compute such a minimax
policy if the algorithm knows F and ps,a for all (s, a) /∈ F , from literature of robust MDP (e.g.,
[Nilim and El Ghaoui, 2005] and [Iyengar, 2005]).

The main message of this paper is that we can determine a policy as good as the minimax policy
without knowing either F or ps,a for (s, a) /∈ F . To make this formal, we define the regret (against
the minimax performance) in episode i, for i = 1, 2, . . . as

∆i = V ∗0 (si0)−
T−1∑
t=0

r(sit, a
i
t),

where sit and ait denote the actual state visited and action taken at step t of episode i.1 The total
regret for m episodes, which we want to minimize, is thus defined as

∆(m) =

m∑
i=1

∆i.

The main algorithm is given in Figure 2. OLRM is basically UCRL2 [Jaksch et al., 2010] with an
additional stochastic check to detect adversarial state-action pairs. Like UCRL2, the algorithm em-
ploys the “optimism under uncertainty” principle. We start by assuming that all states are stochastic.
If the adversary plays “nicely”, nothing else would have to be done. The key challenge, however, is
to successfully identify the adversarial state-action pairs when they start to behave maliciously.

A similar scenario in the multi-armed bandit setting has been addressed by
[Bubeck and Slivkins, 2012]. They show that it is possible to achieve near-optimal regret without
knowing a priori whether a bandit is stochastic or adversarial. In [Bubeck and Slivkins, 2012], the
key is to check some consistency conditions that would be satisfied if the behavior is stochastic. We
use the same strategy and the question is then, which condition? We discuss this in section 3.2.

Note that the index k = 1, 2, . . . tracks the number of policies. A policy is executed until either a
new pair (s, a) fails the stochastic check, and hence deemed to be adversarial, or some state-action
pair has been executed too many times. In either case, we need to re-compute the current optimistic
policy (see Section 3.1 for the detail). Every time a new policy is computed we call it a new epoch.
While each episode has the same length (T), each epoch can span multiple episodes, and an epoch
can begin in the middle of an episode.

3.1 Computing an optimistic policy

Figure 3 shows the algorithm for computing the optimistic minimax policy, where we treat all state-
action pairs in the set F as adversarial, and (similar to UCRL2) use optimistic values for other
state-action pairs.

1We provide high-probability regret bounds for any single trial, from which the expected regret can be
readily derived, if desired.

4

Input: S, A, T , δ, and for each (s, a), U(s, a)
1. Initialize the set F ← {}.
2. Initialize k ← 1.

3. Compute an optimistic policy π̃, assuming all state-action pairs in F are adversarial (Section
3.1).

4. Execute π̃ until one of the followings happen:

• The execution count of some state-action (s, a) has been doubled.
• The executed state-action pair (s, a) fails the stochastic check (Section 3.2). In this case

(s, a) is added to F .

5. Increment k. Go back to step 3.

Figure 2: The OLRM algorithm

Here, to simplify notations, we frequently use V (·) to mean the vector whose elements are V (s)
for each s ∈ S . This applies to both value functions as well as probability distributions over S. In
particular, we use p(·)V (·) to mean the dot product between two such vectors, i.e.

∑
s p(s)V (s).

We use Nk(s, a) to denote the total number of times the state-action pair (s, a) has been executed
before epoch k. The corresponding empirical next-state distribution based on these transitions is
denoted as P̂k(·|s, a). If (s, a) has never been executed before epoch k, we define Nk(s, a) = 1 and
assume P̂k(·|s, a) to be arbitrarily defined.

Input: S, A, T , δ, F , k, and for each (s, a), U(s, a), P̂k(·|s, a) and Nk(s, a).

1. Set Ṽ k
T−1(s) = maxa r(s, a) for all s.

2. Repeat, for t = T − 2, . . . , 0:

• For each (s, a) ∈ F , set Q̃k
t (s, a) = min

{
T − t, min

p∈U(s,a)
r(s, a) + p(·)Ṽ k

t+1(·)
}

.

• For each (s, a) /∈ F , set

Q̃k
t (s, a) = min

{
T − t, r(s, a) + P̂k(·|s, a)Ṽ k

t+1(·) + T

√
2

Nk(s, a)
log

2SATk2

δ

}
.

• For each s, set Ṽ k
t (s) = maxa Q̃

k
t (s, a) and π̃t(s) = argmaxa Q̃

k
t (s, a).

3. Output π̃.

Figure 3: Algorithm for computing an optimistic minimax policy.

3.2 Stochasticity check

Every time a state-action (s, a) /∈ F is executed, the outcome is recorded and subjected to a “stochas-
ticity check”. Let n be the total number of times (s, a) has been executed (including the latest one)
and s′1, . . . , s

′
n are the next-states for each of these transitions. Let k1, . . . , kn be the epochs in which

each of these transitions happens. Let t1, . . . , tn be the step within the episodes (i.e. episode stage)
where these transitions happen. Let τ be the total number of steps executed by the algorithm (from
the beginning) so far. The stochastic check fails if:

n∑
j=1

P̂kj (·|s, a)Ṽ
kj
tj+1(·)−

n∑
j=1

Ṽ
kj
tj+1(s′j) > 5T

√
nS log

4SATτ2

δ
.

The stochastic check follows the intuitive saying “if it is not broke, don’t fix it”, by checking whether
the value of actual transition from (s, a) is below what is expected from the parameter estimation.

5

One can show that with high probability, all stochastic state-action pairs will always pass the stochas-
tic check. Now consider an adversarial (s, a) pair: if the adversary plays “nicely”, the current policy
accumulates satisfactory reward and hence nothing needs to be changed, even if the transitions them-
selves fail to “look” stochastic; if the adversary plays “nasty”, then the stochastic check will detect
it, and subsequently protect against it.

3.3 Main result

The following theorem summarizes the performance of OLRM. Here and in the sequel, we use Õ
when the log terms are omitted. Our result for the infinite-horizon case is similar (see Section 5).
Theorem 1. Given δ, T , S, A, the total regret of OLRM is

∆(m) ≤ Õ(ST 3/2
√
Am)

for all m, with probability at least 1− δ.

Note that the above is with respect to the total number of episodes m. Since the total number of
steps is τ = mT , the regret bound in terms of τ is therefore Õ(ST

√
Aτ). This gives the familiar√

τ regret as in UCRL2. Also, the bound has the same dependencies on S and A as in UCRL2. The
horizon length T plays the role of the “diameter” in the infinite-horizon case and again it has the
same dependency as its counterpart in UCRL2.

The result shows that even though the algorithm deals with unknown stochastic and potentially
adversarial states, it achieves the same regret bound as in the fully stochastic case. In the case where
all states are in fact stochastic, this reduces to the same UCRL2 result.

4 Analysis of OLRM

We briefly explain the roadmap of the proof of Theorem 1. The complete proof can be found in the
supplementary material.

Our proof starts with the following technical Lemma.
Lemma 1. The following holds for all state-action pair (s, a) /∈ F and for t = 0, . . . , (T − 1) in
all epochs k ≥ 1, with probability at least 1− δ:

P̂k(·|s, a)Ṽ kt+1(·)− ps,a(·)Ṽ kt+1(·) ≤ T
√

2S

Nk(s, a)
log

4SATk2

δ
.

Proof sketch. Since (s, a) /∈ F is stochastic, we apply the bound from [Weissman et al., 2003] for
the 1-norm deviation between P̂k(·|s, a) and ps,a. The bound follows from ‖Ṽ kt+1(·)‖∞ ≤ T .

Using Lemma 1, we show the following lemma that with high probability, all purely stochastic
state-action pairs will always pass the stochastic check.
Lemma 2. The probability that any state-action pair (s, a) /∈ F gets added into set F while running
the algorithm is at most 2δ.

Proof sketch. Each (s, a) /∈ F is purely stochastic. Suppose (s, a) has been executed n times and
s′1, . . . , s

′
n are the next-states for these transitions. Recall that the check fails if

n∑
j=1

P̂kj (·|s, a)Ṽ
kj
tj+1(·)−

n∑
j=1

Ṽ
kj
tj+1(s′j) > 5T

√
nS log

4SATτ2

δ
.

We can derive a high-probability bound that satisfies the stochastic check by applying the Azuma-
Hoeffding inequality on the martingale difference sequence

Xj = ps,a(·)Ṽ kjtj+1(·)− Ṽ kjtj+1(s′j)

followed by an application of Lemma 1.

6

We then show that all value estimates Ṽ kt are always optimistic.

Lemma 3. With probability at least 1 − δ, and assume that no state-action pairs (s, a) /∈ F have
been added to F , the following holds for every state s ∈ S , every t ∈ {0, . . . , T − 1} and every
k ≥ 1:

Ṽ kt (s) ≥ V ∗t (s).

Proof sketch. The key challenge is to prove that state-actions in F (adversarial) that have not been
identified (i.e. all past transitions passed the test) would have optimistic Q̃ values. This can be done
by, again, applying the Azuma-Hoeffding inequality.

Equipped with the previous three lemmas, we are now able to establish Theorem 1.

Proof sketch. Lemma 3 established that all value estimates Ṽ kt are always optimistic. We can there-
fore bound the regret by bounding the difference between Ṽ kt and the actual rewards received by the
algorithm. The “optimistic gap” shrinks in an expected manner as the number of steps executed by
the algorithm grows if all state-actions are stochastic.

For an adversarial state-action (s, a) ∈ F , we use the following facts to ensure the above: (i) If
(s, a) has been added to F (i.e., it failed the stochastic check) then all policies afterwards would
correctly evaluate its value; (ii) All transitions before (s, a) is added to F (if ever) must have passed
the stochastic check and the check condition ensures that its behavior is consistent with what one
would expect if (s, a) was stochastic.

5 Infinite horizon case

In the infinite horizon case, let P be a particular choice of ps,a ∈ U(s, a) for every (s, a) ∈ F .
Given a (stationary) policy π, its average undiscounted reward (or “gain”) is defined as follows:

gπP (s) = lim
τ→∞

1

τ
EP

[
τ∑
t=1

r(si, π(si))

]
where s1 = s. The limit always exists for finite MDPs [Puterman, 1994]. We make the assumption
that regardless of the choice of P , the resulting MDP is communicating and unichain. 2 In this case
gπP (s) is a constant and independent of s so we can drop the argument s.

We define the worst-case average reward of π over all possible P as gπ = minP g
π
P . An optimal

minimax policy π∗ is any policy whose gain gπ
∗

= g∗ = maxπ g
π . We define the regret after

executing the MDP M for τ steps as

∆(τ) = τg∗ −
τ∑
t=1

r(st, at).

The main algorithm for the infinite-horizon case, which we refer as OLRM2, is essentially iden-
tical to OLRM. The main difference is in computing the optimistic policy and the corresponding
stochastic check. The detailed algorithm is presented in the supplementary material.

The algorithms from [Tewari and Bartlett, 2007] can be used to compute an optimistic minimax
policy. In particular, for each (s, a) ∈ F , its transition function is chosen pessimistically from
U(s, a). For each (s, a) /∈ F , its transition function is chosen optimistically from the following set:

{p : ‖p(·)− P̂k(·|s, a)‖1 ≤ σ} where σ =

√
2S

Nk(s, a)
log

4SAk2

δ
.

2 In more general settings, such as communicating or weakly communicating MDPs, although the optimal
policies (for a fixed P) always have constant gain, the optimal minimax policies (over all possible P) might
have non-constant gain. Additional assumptions on U , as well as a slight change in the definition of the regret
are needed to deal with these cases. This is left for future research.

7

Let P̃k(·|s, π̃k(s)) be the minimax choice of transition functions for each s where the minimax gain
gπ̃

k

is attained. The bias hk can be obtained by solving the following system of equations for h(·)
(see [Puterman, 1994]):

∀s ∈ S, gπ̃
k

+ h(s) = r(s, π̃k(s)) + P̃k(·|s, π̃k(s))h(·). (1)

The stochastic check for the infinite-horizon case is mostly identical to the finite-horizon case, except
that we replace T with the maximal span H̃ of the bias, defined as follows:

H̃ = max
k∈{k1,...,kn}

(
max
s
hk(s)−min

s
hk(s)

)
.

The stochastic check fails if:
n∑

j=1

P̃kj (·|s, a)hkj (·)−
n∑

j=1

hkj (s
′
j) > 5H̃

√
nS log

4SAτ2

δ
.

Let H be the maximal span of the bias of any optimal minimax policies. The following summa-
rizes the performance of OLRM2. The proof, deferred in the supplementary material, is similar to
Theorem 1.
Theorem 2. Given δ, S , A, the total regret of OLRM2 is

∆(τ) ≤ Õ(SH
√
Aτ)

for all τ , with probability at least 1− δ.

6 Experiment

0 2 4 6 8

x 10
6

0

0.5

1

1.5

2

2.5
x 10

6

Time steps

T
ot

al
 r

ew
ar

d

OLRM2
UCRL2
Standard robust MDP
Optimal minimax policy

Figure 4: Total accumulated rewards. The vertical line marks the start of “breakdown”.

We run both our algorithm as well as UCRL2 on the example MDP in Figure 1 for the infinite-
horizon case. Figure 4 shows the result for g∗ = 0.18, β = 0.07 and α = 0.17. It shows that
UCRL2 accumulates smaller total rewards than the optimal minimax policy while our algorithm
actually accumulates larger total rewards than the minimax policy. We also include the result for a
standard robust MDP that treats all state-action pairs as adversarial and therefore performs poorly.
Additional details are provided in the supplementary material.

7 Conclusion

We presented an algorithm for online learning of robust MDPs with unknown parameters, some
can be adversarial. We show that it achieves similar regret bound as in the fully stochastic case. A
natural extension is to allow the learning of the uncertainty sets in adversarial states, where the true
uncertainty set is unknown. Our preliminary results show that very similar regret bounds can be
obtained for learning from a class of nested uncertainty sets.

Acknowledgments

This work is partially supported by the Ministry of Education of Singapore through AcRF Tier
Two grant R-265-000-443-112 and NUS startup grant R-265-000-384-133. The research leading to
these results has received funding from the European Research Council under the European Union’s
Seventh Framework Programme (FP/2007-2013)/ ERC Grant Agreement n.306638.

8

References

[Brafman and Tennenholtz, 2002] Brafman, R. I. and Tennenholtz, M. (2002). R-max - a general
polynomial time algorithm for near-optimal reinforcement learning. Journal of Machine Learning
Research, 3:213–231.

[Bubeck and Slivkins, 2012] Bubeck, S. and Slivkins, A. (2012). The best of both worlds: Stochas-
tic and adversarial bandits. Journal of Machine Learning Research - Proceedings Track, 23:42.1–
42.23.

[Even-Dar et al., 2005] Even-Dar, E., Kakade, S. M., and Mansour, Y. (2005). Experts in a markov
decision process. In Saul, L. K., Weiss, Y., and Bottou, L., editors, Advances in Neural Informa-
tion Processing Systems 17, pages 401–408. MIT Press, Cambridge, MA.

[Even-Dar et al., 2009] Even-Dar, E., Kakade, S. M., and Mansour, Y. (2009). Online markov
decision processes. Math. Oper. Res., 34(3):726–736.

[Iyengar, 2005] Iyengar, G. N. (2005). Robust dynamic programming. Math. Oper. Res., 30(2):257–
280.

[Jaksch et al., 2010] Jaksch, T., Ortner, R., and Auer, P. (2010). Near-optimal regret bounds for
reinforcement learning. J. Mach. Learn. Res., 99:1563–1600.

[Mannor et al., 2012] Mannor, S., Mebel, O., and Xu, H. (2012). Lightning does not strike twice:
Robust mdps with coupled uncertainty. In ICML.

[Mannor et al., 2007] Mannor, S., Simester, D., Sun, P., and Tsitsiklis, J. N. (2007). Bias and
variance approximation in value function estimates. Manage. Sci., 53(2):308–322.

[McDiarmid, 1989] McDiarmid, C. (1989). On the method of bounded differences. In Surveys in
Combinatorics, number 141 in London Mathematical Society Lecture Note Series, pages 148–
188. Cambridge University Press.

[Neu et al., 2012] Neu, G., György, A., and Szepesvári, C. (2012). The adversarial stochastic short-
est path problem with unknown transition probabilities. Journal of Machine Learning Research
- Proceedings Track, 22:805–813.

[Neu et al., 2010] Neu, G., György, A., Szepesvári, C., and Antos, A. (2010). Online markov deci-
sion processes under bandit feedback. In NIPS, pages 1804–1812.

[Nilim and El Ghaoui, 2005] Nilim, A. and El Ghaoui, L. (2005). Robust control of markov deci-
sion processes with uncertain transition matrices. Oper. Res., 53(5):780–798.

[Puterman, 1994] Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. Wiley-Interscience.

[Strens, 2000] Strens, M. (2000). A bayesian framework for reinforcement learning. In In Proceed-
ings of the Seventeenth International Conference on Machine Learning, pages 943–950. ICML.

[Tewari and Bartlett, 2007] Tewari, A. and Bartlett, P. (2007). Bounded parameter markov decision
processes with average reward criterion. Learning Theory, pages 263–277.

[Weissman et al., 2003] Weissman, T., Ordentlich, E., Seroussi, G., Verdu, S., and Weinberger,
M. J. (2003). Inequalities for the l1 deviation of the empirical distribution. Technical report,
Information Theory Research Group, HP Laboratories.

[Xu and Mannor, 2012] Xu, H. and Mannor, S. (2012). Distributionally robust markov decision
processes. Math. Oper. Res., 37(2):288–300.

[Yu and Mannor, 2009] Yu, J. Y. and Mannor, S. (2009). Arbitrarily modulated markov decision
processes. In CDC, pages 2946–2953.

[Yu et al., 2009] Yu, J. Y., Mannor, S., and Shimkin, N. (2009). Markov decision processes with
arbitrary reward processes. Math. Oper. Res., 34(3):737–757.

9

