Appendix to “A Kernel Test for Three-Variable Interactions ”, NIPS 2013
Dino Sejdinovic, Arthur Gretton, Wicher Bergsma
A Proofs

A.1 Proof of Proposition 2

Some basic matrix algebra used in this proof is reviewed ipefyglix F. The proof of the following
simple Lemma directly follows from the results therein.

Lemma 6. The following equalities hold:
1 (KyoLyoM),, =(KloLioM),  =tr(KioLioM) =3 KotLosMar
2. (KJroLoMI)JFJr =(KLM), |

Now, we will take a kernel matri/ and consider its Hadamard product witho L:

-~ 1
KoLoM = KoLoM—— KOLJroM—i—KoLIoM—l—KJroLoM—i-KIoLoM
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and thus:

(KOioM)++ = (KOLOM)JFJF—%((KOM)L—i—(LO]\/[)K)JrJr

1
T3 (Kt (Lo M)yy + Ly (K oM)yy]
2
n?

2
) (K (LM), + Ly (KM) 4]

[tr(K4 oLy oMy)+ (LMK), ]

1
+ Ky Ly M.

n
where we used thatly, = ((KoM)oLy),, = ((KoM)L), . ,and similarly By, =
((L [¢] M) K)++ . AISO, C++ = tT(K+ [¢] L+ [¢] M+) andD++ = (LMK)++
By comparing to the table of V-statistics, we obtain that:
1
n?

(KOEOM) = HA(Z)PHQ

++ k®@l@m

WhereA(z)P = Pxy 2+ Px Py Py — Py 7 Px — Px Py, which completes the proof of Proposition

2. Proposition 3 can be proved in an analogous way by incfyitie additional terms corresponding

to centering ofM/, i.e., (f{ oLo M+) and (f{ oLo M++) . In the next Section, however,
++

++
we give an alternative proof which gives more insight inte tble that the centering of each Gram

matrix plays.
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A.2 Proof of Proposition 3

It will be useful to introduce into notation the kernel caetat a probability measute given by:
ky(z,2') = k(z,2') +//k(w,w’)du(w)du(w) — / (k(z,w) + k(z',w)] dv(w),  (6)

Note that/ ky(z,2)dv(z)dv(z') =0, i.e.,pug (v) =0.

By expanding the population expression of the kernel northefoint under the kernels centered
at the marginals, we obtain:

2
”PXYZ H];PX ®iPy ®mp,

_ / / [ (2,2l (4,9 i, (2, 2)]

dPxy z(x,y,2)dPxyz(x',y', 2"),
Substituting the definition of the centered kernel in (6)s iteadily obtained that

2 2
1PxyzllE,, 0ipy ome, = IALPlkgiomn -

2 . . . . 2
Now, HPXYZH;;PX Oipy @ip, IS the first term in the expansion QﬁLPH,;PX Dipy @py " Let us
show that all the other terms are equal to zero. Indeed,albther terms are of the form

<<PWQ) Q/>>kPX ®ZPY ®ritpy, !

whereWW = X, Y, or Z (individual variable). Without loss of generality, [B8f = X. Then,

(PXQQky iy i,

/// kpy (z,2")lpy (4,9 )p, (2, 2')

dPX( )dQ(y7 )dQ (‘T Y azl)

:///I;PX(x,xl)dPX(I)ZPy(yay/)mpz(zvzl)

=[P (210
dQ(y, 2)dQ'(z',y', 2")

=0.
Therefore,

2 2
||ALP||1;PX®iPY®mPZ = ”PXYZH;}PXQ@ZPY@mPZ

= ”ALPHi®l®m .
The above is true for any joint distributid?p(yz, and in particular for the empirical joint, whereby:

2

k®lom fc,aX ®lp, @mp,

- E(KOEOM)H.

A.3 Proof of Proposition 4

Consider the element 6{; ® H; ® H,, given byExy zk(-, X) @ I(-,Y) ® m(-, Z). This can be
identified with a Hilbert-Schmidt uncentered covarianceraporC xyz : Hr @ Hi — Hn, SUCh
thatVf € Hi,g € Hi,h € Hpn:

(Covzlf®gl h),, = Exvzf(X)g(¥V)h(Z).
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Table 3:V-statistics for various hypotheses

| hypothesis | V-statistic | hypothesis | V-statistic |
(X,Y) L2z ﬁ(KoLoM)++ Ax)P=0 ﬁ(KoioM)++
(X,Z) LY n—lz(Kof‘oI\f{)++ Ay)P=0 n—lz(koLoM)++
(v,Z) L X ﬁ(f(oLo]W)JrJr AP =0 ﬁ(RoioM)++
ALP =0 n—lz(koiosz)++

By replacingk, I, m with kernels centered at the marginals, we obtain a centenegtiance operator
Y (xvy)z, for which

(Sxvzlf@glh), = Exyzf(X)g(Y)h(Z)
cov[f(X),g(Y),n(Z)],

where we wrotef (X) = f(X) — Ef(X), and similarly forg andh. Using the usual isometries
between Hilbert-Schmidt spaces and the tensor producéspac

1Boen 2l

- HEXYZIE‘PX(nX)®l~Py(nY)®mpz("Z)‘2

HiQHQHm
2
= 1Pxvzlls, eip, emp,
2
= HALPHk@l@m :

Now, consider the supremum of the three-way covariancentaker the unit balls of respective
RKHSs:

fSL'lIZ COV[f(X)7 g(Y)7 h(Z)] = ?U-l:})L <E(XY)Z [f by g] ) h>'Hm

= S;lpHE(XY)Z [f®9]HHm
1,9
< S Y F
< 3w [P zFlly,
= [Pomzll,, < [Zanzlas-
and thus,||[ALP|,0i0m = 0 implies sup; ,, cov[f(X),g(Y),h(Z)] = 0. Conversely, if

cov[f(X),g9(Y),h(Z)] =0Vf,g,h, theny xy)z [f ® g] = 0Vf, g,sothe linear operatdi xy)z
vanishes.

B The effect of centering

In a two-variable test, either or both of the kernel matricas be centered when computing the test

statistic since(K o E) = (f( o L) = (f( o f;) . To see this, simply note that by the
_ ++ ++ ++
idempotence off,

(K 0 fi) . = t(KHLH)

= tr(KH?LH?)
= tr(HKH?LH)
(HKHoHLH), |

_ (Koi)++. @)
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Table 4: An example of Lancaster interaction measure vanishinghiercase where neither variable is inde-
pendent of the other two.

===
Naw! Nl | Nawl N
Il

| 9| | T
HED»—KO
L2 L e
| ===

This is no longer true in the three-variable case, whereeceng of each matrix has a different
meaning. Various hypotheses and their correspondingtistta are summarized in Table 3. Note
that the “composite” hypotheses are obtained simply by @nagiate centering of Gram matrices.

C AP=0-XY)LZV(X,Z)LY Vv (Y,Z)LX.

Consider the following simple example with binary variaglg, Y, Z with the2 x 2 x 2 probability
table given in Table 4. Itis readily checked that all coratiil covariances are equal, Ag, P = 0.

It is also clear, however, that neither variable is indegenaf the other two. Therefore, a test for
Lancaster interactioper seis not equivalent to testing for the possibility of any fattation of the
joint distribution, but our empirical results suggest tihaan nonetheless provide a useful surrogate.
In other words, while rejection of the null hypothegig P = 0 is highly informative and implies
that interaction is present amb non-trivial factorization of the joint distribution is alable, the
acceptance of the null hypothesis should be considereéutlgrand additional methods to rule out
interaction should be sought.

D Permutation test

A permutation test for total independence is easy to coastiiti suffices to compute the value

~ 112
of the statistic (either the Lancaster statisHiALPH or the total independence statistic

kQI®m
‘ ) on {(X®,yd z@0)L" | for randomly drawn independent permutations
o,TES, |n order to obtain a sample from the null distribution.

When testing foronly oneof the hypothese$§Y, 7Z) L X, (X,Z) L Y, or (X,Y) L Z, ei-
ther with a Lancaster statistic or with a standard two-\@eaernel statistic, only one of the
samples should be permuted e.g., if testing(@rz) L X, statistics should be computed on
{(xD,y® z@)}"  foro € S,. However, when testing for the disjunction of these hy-
potheses, i. e for the exrstence of a nontrivial factaidraof the joint distribution, we are within
a multiple hypothe5|s testing framework (even though ong deal with a single test statistic, as
in the Lancaster case). To ensure that the required conéidemela = 0.05 is reached for the
factorization hypothesis, in the experiments reportediguie 3, the Holm’s sequentially rejective
Bonferroni method [35] is used for both the two-variabledzhand for the Lancaster based factor-
ization tests. Namely)-values are computed for each of the hypotheses’) L X, (X,Z) LY,

or (X,Y) L Z using the permutation test, and sorted in the ascending p[dep (2), P3)- Hy-
potheses are then rejected sequentially;if < ;=;. The factorization hypothesis is then rejected if
and only if all three hypotheses are rejected

E Asymptotic behavior

Using terminology from [26], kernels and %’ are said to be equivalent if they induce the same
semimetric on the domain, i.é(x, z) + k(2/,2’) — 2k(z,2") = K'(z,2) + k' (2', ') — 2K (z, ")
Va,2’. It can be shown that the Lancaster statistic is invarianhnging kernels within the kernel
equivalence class, i.e., that

2 2

faur

- Jaus

kQl®m kol @m!
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wheneverk, £/, [, 1’ andm, m’ are equivalent pairs. From here,
2 2

’ALP

- s

k@LOm kpy ®lpy @mp,
In Section A.2, we were able to show a similar expression bly for changingk to its version

kp, . centered at thempirical marginal Now, under the assumption of total independence, i.et, tha
2 2

Pxyz = Px Py Pz, the dominating term irHALP is || Pxy #

3 .B
i k?x Qlpy @ﬁ”?z i . kpy ®lpy @Thpz Y
standard arguments, under total independence, this agewer distribution to a sum of independent
chi-squared variables,

oo

AanbecNgbca (8)
=1

: -3y

kpy ®ZPY ®mp, mlb—l e

Pxvyz

n

where{\.}, {m}, {0} are, respectively, eigenvalues of integral operatorsciasal tokp, , [p,
.. ~ 112
andmp,, and Ny, i N(0,1). Other terms inHALP )

; can be shown to drop
. . ki Olpy @iy,

to zero at a faster rate, as in the two-variable case. Thétirgsudlistribution of such a sum of
chi-squares can, in principle, be estimated using a Monte@aethod, by computing a number

of eigenvalues of<, L and M, as in [36, 18]. This is of little practical value though, assiin
most cases simpler and faster to run a permutation test, deseeibe in Appendix D. On the other
hand, the above result quantifies the highest order of bitkeedd-statistic under total independence
to be equal toX 32 A, Sp2 S0, 6., which can be estimated ak Tr(K)Tr(L)Tr(M).
We emphasize that (8) refers tanall distribution under total independenedf say, the null holds
becauséX,Y) 1 Z, butX andY are dependent, one needs to instead consider a keriébopy
centered aPxy and the eigenvalues of its integral operator then replage, } (triple sum becomes
a double sum). This also implies that the bias term needs totvected appropriately.

F Some useful basic matrix algebra

Lemma 7. Let A, B ben x n matrices. The following results hold:
1.1T1=n

2. [117);; =1, ¥i,j,and thus(11 ") = n?

3. (I—Li11m)? = 7— 11T,

4. [A1], = Ay, [1TA]J. = Ay
5.1TA1=A4,,

6. (A117), = (1174)  =ndAy
7. (aA+BB),, =adiy + BBy
8. (A117B), = AyByy.

Proof. (3):

[ ? 2T 1 T44T
(I——ll ) = I--11"+S11'11".
n n ns ~~~

(8): From (4),[A117 B] .. = A; B, ;, implying

j

(AllTB)++ = Z Ai+ Z B+J = A++B++.

i=1 j=1
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Now, let K be a symmetric matrix, and dendte= I — %11T (the centering matrix). Then:

1 1
HKH = (I - —11T> K (I — —11T>

n n

_ K- (k. 4+ kT L K T

= _ﬁ( ++ +)+ﬁ 44110,

Note that:
1 T 1 T
(HKH), | = Ki- n ((K+)++ + (K+)++) + §K++ (11 )++

= K. —2K,, +K,, =0.
Lemma 8. The following results hold:

1. Ao11T =11To A=A
. (IoA)  =tr(A)

N

. (AoB), , = tr(ABT)

W

. For a symmetric matri¥ and any matrix4, (Ao K), = (AK)
(KA),

AOKI)+

e ( + =

5. For symmetric matrice&’, L, (Ko Ly),, = (K{ oL}), =n(KL),
6. For symmetric matrice&, L, (K o L]), = (KoL), ==K Ly

Proof. (4):(Ao Ky),, = tr(AK11") = (AKo117), = (AK), . (5): (KyoLy), , =

(K+L)++=(11TKL)++:n(KL)++. O
Proposition 9. DenoteH = I — %llT. Then:
2 1
(.KVO.[’ILITI)JrJr = (KOL)++—E(KL)+++§K++L++.
Proof. Let K and L be symmetric matrices and considéro H L H. \We obtain:
1 1
KoHLH = Ko <L ——(Le+L)+ —2L++11T>
n n
1 1
= KoL——(KoLy+KoLj)+—LK,
n n
so that:
2 1
(.KVO.[’ILITI)JrJr = (KOL)++—E(KL)+++§K++L++.
O

Corollary 10. tr(HLH) =tr(L) — L,
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