
Appendices
Supplementary Material for “Near-optimal Differentially Private Principal
Components”

This supplement contains the proofs of our results as well as additional details of the experiments and
the implementation of the exponential mechanism. Citation numbers here refer to the bibliography
at the end of the supplement and not those of the main document.

We will write KL (fkg) =
R
f(x) f(x)

g(x)

dx for the Kullback-Leibler divergence between two densi-
ties f and g.

A The algorithms guarantee privacy

We first describe the simple proofs that MOD-SULQ and PPCA guarantee differential privacy.

A.1 Proof of Theorem 1

Proof of Theorem 1. Let B and ˆB be two independent symmetric random matrices where {B
ij

:

1  i  j  d} and { ˆB
ij

: 1  i  j  d} are each sets of i.i.d. Gaussian random variables
with mean 0 and variance �2. Consider two data sets D = {x

i

: i = 1, 2, . . . , n} and ˆD =

D
1

[ {x̂
n

} \ {x
n

} and let A and ˆA denote their second moment matrices. Let G = A + B and
ˆG =

ˆA+

ˆB. We first calculate the log ratio of the densities of G and ˆG at a point H:
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From (16) the last term is upper bounded by 2/n2. To upper bound the first term,
X
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 2 · 1
2

(d2 + d) · 1
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= d+ 1.

Note that this bound is not too loose – by taking x̂ = d�1/21 and x = (1, 0, . . . , 0)T , this term is
still linear in d.

Then for any measurable set S of matrices,

P (G 2 S)  exp
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To handle the last term, use a union bound over the (d2+d)/2 variables {B
ij

} together with the tail
bound, which holds for � > �:
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Thus setting P (B
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> � for some i, j) = � yields the condition
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Rearranging to solve for � gives
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for d > 1 and � < 3/
p
2⇡e. This then gives an expression for ↵ to make (9) imply (↵, �) differential

privacy:
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Solving for � using the quadratic formula yields a particularly messy expression:
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A.2 Proof of Theorem 2

Proof of Theorem 2. Let X be a data matrix whose i-th column is x
i

and A =

1

n

XXT . The PP-
PCA algorithm is the exponential mechanism of McSherry and Talwar [28] applied to the score
function

q
F

(X, v) = n · vTAv

Consider X 0
= [x

1

x
2

· · · x
n�1

x0
n

] differ from X in a single column and let A0
=

1

n

X 0X 0T . We
have
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The last step follows because kx
i

k  1 for all i. The result now follows immediately from the
results of McSherry and Talwar [28, Theorem 6].

B Proof of Theorem 3

The results on the exponential mechanism [28] bound the gap between the value of the function
q
F

(v̂
1

) = n·v̂T
1

Av̂
1

evaluated at the output v̂
1

of the mechanism and the optimal value q(v
1

) = n·�
1

.
We derive a bound on the correlation q

A

(v̂
1

) = |hv̂
1

, v
1

i| via geometric arguments.
Lemma 1 (Lemmas 2.2 and 2.3 of Ball [3]). Let µ be the uniform measure on the unit sphere Sd�1.
For any x 2 Sd�1 and 0  c < 1
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��
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. (11)

Proof of Theorem 3. Fix a privacy level ↵, target correlation ⇢, and probability ⌘. Let X be the data
matrix and B = (↵/2)XXT and

U
⇢

= {u : |hu, v
1

i| � ⇢} .
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be the union of the two spherical caps centered at ±v
1

. Let U
⇢

denote the complement of U
⇢

in
Sd�1.

An output vector v̂
1

is “good” if it is in U
⇢

. We first give some bounds on the score function q
F

(u)
on the boundary between U

⇢

and U
⇢

, where hu, v
1

i = ±⇢. The function q
F

(u) is maximized when
u is a linear combination of v

1
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2

, the top two eigenvectors of A. It minimized when u is a
linear combination of v

1
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d

. Therefore
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Let µ(·) denote the uniform measure on the unit sphere. Then fixing an 0  b < 1, using (12), (13),
and the fact that �

d

� 0,
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Applying the lower bound from Lemma 1 to the denominator of (14) and the upper bound µ
�
U
⇢

�


1 yields
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We must choose a �2 > ⇢2 to make the upper bound  1, but more precisely,
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Since 1� ⇢ < 1� ⇢2, if we choose

n >
d

↵(1� ⇢)(�
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� �
2

)

✓
log(1/⌘)

d
+ log
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then the output of PPCA will produce a v̂
1

such that

P (|hv̂
1

, v
1

i| < ⇢)  ⌘.

In general, it is difficult to measure the area on the unit sphere of the set {x : xTAx � 1 � �}.
In the case where A = I this is just a spherical cap, but for general A it can have a more irregular
shape. The second reason is that explicit bounds on the confluent hypergeometric function with
matrix argument do not give clear dependencies on the problem parameters.

C Proof of Theorem 5

In this section we provide theoretical guarantees on the performance of the MOD-SULQ algorithm.
Theorem 1 shows that MOD-SULQ is (↵, �)-differentially private. Theorem 7 provides a lower
bound on the distance between the vector released by MOD-SULQ and the true top eigenvector in
terms of the privacy parameters ↵ and � and the number of points n in the data set. This implic-
itly gives a lower bound on the sample complexity of MOD-SULQ. We provide some graphical
illustration of this tradeoff.

The following upper bound will be useful for future calculations : for two unit vectors x and y,
X

1ijd

(x
i

x
j

� y
i

y
j

)

2  2. (16)

Note that this upper bound is achievable by setting x and y to be orthogonal elementary vectors.

The main tool in our lower bound is a generalization by Yu [37] of an information-theoretic inequal-
ity due to Fano.
Theorem 6 (Fano’s inequality [37]). Let R be a set and ⇥ be a parameter space with a pseudo-
metric d(·). Let F be a set of r densities {f

1

, . . . , f
r

} on R corresponding to parameter values
{✓

1

, . . . , ✓
r

} in ⇥. Let X have distribution f 2 F with corresponding parameter ✓ and let ˆ✓(X) be
an estimate of ✓. If, for all i and j

d(✓
i

, ✓
j

) � ⌧ (17)

and

KL (f
i

kf
j

)  �, (18)

then
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j

E
j

[d(ˆ✓, ✓
j

)] � ⌧

2

✓
1� � + log 2

log r

◆
, (19)

where E
j

[·] denotes the expectation with respect to distribution f
j

.

To use this inequality, we will construct a set of densities on the set of covariance matrices corre-
sponding distribution of the random matrix in the MOD-SULQ algorithm under different inputs.
These inputs will be chosen using a set of unit vectors which are a packing on the surface of the unit
sphere.

C.1 A packing lemma

The proof of this lemma is relatively straightforward. The following is a slight refinement of a
lemma due to Csiszár and Narayan [11, 12].
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Lemma 2. Let Z
1

,Z
2

, . . . ,Z
N

be arbitrary random variables and let f
i

(Z
1

, . . . ,Z
i

) be arbitrary
with 0  f

i

 1, i = 1, 2, . . . , N . Then the condition
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Proof. First apply Markov’s inequality:
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Continuing in the same way yields
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The second technical lemma [12, Lemma 2] is a basic result about the distribution of inner product
between a randomly chosen unit vector and any other fixed vector. It is a consequence of a result of
Shannon [34] on the distribution of the angle between a uniformly distributed unit vector and a fixed
unit vector.
Lemma 3 (Lemma 2 of [12]). Let U be uniformly distributed on the unit sphere Sd�1 in Rd. Then
for every unit vector u on this sphere and any � 2 [(2⇡d)�1/2, 1), the following inequality holds:

P (hU,ui � �)  (1� �2)(d�1)/2. (22)

Lemma 4 (Packing set on the unit sphere). Let a dimension d and � 2 [(2⇡d)�1/2, 1) be given. For
N and t satisfying

�Nt(log 2) +N(N � 1)(1� �2)(d�1)/2 < 1, (23)

there exists a set of K = b(1� t)Nc unit vectors C such that for all distinct pairs µ, ⌫ 2 C,

|hµ, ⌫i| < �. (24)
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Proof. The goal is to generate a set of N unit vectors on the surface of the sphere Sd�1 such that
they have large pairwise distances, or correspondingly small pairwise inner products. To that end,
define Z

1

,Z
2

, . . . ,Z
N

i.i.d. uniformly distributed on Sd�1 and

f
i

(Z
1

, . . . ,Z
i

) = 1 (|hZ
i

,Z
j

i| > �, j < i) . (25)

That is, f
i

= 1 if Z
i

has large inner product with any Z
j

for j < i. The conditional expectation, by
a union bound and Lemma 3, is
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, . . . ,Z
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]  2(i� 1)(1� �2)(d�1)/2. (26)

Let a
i

= (i� 1)(1� �2)(d�1)/2. Then

NX

i=1

a
i

= N(N � 1)(1� �2)(d�1)/2. (27)

Then Lemma 2 shows
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)

(d�1)/2

⌘
. (28)

This inequality implies that as long as

�Nt(log 2) +N(N � 1)(1� �2)(d�1)/2 < 1, (29)

then there is a finite probability that {Z
i

} contains a subset {Z0
i

} of size b(1 � t)Nc such that��hZ0
i

,Z0
j

i
�� < � for all (i, j). Therefore such a set exists.

A simple setting of the parameters gives the following packing.

Lemma 5 (Simple packing set). For � 2 [(2⇡d)�1/2, 1), there exists a set of

K =

1

8

exp

 
(d� 1) log

1p
1� �2

!
(30)

vectors C in Sd�1 such that for any pair µ, ⌫ 2 C, the inner product between them satisfies

|hµ, ⌫i|  �. (31)

Proof. Applying Lemma 4 yields a set of K vectors C satisfying (23) and (24). To get a simple
bound that’s easy to work with, we can set

�Nt(log 2) +N(N � 1)(1� �2)(d�1)/2 � 1 = 0, (32)

and find an N close to this. Setting  = (1��2)(d�1)/2, the quadratic formula solving for N yields

N =

1

 

⇣
t log 2 +  +

�
(t log 2 +  )2 + 4 

�
1/2

⌘

>
t

2 
.

Now setting K =

t(1�t)

2 

and t = 1/2 gives (30). So there exists a set of K vectors on Sd�1 whose
pairwise inner products are smaller than �.

The maximum set of points that can be selected on a sphere of dimension d such that their pairwise
inner products are bounded by � is an open question. These sets are sometimes referred to as
spherical codes [9] because they correspond to a set of signaling points of dimension d that can
be perfectly decoded over a channel with bounded noise. The bounds here are from a probabilistic
construction and can be tightened for smaller d. However, in terms of scaling with d this construction
is essentially optimal [34].
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C.2 Lower bounds for input perturbation

Lemma 6. Let ⌃ be a positive definite matrix and let f denote the density N (a,⌃) and g denote
the density N (b,⌃). Then KL (fkg) = 1

2

(a� b)T⌃�1

(a� b).

Proof. This is a simple calculation:

KL (fkg) = E
x⇠f


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2

(x� a)T⌃�1

(x� a) +
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aT⌃�1a� aT⌃�1b� bT⌃�1a+ bT⌃�1b

�

=

1

2

(a� b)T⌃�1

(a� b).

The next theorem is a lower bound on the expected distance between the vector output by MOD-
SULQ and the true top eigenvector. In order to get this lower bound, we construct a class of data
sets and use Fano’s inequality to derive a bound on the minimax error over the class.
Theorem 7 (Utility bound for MOD-SULQ). Let d, n, and ↵ > 0 be given and let � be given by
Algorithm 1 so that the output of MOD-SULQ is (↵, �)-differentially private for all data sets in Rd

with n elements. Then there exists a data set with n elements such that if v̂
1

denotes the output of
MOD-SULQ and v

1

is the top eigenvector of the empirical covariance matrix of the data set, the
expected correlation hv̂

1

, v
1

i is upper bounded:

E [|hv̂
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1

i|]  min

�2�
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1��2
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1
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1
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� 2
"
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(
1p
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,

s
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✓
�2 log(8d)

d� 1

◆
,

s

1� exp

✓
�2/�2

+ log(256)

d� 1

◆)
, 1

!
. (34)

Proof. For � 2 [(2⇡d)�1/2, 1), Lemma 5 shows there exists a set of K unit vectors C such that for
µ, ⌫ 2 C, the inner product between them satisfies |hµ, ⌫i| < �, where K is given by (30). Note that
for small � this setting of K is loose, but any orthonormal basis provides d unit vectors which are
orthogonal, setting K = d and solving for � yields

✓
1� exp

✓
�2 log(8d)

d� 1

◆◆
1/2

.

Setting the lower bound on � to the maximum of these two yields the set of � and K which we will
consider in (34).

For any unit vector µ, let

A(µ) = µµT

+N, (35)

where N is a d⇥ d symmetric random matrix such that {N
ij

: 1  i  j  d} are i.i.d. N (0,�2

),
where �2 is the noise variance used in the MOD-SULQ algorithm. Due to symmetry, the matrix
A(µ) can be thought of as a jointly Gaussian random vector on the d(d + 1)/2 variables {A

ij

(µ) :
1  i  j  d}. The mean of this vector is

µ̄ =

�
µ2

1

, µ2

2

, . . . , µ2

d

, µ
1

µ
2

, µ
1

µ
3

, . . . , µ
d�1

µ
d

�
T

, (36)

and the covariance is �2I
d(d+1)/2

. Let f
µ

denote the density of this vector.
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For µ, ⌫ 2 C, the divergence between f
µ

and f
⌫

can be calculated using Lemma 6:

KL (f
µ

kf
⌫

) =

1

2

(µ̄� ⌫̄)T⌃�1

(µ̄� ⌫̄)

=

1

2�2

kµ̄� ⌫̄k2

 1

�2

. (37)

The last line follows from the fact that the vectors in C are unit norm.

For any two vectors µ, ⌫ 2 C, lower bound the Euclidean distance between them using the upper
bound on the inner product:

kµ� ⌫k �
p
2(1� �). (38)

Let ⇥ = Sd�1 with the Euclidean norm and R be the set of distributions {A(µ) : µ 2 ⇥}. From
(38) and (37), the set C satisfies the conditions of Theorem 6 with F = {f

µ

: µ 2 C}, r = K,
⌧ =

p
2(1� �), and � =

1

�

2 . The conclusion of the Theorem shows that for MOD-SULQ,
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µ2C
E
fµ [kv̂ � µk] �

p
2(1� �)

2

✓
1� 1/�2

+ log 2

logK

◆
. (39)

This lower bound is vacuous when the term inside the parenthesis is negative, which imposes further
conditions on �. Setting logK = 1/�2

+ log 2, we can solve to find another lower bound on �:

� �

s

1� exp

✓
�2/�2

+ log(256)

d� 1

◆
. (40)

This yields the third term in (34). Note that for larger n this term will dominate the others.

Using Jensen’s inequality on the the left side of (39):

max

µ2C
E
fµ [2(1� |hv̂, µi|)] � (1� �)

2

✓
1� 1/�2

+ log 2

logK

◆
2

.

So there exists a µ 2 C such that

E
fµ [|hv̂, µi|]  1� (1� �)

4

✓
1� 1/�2

+ log 2

logK

◆
2

. (41)

Consider the data set consisting of n copies of µ. The corresponding covariance matrix is µµT with
top eigenvector v

1

= µ. The output of the algorithm MOD-SULQ applied to this data set is an
estimator of µ and hence satisfies (41). Minimizing over � gives the desired bound.

The minimization over � in (33) does not lead to analytically pretty results, but numerical optimiza-
tion can give some insight into these bounds. In all experiments we set � = 0.01. Figure 3 shows
the lower bound on the correlation hv̂

1

, v
1

i for MOD-SULQ as a function of the dimension for four
different values of ↵. For large data set sizes and large ↵, the lower bound is not very tight, so for 107
data points MOD-SULQ may not suffer much performance, even for large dimensions. However,
for smaller ↵ the bound becomes sharper, especially for smaller data sets. To see the dependence
on ↵, Figure 4 shows the correlation as a function of ↵ for smaller values of d. As f increases,
MOD-SULQ requires more and more data to produce an output which is correlated with the true
top eigenvector. For example, in dimension 1024, for ↵ = 3, if n = 10000 the expected inner prod-
uct is is lower bounded by ⇡ 0.87, which corresponds to an angle of 30�. Finally, Figure 5 shows
the correlation as a function of n for different dimensions and different values of ↵. Again, in high
dimension, the lower bound is shows that the expected performance of MOD-SULQ is poor when
there are a small number of data points. This limitation may be particularly acute when the data lies
in a very low dimensional subspace but is presented in very high dimension. In such “sparse” set-
tings, perturbing the input as in MOD-SULQ is not a good approach. However, in lower dimensions
and data-rich regimes, the performance may be more favorable.

A little calculation yields the sample complexity bound.
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Figure 3: Upper bound on the correlation between hv̂1, v1i for MOD-SULQ. The horizontal axis is the di-
mension d of the data, and the vertical axis is the correlation. The four panels correspond to values of ↵ = 0.5,
1, 1.5, and 2.
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Figure 4: Upper bound on the correlation between hv̂1, v1i for MOD-SULQ. The horizontal axis is the privacy
parameter ↵, and the vertical axis is the correlation. The four panels correspond to values of d = 64, 128, 256,
and 1024.
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Figure 5: Upper bound on the correlation between hv̂1, v1i for MOD-SULQ. The horizontal axis is the size
of the data set n, and the vertical axis is the correlation. The four panels correspond to values of d = 64, 128,
256, and 1024.

Proof of Theorem 5. Suppose E [|hv̂
1

, v
1

i|] = ⇢. Then a little algebra shows

2

p
1� ⇢ � min

�2�

p
1� �

0

@
1� 1/�2

+ log 2

(d� 1) log

1p
1��2

� log(8)

1

A .

Set � such that (d� 1) log

1p
1��2

� log(8) = 2(1/�2

+ log 2) to get

4

p
1� ⇢ �

p
1� �.

Since we are concerned with the scaling behavior for large d and n,

log

1p
1� �2

= ⇥

✓
1

�2d

◆
,

so

� =

s

1� exp

✓
�⇥

✓
1

�2d

◆◆

= ⇥

✓r
1

�2d

◆
.

Lower bound � in Algorithm 1 to get for some constant c
1

,

�2 > c
1

d2

n2↵2

log(d/�).

Substituting this we get for some constant c
2

that

(1� c
2

(1� ⇢))  c
3

n2↵2

d3 log(d/�)
.

Now solving for n shows

n � c
d3/2

p
log(d/�)

↵
(1� c0(1� ⇢)) .
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D Proof of Theorem 4

We now turn to a general lower bound on the sample complexity for any differentially private ap-
proximation to PCA. We construct K databases which differ in a small number of points whose top
eigenvectors are not too far from each other. For such a collection, Lemma 7 shows that for any dif-
ferentially private mechanism, the average correlation over the collection cannot be too large. That
is, any ↵-differentially private mechanism cannot have high utility on all K data sets. The remainder
of the argument is to construct these K data sets.

The proof uses some simple eigenvalue and eigenvector computations. A matrix of positive entries

A =

✓
a b
b c

◆
(42)

has characteristic polynomial
det(A� �I) = �2 � (a+ c)�+ (ac� b2)

and eigenvalues

� =

1

2

(a+ c)± 1

2

p
(a+ c)2 � 4(ac� b2)

=

1

2

(a+ c)± 1

2

p
(a� c)2 + 4b2. (43)

The eigenvectors are in the directions (b,�(a� �))T .

Lemma 7. Let D
1

,D
2

, . . . ,D
K

be K databases which differ in the value of at most ln(K�1)

↵

points,
and let u

1

, . . . , u
K

be the top eigenvectors of D
1

,D
2

, . . . ,D
K

. If A is any ↵-differentially private
algorithm, then,

KX

i=1

EA [|hA(D
i

), u
i

i|]  K

✓
1� 1

16

(1�max |hu
i

, u
j

i|)
◆
.

Proof. Let
t = min

i 6=j

(ku
i

� u
j

k , ku
i

+ u
j

k),

and G
i

be the cap around ±u
i

of radius t/2:
G
i

= {u : ku� u
i

k < t/2} [ {u : ku+ u
i

k < t/2} .
We claim that

KX

i=1

PA(A(D
i

) /2 G
i

) � 1

2

(K � 1). (44)

The proof is by contradiction. Suppose the claim is false. Because all of the caps G
i

are disjoint,
and applying the definition of differential privacy,

1

2

(K � 1) >
KX

i=1

PA(A(D
i

) /2 G
i

)

�
KX

i=1

X

i

0 6=i

PA(A(D
i

) 2 G
i

0
)

�
KX

i=1

X

i

0 6=i

e�↵·ln(K�1)/↵PA(A(D
i

0
) 2 G

i

0
)

� (K � 1) · 1

K � 1

·
KX

i=1

PA(A(D
i

) 2 G
i

)

� K � 1

2

(K � 1),
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which is a contradiction, so (44) holds. Therefore by the Markov inequality

KX

i=1

EA

h
min(kA(D

i

)� u
i

k2 , kA(D
i

) + u
i

k2)
i
�

KX

i=1

P(A(D
i

) /2 G
i

) · t
2

4

� 1

8

(K � 1)t2.

Rewriting the norms in terms of inner products shows

2K � 2

KX

i=1

EA [|hA(D
i

), u
i

i|] � 1

8

(K � 1) (2� 2max |hu
i

, u
j

i|) ,

so
KX

i=1

EA [|hA(D
i

), u
i

i|]  K

✓
1� 1

8

K � 1

K
(1�max |hu

i

, u
j

i|)
◆

 K

✓
1� 1

16

(1�max |hu
i

, u
j

i|)
◆
.

Proof of Theorem 4. From Lemma 7, given a set of K databases differing in ln(K�1)

↵

points with
top eigenvectors {u

i

: i = 1, 2, . . . ,K}, for at least one database i,

EA [|hA(D
i

), u
i

i|]  1� 1

16

(1�max |hu
i

, u
j

i|)

for any ↵-differentially private algorithm. Setting the left side equal to some target ⇢,

1� ⇢ � 1

16

(1�max |hu
i

, u
j

i|) . (45)

So our goal is construct these data bases such that the inner product between their eigenvectors is
small.

Let y = e
d

, the d-th coordinate vector, and let � 2 ((2⇡d)�1/2, 1). Lemma 5 shows that there
exists a packing W = {w

1

, w
2

, . . . , w
K

} of the sphere Sd�2 spanned by {e
1

, e
2

, . . . , e
d�1

} such
that max

i 6=j

|hw
i

, w
j

i|  �, where

K =

1

8

(1� �)�(d�2)/2.

Choose � such that ln(K � 1) = d. This means

1� � = exp

✓
�2 · ln 8 + ln(1 + exp(d))

d� 2

◆
.

The right side is minimized for d = 3 but this leads to a rather weak lower bound 1�� > 3.5⇥10

�5.
By contrast, for d = 100, the bound is 1� � > 0.12. In all cases, 1� � is at least a constant value.

We will construct one database for each w
i

. Let � =

d

n↵

. For now, we assume that �  �  1

2

.
The other case, when � � � will be considered later. Because �  �, we have

n >
d

�↵
.

Each database will contain n points and they will differ in n� =

ln(K�1)

↵

points. The construction
uses a parameter 0  m  1 that will be set as a function of the eigenvalue gap �. We will derive
conditions on n based on the requirements on d, ↵, ⇢, and �. For i = 1, 2, . . . ,K let the data set D

i

contain

• n(1� �) copies of
p
my
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• n� copies of z
i

=

1p
2

y + 1p
2

w
i

.

Thus datasets D
i

and D
j

differ in the values of n� =

ln(K�1)

n↵

individuals. The second moment
matrix A

i

of D
i

is

A
i

= ((1� �)m+

1

2

�)yyT +

1

2

�(wT

i

y + ywT

i

) +

1

2

�w
i

wT

i

.

By choosing an basis containing y and w
i

, we can write this as

A
i

=

2

4
(1� �)m+

1

2

� 1

2

� 0
1

2

� 1

2

� 0
0 0 0

3

5 .

This is in the form (42), with a = (1� �)m+

1

2

�, b = 1

2

�, and c = 1

2

�.

The matrix A
i

has two nonzero eigenvalues given by

� =

1

2

(a+ c) +
1

2

p
(a� c)2 + 4b2, (46)

�0 =
1

2

(a+ c)� 1

2

p
(a� c)2 + 4b2, (47)

The gap � between the top two eigenvalues is:

� =

p
(a� c)2 + 4b2 =

p
m2

(1� �)2 + �2.

We can thus set m in the construction to ensure an eigengap of �:

m =

p
(�

2 � �2

)

1� �
. (48)

The top eigenvector of A
i

is given by

u
i

=

bp
b2 + (a� �)2

y +
(a� �)p

b2 + (a� �)2
w

i

.

where � is given by (46). Therefore

max

i 6=j

|hu
i

, u
j

i|  b2

b2 + (a� �)2
+

(a� �)2

b2 + (a� �)2
max

i 6=j

|hw
i

, w
j

i|

 1� (a� �)2

b2 + (a� �)2
(1� �). (49)

To obtain an upper bound on max

i 6=j

|hu
i

, u
j

i| we must lower bound (a��)2
b

2
+(a��)2 .

Since x/(⌫+x) is monotonically increasing in x when ⌫ > 0, we will find a lower bound on (a��).
Observe that from (46),

�� a =

b2

�� c
.

So to lower bound �� a we need to upper bound �� c. We have

�� c =
1

2

(a� c) +
1

2

� =

1

2

((1� �)m+�)

Because b = �/2,

(�� a)2 >

✓
�2

2((1� �)m+�)

◆
2

=

�4

4((1� �)m+�)

2

.
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Now,
(a� �)2

b2 + (a� �)2
>

�4

�2

((1� �)m+�)

2

+ �4

=

�2

�2

+ ((1� �)m+�)

2

>
�2

5�

2

, (50)

where the last step follows by plugging in m from (48) and using the fact that �  �. Putting it all
together, we have from (45), (49), and (50), and using the fact that � is such that ln(K � 1) = d so
that � =

d

n↵

,

1� ⇢ � 1

16

· (a� �)2

b2 + (a� �)2
(1� �)

>
1� �

80

�2

�

2

=

1� �

80

· d2

�

2n2↵2

,

which implies

n >

p
1� �p
80

· d

�↵
p
1� ⇢

.

Thus for �  �  1/2, any ↵-differentially private algorithm needs ⌦

⇣
d

�↵

p
1�⇢

⌘
points to get

expected inner product ⇢ on all data sets with eigengap �.

We now consider the case where � > �. We choose a slightly different construction here. The i-th
database now consists of n(1 � �) copies of the 0 vector, and n� copies of �

�

w
i

. Thus, every pair

of databases differ in the values of n� =

ln(K�1)

↵

people, and the eigenvalue gap between the top
two eigenvectors is � · �

�

= �.

As the top eigenvector of the i-th database is u
i

= w
i

,
max

i 6=j

|hu
i

, u
j

i| = max

i 6=j

|hw
i

, w
j

i|  �

Combining this with (45), we obtain

1� ⇢ � 1

16

(1� �),

which provides the additional condition in the Theorem.

E Experiments and implementation

E.1 Description of the data sets

The kddcup99 [17] contains features about 494,021 network connections, census [2] is a demo-
graphic data set on 199, 523 individuals, localization [21] is a medical dataset with 164,860
instances of sensor readings on individuals engaged in different activities, and insurance [36] is
a dataset on product usage and demographics of 9,822 individuals. We chose values of k such that
the top-k PCA subspace had q

F

(V ) at least 80% of kAk
F

. A summary is in Table E.1.

All datasets contain a mix of continuous and categorical features. We preprocess each dataset by
converting a feature with q discrete values to a vector in {0, 1}q; after preprocessing, the datasets
kddcup99, census, localization and insurance have dimensions 116, 513, 44 and 150

respectively. We also normalize each column so that each entry has maximum value 1, and normalize
each row such that the maximum (Euclidean) row norm is 1. We choose k = 4 for kddcup, k = 8

for census, k = 10 for localization and k = 11 for insurance; in each case, the utility
q
F

(U
k

) of the top-k PCA subspace of the data matrix accounts for at least 80% of kAk
F

. Thus,
all four datasets, although fairly high dimensional, have good low-dimensional representations. The
properties of each dataset are summarized in Table E.1.
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Dataset #instances #dimensions k q
F

(U)/ kAk
F

kddcup 494,021 116 4 0.96
census 199,523 513 8 0.81
localization 164,860 44 10 0.81
insurance 9,822 150 11 0.81

Table 2: Parameters of each dataset. The second column is the number of dimensions after preprocessing.
k is the dimensionality of the PCA, and the fourth column contains qF(U)/ kAkF where U is the top k PCA
subspace.

E.2 Implementation for classification

We used a linear SVM for all classification tasks, which is implemented by libSVM [6].

E.3 Implementation of Gibbs sampling

There is a mismatch between the theoretical analysis of differentially private algorithms and their
implementation in real systems. Because differential privacy is a mathematical definition, the de-
scription of differentially private procedure makes a number of idealizations regarding computation.
Some of these idealizations are related to running the algorithm in a real environment; the designers
of differentially private systems such as Airavat [33] require additional security assumptions that
have to be verified. At a more basic level, the difference between truly random noise and pseudoran-
domness [29, 27] and the effects of finite precision can lead to a gap between the theoretical ideal
and practice. Finally, implementation of private algorithms can lead to further gaps between theory
and practice. For example, implementing objective perturbation [8] uses numerical optimization
tools for approximate solutions to convex optimization problems, which have complex termination
conditions that are not part of the accompanying theoretical analysis. In this work, MCMC sampling
does not sample exactly from the Bingham distribution, and we leave a theoretical investigation of
the impact of approximate sampling for future work.2

The theoretical analysis of PPCA uses properties of the Bingham distribution BMF
k

(·) given in (8).
To implement this algorithm for experiments we use a Gibbs sampler due to Hoff [19]. The Gibbs
sampling scheme induces a Markov Chain, the stationary distribution of which is the density in (8).
Gibbs sampling and other MCMC procedures are widely used in statistics, scientific modeling, and
machine learning to estimate properties of complex distributions.

Finding the speed of convergence of MCMC methods is still an open area of research. There has
been much theoretical work on estimating convegence times [18, 13, 20, 30, 31, 32, 22, 23], but
unfortunately, most theoretical guarantees are available only in special cases and are often too weak
for practical use. In lieu of theoretical guarantees, users of MCMC methods empirically estimate the
burn-in time, or the number of iterations after which the chain is sufficiently close to its stationary
distribution. Statisticians employ a range of diagnostic methods and statistical tests to empirically
determine if the Markov chain is close to stationarity [10, 5, 4, 14]. These tests do not provide a
sufficient guarantee of stationarity, and there is no “best test” to use. In practice, the convergence
of derived statistics is used to estimate an appropriate the burn-in time. In the case of the Bingham
distribution, Hoff [19] performs qualitative measures of convergence. Developing a better charac-
terization of the convergence of this Gibbs sampler is also an important question for future work.

To choose an appropriate burn-in time, we examined the time series trace of the Markov Chain. We
ran l copies of the chain, starting from l different initial locations drawn uniformly from the set of
all d⇥ k matrices with orthonormal columns. Let Xi

(t) be the output of the i-th copy at iteration t,
and let U be the top k PCA subspace of the data. For each i, we plot the magnitude of the projection
of Xi

(t) onto U . After a number of iterations, the projections should converge to the same value.

For each copy, we also plot the following statistic as a function of iteration T :

F i

k

(T ) =
1p
k

�����
1

T

TX

t=1

Xi

(t)

�����
F

,

2This paragraph also appears in the main text of the document.
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where k·k
F

is the Frobenius norm. The matrix Bingham distribution has mean 0, and hence with
increasing T , the statistic F i

k

(T ) should converge to 0.
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Figure 6: Plot of logFk(T ) for k = 4 as a func-
tion of iteration T for 40, 000 iterations of the Gibbs
sampler for the kddcup dataset.

iterations

va
lu

e

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

10000 20000 30000

Trace Number
Trace1
Trace2
Trace3
Trace4
Trace5

Figure 7: Plot of logFk(T ) for k = 11 as a func-
tion of iteration T for 40, 000 iterations of the Gibbs
sampler for the insurance dataset.

In our simulations, we observed that the Gibbs sampler converges to F
k

(t) < 0.01 at t = 20,000
when run on data with a few hundred dimensions and with k between 5 and 10; we thus chose to run
the Gibbs sampler for T = 20,000 timesteps for all the datasets. We show logF i

k

(T ) as a function
of iteration T for datasets insurance and kddcup in Figures 7 and 6 respectively; the plots are
over 5 trajectories of the Markov Chain, which are initialized at 5 locations drawn uniformly from
the set of all d⇥k matrices with orthonormal columns. The plots show that F i

k

(T ) decreases rapidly
after a few thousand iterations, and is less than 0.01 after T = 20,000 in both cases. logF i

k

(T ) also
appears to have a larger variance for kddcup than for insurance; this is explained by the fact that
the kddcup dataset has a much larger number of samples, which makes its stationary distribution
farther from the initial distribution of the sampler.

Our simulations indicate that the chains converge fairly rapidly, particularly when kA�A
k

k
F

is
small so that A

k

is a good approximation to A. Convergence is slower for larger n when the initial
state is chosen from the uniform distribution over all k⇥ d matrices with orthonormal columns; this
is explained by the fact that for larger n, the stationary distribution is farther in variation distance
from the starting distribution, which results in a longer convergence time.
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[12] CSISZÁR, I., AND NARAYAN, P. Capacity of the Gaussian arbitrarily varying channel. IEEE Transactions
on Information Theory 37, 1 (1991), 18–26.

[13] DOUC, R., MOULINES, E., AND ROSENTHAL, J. S. Quantitative bounds on convergence of time-
inhomogeneous Markov chains. The Annals of Applied Probability 14, 4 (Nov. 2004), 1643–1665.

[14] ELADLOUNI, S., FAVRE, A., AND BOBEE, B. Comparison of methodologies to assess the convergence
of Markov chain Monte Carlo methods. Computational Statistics & Data Analysis 50, 10 (June 2006),
2685–2701.

[15] EVFIMIEVSKI, A., GEHRKE, J., AND SRIKANT, R. Limiting privacy breaches in privacy preserving data
mining. In PODS (2003), pp. 211–222.

[16] HAY, M., LI, C., MIKLAU, G., AND JENSEN, D. Accurate estimation of the degree distribution of
private networks. In ICDM (2009), pp. 169–178.

[17] HETTICH, S., AND BAY, S. The UCI KDD Archive. University of California, Irvine, Department of
Information and Computer Science, 1999.

[18] HOBERT, J. P., AND JONES, G. L. Sufficient burn-in for Gibbs samplers for a hierarchical random effects
model. The Annals of Statistics 32, 2 (Apr. 2004), 784–817.

[19] HOFF, P. D. Simulation of the matrix Bingham-von Mises-Fisher distribution, with applications to mul-
tivariate and relational data. J. Comp. Graph. Stat. 18, 2 (2009), 438–456.

[20] JONES, G. L., AND HOBART, J. P. Honest Exploration of Intractable Probability Distributions via
Markov Chain Monte Carlo. Statistical Science 16, 4 (2001), 312–334.

[21] KALUZA, B., MIRCHEVSKA, V., DOVGAN, E., LUSTREK, M., AND GAMS, M. An agent-based ap-
proach to care in independent living. In International Joint Conference on Ambient Intelligence (AmI-10)
(2010).

[22] KOLASA, J. E. Convergence and Accuracy of Gibbs Sampling for Condirtional Distributions in Gener-
alized Linear Models. The Annals of Statistics 27, 1 (1999), 129–142.

[23] KOLASA, J. E. Explicit Bounds for Geometric Covergence of Markov Chains. Journal of Applied
Probability 37, 3 (2000), 642–651.

[24] LI, N., LI, T., AND VENKATASUBRAMANIAN, S. Closeness: A new privacy measure for data publish-
ing. IEEE Trans. Knowl. Data Eng. 22, 7 (2010), 943–956.

[25] MACHANAVAJJHALA, A., GEHRKE, J., KIFER, D., AND VENKITASUBRAMANIAM, M. l-diversity:
Privacy beyond k-anonymity. In ICDE (2006), p. 24.

[26] MACHANAVAJJHALA, A., KIFER, D., ABOWD, J. M., GEHRKE, J., AND VILHUBER, L. Privacy:
Theory meets practice on the map. In ICDE (2008), pp. 277–286.

[27] MCGREGOR, A., MIRONOV, I., PITASSI, T., REINGOLD, O., TALWAR, K., AND VADHAN, S. The lim-
its of two-party differential privacy. In Proceedings of the 51st Annual IEEE Symposium on Foundations
of Computer Science (FOCS ’10) (October 2010), pp. 23–26.

[28] MCSHERRY, F., AND TALWAR, K. Mechanism design via differential privacy. In FOCS (2007), pp. 94–
103.

[29] MIRONOV, I., PANDEY, O., REINGOLD, O., AND VADHAN, S. Computational differential privacy. In
Advances in Cryptology - CRYPTO 2009, S. Halevi, Ed., vol. 5677 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2009, pp. 126–142.

[30] ROBERTS, G. Bounds on regeneration times and convergence rates for Markov chains. Stochastic Pro-
cesses and their Applications 80, 2 (Apr. 1999), 211–229.

[31] ROBERTS, G. O., AND SAHU, S. K. Approximate Predetermined Convergence Properties of the Gibbs
Sampler. Journal of Computational and Graphical Statistics 10, 2 (June 2001), 216–229.

[32] ROSENTHAL, J. S. Minorization Conditions and Convergence Rates for Markov Chain Monte Carlo.
Journal of the American Statistical Association 90, 430 (June 1995), 558–566.

[33] ROY, I., SETTY, S. T. V., KILZER, A., SHMATIKOV, V., AND WITCHEL., E. Airavat: Security and
privacy for mapreduce. In Proceedings of the 7th Usenix Symposium on Networked Systems Design and
Implementation (NSDI) (2010).

[34] SHANNON, C. Probability of error for optimal codes in a Gaussian channel. Bell System Technical
Journal 38 (1959), 611–656.

26



[35] SWEENEY, L. k-anonymity: a model for protecting privacy. Int. J. on Uncertainty, Fuzziness and
Knowledge-Based Systems (2002).

[36] VAN DER PUTTEN, P., AND VAN SOMEREN, M. Coil challenge 2000: The insurance company case,
2000. Leiden Institute of Advanced Computer Science Technical Report 2000-09.

[37] YU, B. Assouad, fano, and le cam. In Festschrift for Lucien Le Cam, D. Pollard, E. Torgersen, and G. L.
Yang, Eds., Research Papers in Probability and Statistics. Springer-Verlag, 1997, ch. 29, pp. 423–425.

27


