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Abstract

This paper examines the possibility of a ‘reject option’ re tcontext of least
squares regression. Itis shown that using rejection itésitetically possible to
learn ‘selective’ regressors that caipointwise track the best regressor in hind-
sight from the same hypothesis class, while rejecting orbp@nded portion of
the domain. Moreover, the rejected volume vanishes withtritiaing set size,
under certain conditions. We then develop efficient and texaglementation of
these selective regressors for the case of linear regresEimpirical evaluation
over a suite of real-world datasets corroborates the ttiear@nalysis and indi-
cates that our selective regressors can provide substadtiantage by reducing
estimation error.

1 Introduction

Consider a standard least squares regression problem. n Givénput-output training pairs,
(z1,91),- -, (Tm,ym), we are required to learn a predictgre F, capable of generating accurate
output predictionsf(z) € R, for any inputz. Assuming that input-output pairs are i.i.d. realiza-

tions of some unknown stochastic sourf¢z, y), we would like to choosé so as to minimize the
standard least squares risk functional,

R(f) = / (v — F(x))2dP(z,y).

Let f* = argmin,. » R(f) be the optimal predictor in hindsight (based on full knovgeaf P).
A classical result in statistical learning is that undetaierstructural conditions o/ and possibly
on P, one can learn a regressor that approaches the averagabpérformanceR(f*), when the
sample sizem, approaches infinity [1].

In this paper we contemplate the challeng@ointwisetracking the optimal predictions g after
observing only a finite (and possibly small) set of trainiagnples. It turns out that meeting this
difficult task can be made possible by harnessing the ‘rejetion’ compromise from classification.
Instead of predicting the output for the entire input dom#ie regressor is allowed to abstain from
prediction for part of the domain. We present here new tepres for regression with a reject
option, capable of achievingointwise optimalityon substantial parts of the input domain, under
certain conditions.

Section 3 introduces a general strategy for learning seéegressors. This strategy is guaranteed
to achieve:-pointwise optimality (defined in Section 2) all throughiiegyion of action. This result

is proved in Theorem 3.8, which also shows that the guardrdeeerage increases monotonically
with the training sample size and converges to 1. This tygpiafantee is quite strong, as it ensures
tight tracking of individual optimal predictions made I, while covering a substantial portion of
the input domain.

At the outset, the general strategy we propose appears taitbef seach because accept/reject
decisions require the computation of a supremum over a dayy, and possibly infinite hypothesis



subset. In Section 4, however, we show how to compute theegtrdor each point of interest
using only two constrained ERM calculations. This usefduaion, shown in Lemma 4.2, opens
possibilities for efficient implementations of optimal eetive regressors whenever the hypothesis
class of interest allows for efficient (constrained) ERMe(Befinition 4.1).

For the case of linear least squares regression we utilieekhechniques for both ERM and con-
strained ERM and derive in Section 5 exact implementatidneatng pointwise optimal selective
regression. The resulting algorithm is efficient and candsélyimplemented using standard matrix
operations including (pseudo) inversion. Theorem 5.3imghction states a novel pointwise bound
on the difference between the prediction of an ERM linearasgpr and the prediction g for
each individual point. Finally, in Section 6 we present nuoa examples over a suite of real-world
regression datasets demonstrating the effectiveness ahethods, and indicating that substantial
performance improvements can be gained by using seleetiression.

Related work. Utilizations of a reject option are quite common in classificn where this technique

was initiated more than 50 years ago with Chow’s pioneeriogkw2, 3]. However, the reject

option is only scarcely and anecdotally mentioned in thetexdrof regression. In [4] a boosting

algorithm for regression is proposed and a few reject mashenare considered, applied both
on the aggregate decision and/or on the underlying wealessgrs. A straightforward threshold-
based reject mechanism (rejecting low response valuegpised in [5] on top of support vector

regression. This mechanism was found to improve falseipesiites.

The present paper is inspired and draws upon recent resuléglective classification [6, 7, 8],
and can be viewed as a natural continuation of the result8]ofifi particular, we adapt the basic
definitions of selectivity and the general outline of theivkion and strategy presented in [8].

2 Selective regression and other preliminary definitions

We begin with a definition of the following general and stamd@&gression setting. A finite training
sample ofm labeled examplesS,,, = {(z;,y;)}™; C (X x Y)™, is observed, wher&' is some
feature space arid C R. UsingsS,, we are required to select a regresgar F, whereF is a fixed
hypothesis classontaining potential regressors of the fofm X — ). Itis desired that predictions
f(x), for unseen instances will be as accurate as possible. We assume that pairg, including
training instances, are sampled i.i.d. from sammé&nownstochastic source;(zx,y), defined over
X x Y. Given a loss functiory : Y x ) — [0,00), we quantify the prediction quality of any
through itstrue error orrisk, R(f), defined as its expected loss with respedPto

R(f) 2 By {U(f(2),9)} = /ﬁ(f(x)vy)dp(%y)-

While R(f) is an unknown quantity, we do observe grapirical errorof f, defined as

m

Zé(f(xi)ayi)-

i=1

1
a2
R(f) & —
Let f £ arginf s+ R(f) be theempirical risk minimizer (ERM)and f/* £ arginf ;e » R(f), the
true risk minimizer

Next we defineselective regressiounsing the following definitions, which are taken, as is, frima

selective classification setting of [6]. Here again, we avemga training samplé&,,, as above, but
are now required to output selective regressodefined to be a paitf, g), with f € F being a

standard regressor, agd X — {0, 1} is aselection functionwhich is served as qualifier fgt as

follows. For anyz € X,

(o ={ a5t e =y &

Thus, the selective regressor abstains from predictiorpatrg z iff g(x) = 0. The general perfor-
mance of a selective regressor is characterized in termgm§tiantities:coverageandrisk. The
coveragef (f,g) is

o(f,9) £ Ep[g(x)].



The true risk of(f, g) is the risk of f restricted to its region of activity as qualified lgy and
normalized by its coverage,

2 Ep[((f(2),y)  g()
o(f,9) '
We say that the selective regres§frg) is e-pointwise optimaif
vre{reX:glx)=1}, |f(@)-f(@)<e

Note that pointwise optimality is a considerably strongeaperty than risk, which only refers to
average performance.

R(f,g)

We define a (standard) distance metric over the hypothesss €l For any probability measure
on X, let Ly(u) be the Hilbert space of functions froi to R, with the inner product defined as

(f,9) £ By f(2)g(2).
The distance function induced by the inner product is
p(£,9) 2 F =g lI= VT = 9.7 = 9) = \/Bue) (J(2) — g(a))*.
Finally, for anyf € F we define a ball inF of radiusr aroundf,

B(f.r)={f € F:p(f.f)<r}.

3 Pointwise optimality with bounded coverage

In this section we analyze the following strategy for leaga selective regressor, which turns out
to ensuree-pointwise optimality with monotonically increasing caage (withm). We call it a
strategy rather than an algorithm because it is not at ar@dethe outset how to implement it. In
subsequent sections we develop efficient and precise ingplttion for linear regression.

We require the following definition. For any hypothesis sl#5 target hypothesig € F, distribu-
tion P, sampleS,,,, and real- > 0, define,

V(f.r) 2 {f' € F:R(f') <R(f)+r} and V(f,r)2 {f’ef:R(f’) gR(f)—i—r}.
2

Strategy 1A learning strategy foe-pointwise optimal selective regressors
Input: Sy, m, 0, F, €
Output: A selective regressqrf , g) achievinge-pointwise optimality

1: Setf = ERM(F, Sm), i.e., f is any empirical risk minimizer fron

2: SetG =V (f, (o(m,8/4,F)? —1) - R(f)) I* see Definition 3.3 and (2) */
3: Construcy such thay(z) = 1 <=V € G |f'(z) — f(z)| <€

For the sake of brevity, throughout this section we oftertenfiinstead off(z), wheref is any
regressor. The following Lemma 3.1 is based on the proof afiba A.12 in [9].

Lemma 3.1([9]). Foranyf € F. Let{: Y x Y — [0,00) be the squared loss function arfdbe
a convex hypothesis class. Th&h, ,\(f*(z) —y)(f(z) — f*(z)) > 0.

Lemma 3.2. Under the same conditions of Lemma 3.1, for any 0, V(f*,r) C B(f*, /7).

Proof. If f € V(f*,r), then by definition,
R(f) < R(f") +r 3

R(f)=R(f") = E{Uf.y) =0 9)} =B{(/ —p)* = (" =9}
= E{(/— 1 =20 )= 1)} = 02U ) + 2B( =) = ).
Applying Lemma 3.1 and (3) we gei(/, /*) < v/R(/) — R(J") < V7. 0



A

Definition 3.3 (Multiplicative Risk Bounds). Letos = o (m,d, F) be defined such that for any
0 < 0 < 1, with probability of at least — § over the choice of,,, from P™, any hypothesig € F
satisfies

R(f) < R(f)- o (m,5,F).
Similarly, the reverse boundR(f) < R(f) - o (m, F,§), holds under the same conditions.

Remark 3.1. The purpose of Definition 3.3 is to facilitate the use of anyadikn) risk bound as a
plug-in component in subsequent derivations. We defias a multiplicative bound, which is com-
mon in the treatment of unbounded loss functions such agjtrered loss (see discussion by Vapnik
in [10], page 993). Instances of such bounds can be extraetpdfrom [11] (Theorem 1), and from
bounds discussed in [10]. We also developed the entire sefsafts that follow while relying on
additive bounds, which are common when using bounded loggifins. These developments will
be presented in the full version of the paper.

The proof of the following lemma follows closely the proof bémma 5.3 in [8]. However, it
considers a multiplicative risk bound rather than additive

Lemma 3.4. For anyr > 0, and0 < § < 1, with probability of at least — 9,
V() €V (1703 = 1) RUT) 703

Lemma 3.5. Let F be a convex hypothesis spate,) x ) — [0, c0), a convex loss function, and
f be an ERM. Then, with probability of at lealst- §/2, for anyz € X,

(@) = f(a)] < sup |f (@) = f()].
eV (£.(03,,—1)-R(f))

Proof. Applying the multiplicative risk bound, we get that with febility of at leastl — /4,

R(f*) < R(f7) - 06/a-

Since f* minimizes the true errolR(f*) < R(f). Applying the multiplicative risk bound orf,
we know also that with probability of at least- §/4, R(f) < R(f) - 75/4. Combining the three
inequalities by using the union bound we get that with prdiiglof at leastl — §/2,

R < R() - 034 = RO + (030 = 1) - R(P).
Hence, with probability of at leadt— §/2 we getf* € V (f, (03, —1)- R(f)) O
Let G C F. We generalize the concept disagreement sdfl2, 6] to real-valued functions. The
e-disagreement set.r.t. G is defined as
DISE(G)é{.TEXZHfl,fQEG s.t. |f1($)—f2($)| 26}

For anyG C F, distribution P, ande > 0, we defineA .G £ Prp {DIS.(G)} . In the following
definition we extend Hanneke’s disagreement coefficierjttii e case of real-valued functiohs.

Definition 3.6 (e-disagreement coefficient Thee-disagreement coefficient 8f underP is,
6, & sup 2BULT)

T>70 r

(4)

Throughout this paper we seg = 0. Our analyses for arbitrary, > 0 will be presented in the full
version of this paper.

The proof of the following technical statement relies on shene technique used for the proof of
Theorem 5.4 in [8].

10ur attemps to utilize a different known extension of thedieement coefficient [14] were not successful.
Specifically, the coefficient proposed there is unboundethi®squared loss function whéhis unbounded.



Lemma 3.7. Let F be a convex hypothesis class, and assdm@ x Y — [0, co) is the squared
loss function. Let > 0 be given. Assume thé& hase-disagreement coefficiefit. Then, for any
r > 0and0 < ¢ < 1, with probability of at least — ¢,

AV(f,r) < 95\/(0§/2 - 1) “R(f*)+1-05)2.

The following theorem is the main result of this section vsimy that Strategy 1 achievespointwise
optimality with a meaningful coverage that converges.té\lithough R(f*) in the bound (5) is an
unknown quantity, it is still a constant, andaapproaches 1, the coverage lower bound approaches
1 as well. When using a typical additive risk boutit],f *) disappears from the RHS.

Theorem 3.8. Assume the conditions of Lemma 3.7 hold.(lfe) be the selective regressor chosen
by Strategy 1. Then, with probability of at ledst- 9,

2,9 2 1~ 00y (o34~ 1) - (RU) + 50+ R(P) ©

and
Vee{zeX glx)=1} |f(z)— ff(z)] <e

Proof. According to Strategy 1, ifj(x) = 1 thensup, . ./, o f) = fl2)] < e
rev(f.(o2,,-1)-R(H)
Applying Lemma 3.5 we get that, with probability of at ledst /2,
Vee{zeX glx)=1} |f(z)— ff(z)] <e
Sincef € V (f, (03, —1)- R(f)) = G wet get

E{g(X)} =E {H (sup f(z) = f(2)] < 6) }
fea@

1-E {H (sup f(z) — f(=)] > ) }
feG

1 —E{H < sup |[fi(z) — fa(2)] = e)} =1-AG.
f1.f2€G

Applying Lemma 3.7 and the union bound we conclude that wittbability of at least — §,

(f,9)

Y

2(7.9) =Bl (X)) 2 1~ by (03, 1) - (R() + 050- RU)

4 Rejection via constrained ERM

In Strategy 1 we are required to track the supremum of a plgssiinite hypothesis subset, which
in general might be intractable. The following Lemma 4.2ueab the problem of calculating the
supremum to a problem of calculating a constrained ERM fortiypotheses.

Definition 4.1 (constrained ERM). Letx € X ande € R be given. Define,
Jew 2 argmin{R() | f@)=f(@)+c},

feF

wheref(:c) is, as usual, the value of the unconstrained ERM regresspoiit .

Lemma 4.2. Let F be a convex hypothesis space, @ndy x V — [0, o), a convex loss function.
Lete > 0 be given, and letf, g) be a selective regressor chosen by Strategy 1 after obsggtiven

training sampleS,,,. Let f be an ERM. Then,
g(x) =0 g R(fe,m) < R(f) 'U§/4 v R(f—e,w) < R(f) '05/4'



Proof. LetG £ V (f, (03,4 — 1) R(f)), and assume there exigtse G such that f () — f ()| >
e. Assume w.l.0.g. (the other case is symmetric) that) — f(:v) = a > e. SinceF is convex,
f=(-<)-f+<-fer

We thus have,

€

f@)=1-2) f@+f@) = (1<) @) + - (f@) +a) = f@) +e

Therefore, by the definition qf” and using the convexity df together with Jensen'’s inequality,

Rifor) < RO =23 0w = = 300((1- ) e + £ . m)
i=1 =1
< (=9 2 e (fenw) + < LS et

As for the other direction, iR (f. .) < R(f) - a§/4. Thenf,.. € G and

Ffoula) — f(x)‘ —e. O

So far we have discussed the case whei® given, and our objective is to find anpointwise
optimal regressor. Lemma 4.2 provides the means to compatean optimal regressor assuming
that a method to compute a constrained ERM is available (#eisase for squared loss linear
regressors ; see next section). However, as was discus§gld iim many cases our objective is to
explore the entire risk-coverage trade-off, in other wotdget a pointwise bound dii* (x) — f (z)],
i.e., individually for any test point. The following theorem states such a pointwise bound.
Theorem 4.3. Let F be a convex hypothesis clags,) x Y — [0, o), a convex loss function, and

let f be an ERM. Then, with probability of at lealst- 0/2 over the choice of,,, from P™ , for any
T e X,

@) = F@) <swp {lel: Rife) < RU) 024}

eeR

Proof. Definef £ argmax |f(z)— f(x)|. Assume w.l.0.g (the other case is symmetric)
eV (f.(03,,-1-R(H))

that f(x) = f(z) + a. Following Definition 4.1 we gef(f, .) < R(f) < R(f) - 03,,. Define
€ —SupgeR{ f” ) < R(f) 05/4}.We thus have,

sup (@) = fa)|=a<é.
rev(f.e2,~0-R()

An application of Lemma 3.5 completes the proof. O

We conclude this section with a general result on the mornaitgrof the empirical risk attained by
constrained ERM regressors. This property, which will bkzed in the next section, can be easily
proved using a simple application of Jensen’s inequality.

Lemma 4.4(Monotonicity). LetF be a convex hypothesis spaée IVx)Y — [ , a convex
loss function, an@ < ¢; < e, be given. ThenR(f., .,) — R(f) < ( (fenwo) — f ) The
result also holds for the cage> ¢; > ¢o.



5 Selective linear regression

We now restrict attention to linear least squares regragkioSR), and, relying on Theorem 4.3 and
Lemma 4.4, as well as on known closed-form expressions f@R,lwe derive efficient implemen-
tation of Strategy 1 and a new pointwise bound. Kebe anm x d training sample matrix whose
ith row,x; € R?, is a feature vector. Lgt € R™ be a column vector of training labels.

Lemma 5.1 (ordinary least-squares estimate [15] The ordinary least square (OLS) solution of
the following optimization problemning | X 3 — y||?, is given by3 £ (X7 X)* X Ty, where the
sign™ represents the pseudoinverse.

Lemma 5.2(constrained least-squares estimate [15], page 166 et =, be a row vector and a
label. The constrained least-squares (CLS) solution ofdlewing optimization problem

minimize|| X6 —y|l2 st o8 = ¢,
is given by3c(c) £ 34+ (XTX) al (zo(XTX) T2l t (c - xOB) , wherej3 is the OLS solution.

Theorem 5.3. Let F be the class of linear regressors, and febe an ERM. Then, with probability
of at leastl — § over choices o1, for any test point, we have,

|f*(z0) — f(zo)| < ” ||)€K|y| o3, — 1, where K = (X7X)%ag (2o (X" X)2g) "

Proof. According to Lemma 4.4, for squared Ios}é(fg zo) IS Strictly monotomcally increasing for
¢ > 0, and decreasing far < 0. Therefore, the equatiol®(f. .,) = R(f) - 05/4, wheree is the
unknown, has precisely two solutions for any> 1. Denoting these solutions ly, ¢ we get,

sup {Iel : Rlfewa) < R(F) - 034} = max(lea]; ea]).

eeR

Applying Lemma 5.1 and 5.2 and setting= X3 + ¢, we obtain,
1 - N PN PN 1 ~
—|1Xfc (w06 + €) = 1P = R(fewa) = R - 0310 = —IXB =y - o3
Hence,| X5 + X Ke —y|* = | X3~ y[* - 03,4, 50,2(X 3 — y)" X Ke + | XK|*¢* = | X[ ~
ylI* - (03, — 1). We note that by applying Lemma 5.1 X 3 — y)T X, we get,
(Xp-y)TX = (XT(X(XTX)*XTy —y))" = (xTy - XTy)T =0.

| 2

Thereforeg? = IIXKHy . (a§/4 —1). Application of Theorem 4.3 completes the proof. O

6 Numerical examples

Focusing on linear least squares regression, we empyrigadliuated the proposed method. Given a
labeled dataset we randomly extracted two disjoint subadtsining setS,,, and a test sef,,. The
selective regressdarf, g) is computed as follows. The regresgois an ERM overs,,, and for any
coverage valu@, the functiong selects a subset ¢, of sizen - @, including all test points with
lowest value of the bound in Theorem 5.3.

We compare our method relative to the following simple antdired 1-nearest neighbor (NN) tech-
nique for selection. Given the training s&t, and the test sef,,, let NN (x) denote the nearest
neighbor ofz in S,,, with corresponding(z) = /|[NN(z) — z||? distance tar. Thesep(z)
distances, corresponding to alle S,,, were used as alternative method to reject test points in
decreasing order of their(z) values.

We tested the algorithm on 10 of the 14 LIBSVM [16] regressiatasets. From this repository we
took all sets that are not too small and have reasonableréedimensionality. Figure 1 depicts

2\We use here the theorem only for ranking test points, so angtant> 1 can be used instead a§/4.
3Two datasets having less than 200 samples, and two that kiav&®0,000 features were excluded.



results obtained for five different datasets, each witming sample sizen = 30, and test set size

n = 200. The figure includes a matrix @fx 5 graphs. Each column corresponds to a single dataset.
Each of the graphs on the first row shows the average absdftgecedce between the selective
regressof f, g) and the optimal regress@r (taken as an ERM over the entire dataset) as a function
of coverage, where the average is taken over the acceptathées. Our method appears in solid
red line, and the baseline NN method, in dashed black lineh Earve point is an average o\
independent trials (error bars represent standard eritbieahean). It is evident that for all datasets
the average distance monotonically increases with coeeffaigrthermore, in all cases the proposed
method significantly outperforms the NN baseline.
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Figure 1: (top row) absolute difference between the selectgressoff, g) and the optimal re-
gressorf*. (bottom row) test error of selective regreséfyrg). Our proposed method in solid red
line and the baseline method in dashed black line. In allesithiey-axis has logarithmic scale.

Each of the graphs in the second row shows the test error eéthetive regressqr, ¢g) as a function
of coverage. This curve is known as the RC (risk-coverageletoff curve [6]. In this case we see
again that the test error is monotonically increasing witiezage. In four datasets out of the five
we observe a clear domination of the entire RC curve, and endataset the performance of our
method is statistically indistinguishable from that of thi baseline method.

7 Concluding remarks

Rooted in the centuries-old linear least squares methochobS&and Legendre, regression estima-
tion remains an indispensable routine in statistical asiglymodeling and prediction. This paper
proposes a novel rejection technique allowing for a leasasgg regressor, learned from a finite and
possibly small training sample, to pointwise track, witiiselected region of activity, the predic-
tions of the globally optimal regressor in hindsight (frolne tsame class). The resulting algorithm,
which is motivated and derived entirely from the theory,fficeent and practical.

Immediate plausible extensions are the handling of othmsyf regressions including regularized,
and kernel regression, as well as extensions to other cdogexfunctions such as the epsilon-
insensitive loss. The presence of #hdisagreement coefficient in our coverage bound suggests a
possible relation to active learning, since the standargiae of this coefficient has a key role in
characterizing the efficiency of active learning in classifion [17]. Indeed, a formal reduction of
active learning to selective classification was recentiynfy whereby rejected points are precisely
those points to be queried in a stream based active leareitiggs Moreover, “fast” coverage
bounds in selective classification give rise to fast rateaciive learning [7]. Borrowing their in-
tuition to our setting, one could consider devising a quagyfunction for active regression that is
based on the pointwise bound of Theorem 5.3.
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