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Abstract

This paper examines the possibility of a ‘reject option’ in the context of least
squares regression. It is shown that using rejection it is theoretically possible to
learn ‘selective’ regressors that canǫ-pointwise track the best regressor in hind-
sight from the same hypothesis class, while rejecting only abounded portion of
the domain. Moreover, the rejected volume vanishes with thetraining set size,
under certain conditions. We then develop efficient and exact implementation of
these selective regressors for the case of linear regression. Empirical evaluation
over a suite of real-world datasets corroborates the theoretical analysis and indi-
cates that our selective regressors can provide substantial advantage by reducing
estimation error.

1 Introduction

Consider a standard least squares regression problem. Given m input-output training pairs,
(x1, y1), . . . , (xm, ym), we are required to learn a predictor,f̂ ∈ F , capable of generating accurate
output predictions,̂f(x) ∈ R, for any inputx. Assuming that input-output pairs are i.i.d. realiza-
tions of some unknown stochastic source,P (x, y), we would like to choosêf so as to minimize the
standard least squares risk functional,

R(f̂) =

∫

(y − f̂(x))2dP (x, y).

Let f∗ = argminf∈F R(f) be the optimal predictor in hindsight (based on full knowledge ofP ).
A classical result in statistical learning is that under certain structural conditions onF and possibly
onP , one can learn a regressor that approaches the average optimal performance,R(f∗), when the
sample size,m, approaches infinity [1].

In this paper we contemplate the challenge ofpointwisetracking the optimal predictions off∗ after
observing only a finite (and possibly small) set of training samples. It turns out that meeting this
difficult task can be made possible by harnessing the ‘rejectoption’ compromise from classification.
Instead of predicting the output for the entire input domain, the regressor is allowed to abstain from
prediction for part of the domain. We present here new techniques for regression with a reject
option, capable of achievingpointwise optimalityon substantial parts of the input domain, under
certain conditions.

Section 3 introduces a general strategy for learning selective regressors. This strategy is guaranteed
to achieveǫ-pointwise optimality (defined in Section 2) all through itsregion of action. This result
is proved in Theorem 3.8, which also shows that the guaranteed coverage increases monotonically
with the training sample size and converges to 1. This type ofguarantee is quite strong, as it ensures
tight tracking of individual optimal predictions made byf∗, while covering a substantial portion of
the input domain.

At the outset, the general strategy we propose appears to be out of reach because accept/reject
decisions require the computation of a supremum over a a verylarge, and possibly infinite hypothesis
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subset. In Section 4, however, we show how to compute the strategy for each point of interest
using only two constrained ERM calculations. This useful reduction, shown in Lemma 4.2, opens
possibilities for efficient implementations of optimal selective regressors whenever the hypothesis
class of interest allows for efficient (constrained) ERM (see Definition 4.1).

For the case of linear least squares regression we utilize known techniques for both ERM and con-
strained ERM and derive in Section 5 exact implementation achieving pointwise optimal selective
regression. The resulting algorithm is efficient and can be easily implemented using standard matrix
operations including (pseudo) inversion. Theorem 5.3 in this section states a novel pointwise bound
on the difference between the prediction of an ERM linear regressor and the prediction off∗ for
each individual point. Finally, in Section 6 we present numerical examples over a suite of real-world
regression datasets demonstrating the effectiveness of our methods, and indicating that substantial
performance improvements can be gained by using selective regression.

Related work. Utilizations of a reject option are quite common in classification where this technique
was initiated more than 50 years ago with Chow’s pioneering work [2, 3]. However, the reject
option is only scarcely and anecdotally mentioned in the context of regression. In [4] a boosting
algorithm for regression is proposed and a few reject mechanisms are considered, applied both
on the aggregate decision and/or on the underlying weak regressors. A straightforward threshold-
based reject mechanism (rejecting low response values) is applied in [5] on top of support vector
regression. This mechanism was found to improve false positive rates.

The present paper is inspired and draws upon recent results on selective classification [6, 7, 8],
and can be viewed as a natural continuation of the results of [8]. In particular, we adapt the basic
definitions of selectivity and the general outline of the derivation and strategy presented in [8].

2 Selective regression and other preliminary definitions

We begin with a definition of the following general and standard regression setting. A finite training
sample ofm labeled examples,Sm , {(xi, yi)}m

i=1 ⊆ (X × Y)m, is observed, whereX is some
feature space andY ⊆ R. UsingSm we are required to select a regressorf̂ ∈ F , whereF is a fixed
hypothesis classcontaining potential regressors of the formf : X → Y. It is desired that predictions
f̂(x), for unseen instancesx, will be as accurate as possible. We assume that pairs(x, y), including
training instances, are sampled i.i.d. from someunknownstochastic source,P (x, y), defined over
X × Y. Given a loss function,ℓ : Y × Y → [0,∞), we quantify the prediction quality of anyf
through itstrue error or risk, R(f), defined as its expected loss with respect toP ,

R(f) , E(x,y) {ℓ(f(x), y)} =

∫

ℓ(f(x), y)dP (x, y).

While R(f) is an unknown quantity, we do observe theempirical errorof f , defined as

R̂(f) ,
1

m

m
∑

i=1

ℓ(f(xi), yi).

Let f̂ , arg inff∈F R̂(f) be theempirical risk minimizer (ERM), andf∗ , arg inff∈F R(f), the
true risk minimizer.

Next we defineselective regressionusing the following definitions, which are taken, as is, fromthe
selective classification setting of [6]. Here again, we are given a training sampleSm as above, but
are now required to output aselective regressordefined to be a pair(f, g), with f ∈ F being a
standard regressor, andg : X → {0, 1} is aselection function, which is served as qualifier forf as
follows. For anyx ∈ X ,

(f, g)(x) ,

{

reject, if g(x) = 0;
f(x), if g(x) = 1. (1)

Thus, the selective regressor abstains from prediction at apointx iff g(x) = 0. The general perfor-
mance of a selective regressor is characterized in terms of two quantities:coverageandrisk. The
coverageof (f, g) is

Φ(f, g) , EP [g(x)] .
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The true risk of(f, g) is the risk off restricted to its region of activity as qualified byg, and
normalized by its coverage,

R(f, g) ,
EP [ℓ(f(x), y) · g(x)]

Φ(f, g)
.

We say that the selective regressor(f, g) is ǫ-pointwise optimalif

∀x ∈ {x ∈ X : g(x) = 1} , |f(x) − f∗(x)| ≤ ǫ.

Note that pointwise optimality is a considerably stronger property than risk, which only refers to
average performance.

We define a (standard) distance metric over the hypothesis classF . For any probability measureµ
onX , let L2(µ) be the Hilbert space of functions fromX to R, with the inner product defined as

〈f, g〉 , Eµ(x)f(x)g(x).

The distance function induced by the inner product is

ρ(f, g) ,‖ f − g ‖=
√

〈f − g, f − g〉 =

√

Eµ(x) (f(x) − g(x))
2
.

Finally, for anyf ∈ F we define a ball inF of radiusr aroundf ,

B(f, r) , {f ′ ∈ F : ρ(f, f ′) ≤ r} .

3 Pointwise optimality with bounded coverage

In this section we analyze the following strategy for learning a selective regressor, which turns out
to ensureǫ-pointwise optimality with monotonically increasing coverage (withm). We call it a
strategy rather than an algorithm because it is not at all clear at the outset how to implement it. In
subsequent sections we develop efficient and precise implementation for linear regression.

We require the following definition. For any hypothesis classF , target hypothesisf ∈ F , distribu-
tion P , sampleSm, and realr > 0, define,

V(f, r) , {f ′ ∈ F : R(f ′) ≤ R(f) + r} and V̂(f, r) ,

{

f ′ ∈ F : R̂(f ′) ≤ R̂(f) + r
}

.

(2)

Strategy 1A learning strategy forǫ-pointwise optimal selective regressors
Input: Sm, m, δ,F , ǫ

Output: A selective regressor(f̂ , g) achievingǫ-pointwise optimality
1: Setf̂ = ERM(F , Sm), i.e., f̂ is any empirical risk minimizer fromF

2: SetG = V̂
“

f̂ ,
`

σ(m,δ/4,F)2 − 1
´

· R̂(f̂)
”

/* see Definition 3.3 and (2) */

3: Constructg such thatg(x) = 1 ⇐⇒ ∀f ′ ∈ G |f ′(x) − f̂(x)| < ǫ

For the sake of brevity, throughout this section we often write f instead off(x), wheref is any
regressor. The following Lemma 3.1 is based on the proof of Lemma A.12 in [9].

Lemma 3.1([9]). For anyf ∈ F . Letℓ : Y × Y → [0,∞) be the squared loss function andF be
a convex hypothesis class. Then,E(x,y)(f

∗(x) − y)(f(x) − f∗(x)) ≥ 0.

Lemma 3.2. Under the same conditions of Lemma 3.1, for anyr > 0, V(f∗, r) ⊆ B (f∗,
√

r) .

Proof. If f ∈ V(f∗, r), then by definition,

R(f) ≤ R(f∗) + r. (3)

R(f) − R(f∗) = E {ℓ(f, y) − ℓ(f∗, y)} = E
{

(f − y)2 − (f∗ − y)2
}

= E

{

(f − f∗)
2 − 2(y − f∗)(f − f∗)

}

= ρ2(f, f∗) + 2E(f∗ − y)(f − f∗).

Applying Lemma 3.1 and (3) we get,ρ(f, f∗) ≤
√

R(f) − R(f∗) ≤ √
r.
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Definition 3.3 (Multiplicative Risk Bounds ). Let σδ , σ (m, δ,F) be defined such that for any
0 < δ < 1, with probability of at least1 − δ over the choice ofSm fromPm, any hypothesisf ∈ F
satisfies

R(f) ≤ R̂(f) · σ (m, δ,F) .

Similarly, the reverse bound ,̂R(f) ≤ R(f) · σ (m,F , δ), holds under the same conditions.

Remark 3.1. The purpose of Definition 3.3 is to facilitate the use of any (known) risk bound as a
plug-in component in subsequent derivations. We defineσ as a multiplicative bound, which is com-
mon in the treatment of unbounded loss functions such as the squared loss (see discussion by Vapnik
in [10], page 993). Instances of such bounds can be extracted, e.g., from [11] (Theorem 1), and from
bounds discussed in [10]. We also developed the entire set ofresults that follow while relying on
additive bounds, which are common when using bounded loss functions. These developments will
be presented in the full version of the paper.

The proof of the following lemma follows closely the proof ofLemma 5.3 in [8]. However, it
considers a multiplicative risk bound rather than additive.

Lemma 3.4. For anyr > 0, and0 < δ < 1, with probability of at least1 − δ,

V̂(f̂ , r) ⊆ V
(

f∗, (σ2
δ/2 − 1) · R(f∗) + r · σδ/2

)

.

Lemma 3.5. LetF be a convex hypothesis space,ℓ : Y × Y → [0,∞), a convex loss function, and
f̂ be an ERM. Then, with probability of at least1 − δ/2, for anyx ∈ X ,

|f∗(x) − f̂(x)| ≤ sup
f∈V̂

“

f̂ ,(σ2

δ/4
−1)·R̂(f̂)

”

|f(x) − f̂(x)|.

Proof. Applying the multiplicative risk bound, we get that with probability of at least1 − δ/4,

R̂(f∗) ≤ R(f∗) · σδ/4.

Sincef∗ minimizes the true error,R(f∗) ≤ R(f̂). Applying the multiplicative risk bound on̂f ,
we know also that with probability of at least1 − δ/4, R(f̂) ≤ R̂(f̂) · σδ/4. Combining the three
inequalities by using the union bound we get that with probability of at least1 − δ/2,

R̂(f∗) ≤ R̂(f̂) · σ2
δ/4 = R̂(f̂) +

(

σ2
δ/4 − 1

)

· R̂(f̂).

Hence, with probability of at least1 − δ/2 we getf∗ ∈ V̂
(

f̂ , (σ2
δ/4 − 1) · R̂(f̂)

)

Let G ⊆ F . We generalize the concept ofdisagreement set[12, 6] to real-valued functions. The
ǫ-disagreement setw.r.t. G is defined as

DISǫ(G) , {x ∈ X : ∃f1, f2 ∈ G s.t. |f1(x) − f2(x)| ≥ ǫ} .

For anyG ⊆ F , distributionP , andǫ > 0, we define∆ǫG , PrP {DISǫ(G)} . In the following
definition we extend Hanneke’s disagreement coefficient [13] to the case of real-valued functions.1

Definition 3.6 (ǫ-disagreement coefficient). Theǫ-disagreement coefficient ofF underP is,

θǫ , sup
r>r0

∆ǫB(f∗, r)

r
. (4)

Throughout this paper we setr0 = 0. Our analyses for arbitraryr0 > 0 will be presented in the full
version of this paper.

The proof of the following technical statement relies on thesame technique used for the proof of
Theorem 5.4 in [8].

1Our attemps to utilize a different known extension of the disagreement coefficient [14] were not successful.
Specifically, the coefficient proposed there is unbounded for the squared loss function whenY is unbounded.
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Lemma 3.7. LetF be a convex hypothesis class, and assumeℓ : Y × Y → [0,∞) is the squared
loss function. Letǫ > 0 be given. Assume thatF hasǫ-disagreement coefficientθǫ. Then, for any
r > 0 and0 < δ < 1, with probability of at least1 − δ,

∆ǫV̂(f̂ , r) ≤ θǫ

√

(

σ2
δ/2 − 1

)

· R(f∗) + r · σδ/2.

The following theorem is the main result of this section, showing that Strategy 1 achievesǫ-pointwise
optimality with a meaningful coverage that converges to1. AlthoughR(f∗) in the bound (5) is an
unknown quantity, it is still a constant, and asσ approaches 1, the coverage lower bound approaches
1 as well. When using a typical additive risk bound,R(f∗) disappears from the RHS.

Theorem 3.8.Assume the conditions of Lemma 3.7 hold. Let(f, g) be the selective regressor chosen
by Strategy 1. Then, with probability of at least1 − δ,

Φ(f, g) ≥ 1 − θǫ

√

(

σ2
δ/4 − 1

)

·
(

R(f∗) + σδ/4 · R̂(f̂)
)

(5)

and
∀x ∈ {x ∈ X : g(x) = 1} |f(x) − f∗(x)| < ǫ.

Proof. According to Strategy 1, ifg(x) = 1 then sup
f∈V̂(f̂ ,

“

σ2

δ/4
−1

”

·R̂(f̂))
|f(x) − f̂(x)| < ǫ.

Applying Lemma 3.5 we get that, with probability of at least1 − δ/2,

∀x ∈ {x ∈ X : g(x) = 1} |f(x) − f∗(x)| < ǫ.

Sincef̂ ∈ V̂
(

f̂ , (σ2
δ/4 − 1) · R̂(f̂)

)

= G wet get

Φ(f, g) = E{g(X)} = E

{

I

(

sup
f∈G

|f(x) − f̂(x)| < ǫ

)}

= 1 − E

{

I

(

sup
f∈G

|f(x) − f̂(x)| ≥ ǫ

)}

≥ 1 − E

{

I

(

sup
f1,f2∈G

|f1(x) − f2(x)| ≥ ǫ

)}

= 1 − ∆ǫG.

Applying Lemma 3.7 and the union bound we conclude that with probability of at least1 − δ,

Φ(f, g) = E{g(X)} ≥ 1 − θǫ

√

(

σ2
δ/4 − 1

)

·
(

R(f∗) + σδ/4 · R̂(f̂)
)

.

4 Rejection via constrained ERM

In Strategy 1 we are required to track the supremum of a possibly infinite hypothesis subset, which
in general might be intractable. The following Lemma 4.2 reduces the problem of calculating the
supremum to a problem of calculating a constrained ERM for two hypotheses.

Definition 4.1 (constrained ERM). Letx ∈ X andǫ ∈ R be given. Define,

f̂ǫ,x , argmin
f∈F

{

R̂(f) | f(x) = f̂(x) + ǫ
}

,

wheref̂(x) is, as usual, the value of the unconstrained ERM regressor atpointx.

Lemma 4.2. LetF be a convex hypothesis space, andℓ : Y × Y → [0,∞), a convex loss function.
Let ǫ > 0 be given, and let(f, g) be a selective regressor chosen by Strategy 1 after observing the
training sampleSm. Let f̂ be an ERM. Then,

g(x) = 0 ⇔ R̂(f̂ǫ,x) ≤ R̂(f̂) · σ2
δ/4 ∨ R̂(f̂−ǫ,x) ≤ R̂(f̂) · σ2

δ/4.
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Proof. LetG , V̂
(

f̂ , (σ2
δ/4 − 1) · R̂(f̂)

)

, and assume there existsf ∈ G such that|f(x)−f̂(x)| ≥
ǫ. Assume w.l.o.g. (the other case is symmetric) thatf(x) − f̂(x) = a ≥ ǫ. SinceF is convex,

f ′ =
(

1 − ǫ

a

)

· f̂ +
ǫ

a
· f ∈ F .

We thus have,

f ′(x) =
(

1 − ǫ

a

)

· f̂(x) +
ǫ

a
· f(x) =

(

1 − ǫ

a

)

· f̂(x) +
ǫ

a
·
(

f̂(x) + a
)

= f̂(x) + ǫ.

Therefore, by the definition of̂fǫ,x, and using the convexity ofℓ, together with Jensen’s inequality,

R̂(f̂ǫ,x) ≤ R̂(f ′) =
1

m

m
∑

i=1

ℓ(f ′(xi), yi) =
1

m

m
∑

i=1

ℓ
((

1 − ǫ

a

)

· f̂(xi) +
ǫ

a
· f(xi), yi

)

≤
(

1 − ǫ

a

)

· 1

m

m
∑

i=1

ℓ
(

f̂(xi), yi

)

+
ǫ

a
· 1

m

m
∑

i=1

ℓ (f(xi), yi)

=
(

1 − ǫ

a

)

· R̂(f̂) +
ǫ

a
· R̂(f) ≤

(

1 − ǫ

a

)

· R̂(f̂) +
ǫ

a
·
(

R̂(f̂) · σ2
δ/4

)

= R̂(f̂) +
ǫ

a
·
(

σ2
δ/4 − 1

)

· R̂(f̂) ≤ R̂(f̂) · σ2
δ/4.

As for the other direction, if̂R(f̂ǫ,x) ≤ R̂(f̂) · σ2
δ/4. Thenf̂ǫ,x ∈ G and

∣

∣

∣
f̂ǫ,x(x) − f̂(x)

∣

∣

∣
= ǫ.

So far we have discussed the case whereǫ is given, and our objective is to find anǫ-pointwise
optimal regressor. Lemma 4.2 provides the means to compute such an optimal regressor assuming
that a method to compute a constrained ERM is available (as isthe case for squared loss linear
regressors ; see next section). However, as was discussed in[6], in many cases our objective is to
explore the entire risk-coverage trade-off, in other words, to get a pointwise bound on|f∗(x)−f(x)|,
i.e., individually for any test pointx. The following theorem states such a pointwise bound.

Theorem 4.3. LetF be a convex hypothesis class,ℓ : Y ×Y → [0,∞), a convex loss function, and
let f̂ be an ERM. Then, with probability of at least1− δ/2 over the choice ofSm fromPm , for any
x ∈ X ,

|f∗(x) − f̂(x)| ≤ sup
ǫ∈R

{

|ǫ| : R̂(f̂ǫ,x) ≤ R̂(f̂) · σ2
δ/4

}

.

Proof. Definef̃ , argmax
f∈V̂

“

f̂ ,(σ2

δ/4
−1)·R̂(f̂)

”

|f(x)− f̂(x)|. Assume w.l.o.g (the other case is symmetric)

that f̃(x) = f̂(x) + a. Following Definition 4.1 we get̂R(f̂a,x) ≤ R̂(f̃) ≤ R̂(f̂) · σ2
δ/4. Define

ǫ′ = supǫ∈R

{

|ǫ| : R̂(f̂ǫ,x) ≤ R̂(f̂) · σ2
δ/4

}

. We thus have,

sup
f∈V̂

“

f̂ ,(σ2

δ/4
−1)·R̂(f̂)

”

|f(x) − f̂(x)| = a ≤ ǫ′.

An application of Lemma 3.5 completes the proof.

We conclude this section with a general result on the monotonicity of the empirical risk attained by
constrained ERM regressors. This property, which will be utilized in the next section, can be easily
proved using a simple application of Jensen’s inequality.

Lemma 4.4(Monotonicity ). LetF be a convex hypothesis space,ℓ : Y × Y → [0,∞), a convex

loss function, and0 ≤ ǫ1 < ǫ2, be given. Then,̂R(fǫ1,x0
) − R̂(f̂) ≤ ǫ1

ǫ2

(

R̂(f̂ǫ2,x0
) − R̂(f̂)

)

. The

result also holds for the case0 ≥ ǫ1 > ǫ2.
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5 Selective linear regression

We now restrict attention to linear least squares regression (LLSR), and, relying on Theorem 4.3 and
Lemma 4.4, as well as on known closed-form expressions for LLSR, we derive efficient implemen-
tation of Strategy 1 and a new pointwise bound. LetX be anm × d training sample matrix whose
ith row,xi ∈ R

d, is a feature vector. Lety ∈ R
m be a column vector of training labels.

Lemma 5.1(ordinary least-squares estimate [15]). The ordinary least square (OLS) solution of
the following optimization problem,minβ ‖Xβ − y‖2, is given byβ̂ , (XT X)+XTy, where the
sign+ represents the pseudoinverse.

Lemma 5.2(constrained least-squares estimate [15], page 166). Let x0 be a row vector andc a
label. The constrained least-squares (CLS) solution of thefollowing optimization problem

minimize‖Xβ − y‖2 s.t x0β = c,

is given byβ̂C(c) , β̂ + (XT X)+xT
0 (x0(X

T X)+xT
0 )+

(

c − x0β̂
)

, whereβ̂ is the OLS solution.

Theorem 5.3. LetF be the class of linear regressors, and letf̂ be an ERM. Then, with probability
of at least1 − δ over choices onSm, for any test pointx0 we have,

|f∗(x0) − f̂(x0)| ≤
‖Xβ̂ − y‖
‖XK‖

√

σ2
δ/4 − 1, where K = (XT X)+xT

0 (x0(X
T X)+xT

0 )+.

Proof. According to Lemma 4.4, for squared loss,R̂(f̂ǫ,x0
) is strictly monotonically increasing for

ǫ > 0, and decreasing forǫ < 0. Therefore, the equation,̂R(f̂ǫ,x0
) = R̂(f̂) · σ2

δ/4, whereǫ is the
unknown, has precisely two solutions for anyσ > 1. Denoting these solutions byǫ1, ǫ2 we get,

sup
ǫ∈R

{

|ǫ| : R̂(f̂ǫ,x0
) ≤ R̂(f̂) · σ2

δ/4

}

= max(|ǫ1|, |ǫ2|).

Applying Lemma 5.1 and 5.2 and settingc = X0β̂ + ǫ, we obtain,

1

m
‖Xβ̂C

(

x0β̂ + ǫ
)

− y‖2 = R̂(f̂ǫ,x0
) = R̂(f̂) · σ2

δ/4 =
1

m
‖Xβ̂ − y‖2 · σ2

δ/4.

Hence,‖Xβ̂ + XKǫ − y‖2 = ‖Xβ̂ − y‖2 · σ2
δ/4, so,2(Xβ̂ − y)T XKǫ + ‖XK‖2ǫ2 = ‖Xβ̂ −

y‖2 · (σ2
δ/4 − 1). We note that by applying Lemma 5.1 on(Xβ̂ − y)T X , we get,

(Xβ̂ − y)T X =
(

XT
(

X(XT X)+XTy − y
))T

= (XTy − XTy)T = 0.

Therefore,ǫ2 = ‖Xβ̂−y‖2

‖XK‖2 · (σ2
δ/4 − 1). Application of Theorem 4.3 completes the proof.

6 Numerical examples

Focusing on linear least squares regression, we empirically evaluated the proposed method. Given a
labeled dataset we randomly extracted two disjoint subsets: a training setSm, and a test setSn. The
selective regressor(f, g) is computed as follows. The regressorf is an ERM overSm, and for any
coverage valueΦ, the functiong selects a subset ofSn of sizen · Φ, including all test points with
lowest value of the bound in Theorem 5.3.2

We compare our method relative to the following simple and natural 1-nearest neighbor (NN) tech-
nique for selection. Given the training setSm and the test setSn, let NN(x) denote the nearest
neighbor ofx in Sm, with correspondingρ(x) ,

√

‖NN(x) − x‖2 distance tox. Theseρ(x)
distances, corresponding to allx ∈ Sn, were used as alternative method to reject test points in
decreasing order of theirρ(x) values.

We tested the algorithm on 10 of the 14 LIBSVM [16] regressiondatasets. From this repository we
took all sets that are not too small and have reasonable feature dimensionality.3 Figure 1 depicts

2We use here the theorem only for ranking test points, so any constant> 1 can be used instead ofσ2

δ/4
.

3Two datasets having less than 200 samples, and two that have over 150,000 features were excluded.
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results obtained for five different datasets, each with training sample sizem = 30, and test set size
n = 200. The figure includes a matrix of2×5 graphs. Each column corresponds to a single dataset.
Each of the graphs on the first row shows the average absolute difference between the selective
regressor(f, g) and the optimal regressorf∗ (taken as an ERM over the entire dataset) as a function
of coverage, where the average is taken over the accepted instances. Our method appears in solid
red line, and the baseline NN method, in dashed black line. Each curve point is an average over200
independent trials (error bars represent standard error ofthe mean). It is evident that for all datasets
the average distance monotonically increases with coverage. Furthermore, in all cases the proposed
method significantly outperforms the NN baseline.
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Figure 1: (top row) absolute difference between the selective regressor(f, g) and the optimal re-
gressorf∗. (bottom row) test error of selective regressor(f, g). Our proposed method in solid red
line and the baseline method in dashed black line. In all curves they-axis has logarithmic scale.

Each of the graphs in the second row shows the test error of theselective regressor(f, g) as a function
of coverage. This curve is known as the RC (risk-coverage) trade-off curve [6]. In this case we see
again that the test error is monotonically increasing with coverage. In four datasets out of the five
we observe a clear domination of the entire RC curve, and in one dataset the performance of our
method is statistically indistinguishable from that of theNN baseline method.

7 Concluding remarks

Rooted in the centuries-old linear least squares method of Gauss and Legendre, regression estima-
tion remains an indispensable routine in statistical analysis, modeling and prediction. This paper
proposes a novel rejection technique allowing for a least squares regressor, learned from a finite and
possibly small training sample, to pointwise track, withinits selected region of activity, the predic-
tions of the globally optimal regressor in hindsight (from the same class). The resulting algorithm,
which is motivated and derived entirely from the theory, is efficient and practical.

Immediate plausible extensions are the handling of other types of regressions including regularized,
and kernel regression, as well as extensions to other convexloss functions such as the epsilon-
insensitive loss. The presence of theǫ-disagreement coefficient in our coverage bound suggests a
possible relation to active learning, since the standard version of this coefficient has a key role in
characterizing the efficiency of active learning in classification [17]. Indeed, a formal reduction of
active learning to selective classification was recently found, whereby rejected points are precisely
those points to be queried in a stream based active learning setting. Moreover, “fast” coverage
bounds in selective classification give rise to fast rates inactive learning [7]. Borrowing their in-
tuition to our setting, one could consider devising a querying function for active regression that is
based on the pointwise bound of Theorem 5.3.
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