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1 Derivation of Moment Conversion for Poisson LDS Model

Here we compute the mean and covariance matrix of z± from those of y± under the PLDS model. We introduce
the following notation:

µ := E[z±]

Σ := Cov[z±]

m := E[y±]

S := Cov[y±].

Slightly overloading the notation, we denote the elements of z± and y± by zi and yi respectively for i =
1, . . . , 2kq. The observation model can then be written as:

yi | zi ∼ Poisson[exp(zi)].

For a ∈ {0, 1}2kq we derive the following expected value, using the fact that all y1, . . . , y2kq are independent
given z±:
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where E[·|z±] denotes the expectation conditioned on z±. The last step of this derivation involves the Gaussian
expected value over the exponential exp(a>z±), which is given in eqn. (8) in the Appendix. From this result
we can immediately read off the first and the “off-diagonal” second moments of y±:
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(1)
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1



Solving the last eqn. (2) for Σij yields eqn. (8) of the main paper [1].
Now we calculate the “diagonal” second moments:

E[y2i ] = Sii +m2
i = E[E[y2i |zi]] = E[Var(yi|zi) + E[yi|zi]2]

= E[exp(zi) + exp(2zi)]

= mi + exp (2Σii + 2µi)

= mi + exp (Σii)m
2
i , (3)

where we used eqn. (8) from the Appendix to compute E[exp(2zi)] and we used eqn. (1) in the last step. Solving
the eqn. (3) for Σii yields eqn. (7) of the main paper [1]. Plugging the latter into eqn. (1) yields eqn. (6) of the
main paper [1].

As an aside, we can write down the covariance Σ in the following more compact way:

Σ = log
(
S + mm> − diag(m)

)
− log

(
mm>

)
, (4)

where diag(m) is the diagonal matrix with m1, . . . ,m2kq on the diagonal.

2 Details to PLDSID with External Inputs

2.1 Moment Conversion

We assume that the external input u is a Gaussian process. Then u±, z± are jointly normal and we redefine µ
and Σ to be their mean and joint covariance matrix respectively:

xt :=
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z±t

)
=
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(5)
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)
.

We again omit the time dependence of expected values because of stationarity. The lower right block Σzz can
be estimated from the data as described in eqn. (4) of the previous section, and Σuu can be directly estimated
as the empirical covariance of the input u±. We can derive the remaining block Σuz = Σzu> in the following
way. We compute the expectation E[yiuj ] using this result given in eqn. (7) in the Appendix:
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Solving this equation for Σuz
ji results in:

Σuz
ji =

Cov[yi, uj ]

mi
. (6)

Using eqn. (6) and (4) as well as eqn. (6) of the main paper, we can estimate µ and Σ from the data.
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2.2 Subspace Identification

For subspace identification of driven PLDS models we use the “robust N4SID” algorithm summarized in Fig.
6.1 on p. 169 of [2]. To this end, we define the vector wt in the following way:

wt :=



ut−k
...
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zt−k
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
.

Here we assumed that zt and ut have mean zero, which can be achieved simply by subtracting their means µz

and µu. Note that wt is given by permuting the rows of xt as can be seen from the definition given in eqn. (5).
In the original N4SID algorithm it is assumed that we are given observations w1, . . . ,wj which are concatenated
into a matrix W (where j is the length of the observed time series):

W := j−1/2
(
w1 · · · wj

)
.

The N4SID algorithm proceeds by decomposing W with an RQ-decomposition W = RQ>, where R is a
(2k(r + q))× (2k(r + q)) lower triangular matrix and Q is a j × (2k(r + q)) matrix with orthonormal columns.
In [2] it is shown, that the parameter identification step in the N4SID algorithm only depends on R, and not
on Q.

In our setting however, we do not have access to the time series w1, . . . ,wj directly. The moment conversion
yields only joint moments µ and Σ of x = ((u±)>, (z±)>)>. However, by permuting rows and columns of
Σ we can get an estimate of the covariance Σ̃ of wt, as wt is just a permutation of x. Furthermore, it is
straightforward to show that for infinitely many training examples j → ∞, R equals the transposed Cholesky
factor of the covariance matrix Σ̃ of wt:

Σ̃ := Cov[



ut−k
...

ut+k−1
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...
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
] = Cov[wt]

Σ̃ = RR>.

Hence, the following procedure yields consistent estimates for parameters of PLDS models driven by Gaussian
inputs u±:

1. Moment conversion: Compute the joint moments µ and Σ of u±, z± from the joint moments of u±,y±

2. Rearrange entries of Σ to obtain an estimate of the covariance matrix Σ̃ of w

3. Cholesky decomposition of Σ̃ = RR>, where R is lower-triangular

4. Apply standard N4SID algorithm to R
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Appendix

Let x be n-dimensional random variable, which is normally distributed with mean µ and covariance matrix Σ:

x ∼ N (µ,Σ).
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We state the following expected value, where f(x) is a scalar function of x and a ∈ Rn:

E[exp(a>x)f(x)] =

∫
exp(a>x)f(x)dN (x|µ,Σ)

= exp

(
1

2
a>Σa + a>µ

)∫
f(x′)dN (x′|µ + Σa,Σ). (7)

In particular, we obtain for f(x) = 1:

E[exp(a>x)] = exp

(
1

2
a>Σa + a>µ

)
. (8)
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