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Abstract

We study the problem of maximum marginal prediction (MMP) in probabilistic
graphical models, a task that occurs, for example, as the Bayes optimal decision
rule under a Hamming loss. MMP is typically performed as a two-stage proce-
dure: one estimates each variable’s marginal probability and then forms a predic-
tion from the states of maximal probability.
In this work we propose a simple yet effective technique for accelerating MMP
when inference is sampling-based: instead of the above two-stage procedure we
directly estimate the posterior probability of each decision variable. This allows us
to identify the point of time when we are sufficiently certain about any individual
decision. Whenever this is the case, we dynamically prune the variables we are
confident about from the underlying factor graph. Consequently, at any time only
samples of variables whose decision is still uncertain need to be created.
Experiments in two prototypical scenarios, multi-label classification and image
inpainting, show that adaptive sampling can drastically accelerate MMP without
sacrificing prediction accuracy.

1 Introduction
Probabilistic graphical models (PGMs) have become useful tools for classical machine learning
tasks, such as multi-label classification [1] or semi-supervised learning [2], as well for many real-
world applications, for example image processing [3], natural language processing [4], bioinfor-
matics [5], and computational neuroscience [6]. Despite their popularity, the question of how to
best perform (approximate) inference in any given graphical models is still far from solved. While
variational approximations and related message passing algorithms have been proven useful for cer-
tain classes of models (see [7] for an overview), there is still a large number of cases for which
sampling-based approaches are the safest choice. Unfortunately, inference by sampling is often
computationally costly: many samples are required to reach a confident result, and generating the
individual samples can be a complex task in itself, in particular if the underlying graphical model is
large and highly connected.

In this work we study a particular inference problem: maximum marginal prediction (MMP) in
binary-valued PGMs, i.e. the task of determining for each variable in the graphical model which of
its states has highest marginal probability. MMP occurs naturally as the Bayes optimal decision rule
under Hamming loss [8], and it has also found use as a building block for more complex prediction
tasks, such as M -best MAP prediction [9]. The standard approach to sampling-based MMP is
to estimate each variable’s marginal probability distribution from a set of samples from the joint
probability, and for each variable pick the state of highest estimated marginal probability. In this
work, we propose an almost as simple, but more efficient way. We introduce one binary indicator
variable for each decision we need to make, and keep estimates of the posterior probabilities of
each of these during the process of sampling. As soon as we are confident enough about any of

1



the decisions, we remove it from the factor graph that underlies the sampling process, so no more
samples are generated for it. Consequently, the factor graph shrinks over time, and later steps in the
sampling procedure are accelerated, often drastically so.

Our main contribution lies in the combination of two relatively elementary components that we
will introduce in the following section: an estimate for the posterior distributions of the decision
variables, and a mean field-like construction for removing individual variables from a factor graph.

2 Adaptive Sampling for Maximum Marginal Prediction

Let p(x) be a fixed probability distribution over the set X = {0, 1}V of binary labelings of a vertex
set V = {1, . . . , n}. We assume that p is given to us by means of a factor graph, G = (V,F), with
factor set F = {F1 . . . , Fk}. Each factor, Fj ⊂ V , has an associated log-potential, ψj , which is a
real-valued function of only the variables occurring in Fj . Writing xFj

= (xi)i∈Fj
we have

p(x) ∝ exp
(
− E(x)

)
with E(x) =

∑
F∈F

ψF (xF ). (1)

for any x ∈ {0, 1}V . Our goal is maximum marginal prediction, i.e. to infer the values of decision
variables (zi)i∈V that are defined by zi := 0 if µi ≤ 0.5, and zi := 1 otherwise, where µi := p(xi =
1) is the marginal probability of the ith variable taking the value 1. Computing the marginals µi in a
loopy graphical model is in general #P-complete [10], so one has to settle for approximate marginals
and approximate predictions. In this work, we assume access to a suitable constructed sampler
based on the Markov chain Monte Carlo (MCMC) principle [11, 12], e.g. a Gibbs sampler [3] It
produces a chain of states Sm = {x(1), . . . , x(N)}, where each x(i) is a random sample from the
joint distribution p(x). From the set of sample we can compute an estimate, µ̂i = 1

m

∑m
j=1 x

(j)
i of

the true marginal, µi, and make approximate decisions: ẑi := 1 if and only if µ̂i ≥ 0.5. Under mild
conditions on the sampling procedure the law of large number guarantees that limN→∞ µ̂i = µi,
and the decisions will become correct almost surely.

The main problem with sampling-based inference is when to stop sampling [13]. The more samples
we have, the lower the variance on the estimates, so the more confident we can be about our deci-
sions. However, each sample we generate increases the computational cost at least proportionally to
the numbers of factors and variables involved. At the same time, the variance of the estimators µ̂i
is reduced only proportionally to the square root of the sample size. In combination, this means that
often, one spends a large amount of computational resources on a small win in predictive accuracy.

In the rest of this section, we explain our proposed idea of adaptive sampling in graphical models,
which reduces the number of variables and factors during the course of the sampling procedure.
As an illustrative example we start by the classical situation of adaptive sampling in the case of a
single binary variable. This is a special case of Bayesian hypothesis selection, and –for the case of
i.i.d. data– has recently also been rediscovered in the pattern recognition literature, for example for
evaluating decision trees [14]. We then introduce our proposed extensions to correlated samples, and
show how the per-variable decisions can be applied in the graphical model situation with potentially
many variables and dependencies between them.

2.1 Adaptive Sampling of Binary Variables

Let x be a single binary variable, for which we have a set of samples, S = {x(1), . . . , x(N)},
available. The main insight lies in the fact that even though samples are used to empirically estimate
the (marginal) probability µ, the latter is not the actual quantity of interest to us. Ultimately, we are
only interested in the value of the associated decision variable z.

Independent samples. Assuming for the moment that the samples are independent (i.i.d.), we can
derive an analytic expression for the posterior probability of z given the observed samples,

p(z = 0|S) =

∫ 1
2

0

p(q|S)dq (2)
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where p(q|S) is the conditional probability density for µ having the value q. Applying Bayes’ rule
with likelihood p(x|q) = qx(1− q)1−x and uniform prior, p(q) = 1, results in

=
1

B(m+ 1, N−m+1)

∫ 1
2

0

qm(1−q)N−m dq = I 1
2
(m+1, N−m+1), (3)

where m =
∑N
j=1 x

(j). The normalization factor B(α, β) = Γ(α)Γ(β)
Γ(α+β) is the beta function; the

integral is called the incomplete beta function (here evaluated at 1
2 ). In combination, they form the

regularized incomplete beta function Ix(α, β) [15].

From the above derivation we obtain a stopping criterion of ε-confidence: given any number of
samples we compute p(z = 0|S) using Equation (3). If its value is above 1− ε, we are ε-confident
that the correct decision is z = 0. If it is below ε, we are equally confident that the correct decision
is z = 1. Only if it lies inbetween we need to continue sampling. An analogue derivation to the
above leads to a confidence bound for estimates of the marginal probability, µ̂ = m/N , itself:

p(|µ̂− µ| ≤ δ|S) = Iµ̂+δ(m+1, N−m+1)− Iµ̂−δ(m+1, N−m+1). (4)

Note that both tests are computable fast enough to be done after each sample, or small batches of
samples. Evaluating the regularized incomplete beta function does not require numeric integration,
and for fixed parameter ε the values N and m that bound the regions of confidence can also be
tabulated [16]. A figure illustrating the difference between confidence in the MMP, and confidence
in the estimated marginals can be found in the supplemental material. It shows that only relatively
few independent samples (tens to hundreds) are sufficient to get a very confident MMP decision,
if the actual marginals are close to 0 or 1. Intuitively, this makes sense, since in this situation a
even coarse estimate of the marginal is sufficient to make of a decision with low error probability.
Only if the true marginal lies inside of a relatively narrow interval around 0.5, the MMP decision
becomes hard, and a large number of samples will be necessary to make a confident decision. Our
experiments in Section 4 will show that in practical problem where the probability distribution is
learned from data, the regions close to 0 and 1 are in fact the most relevant ones.

Dependent samples. Practical sampling procedures, such as MCMC, do not create i.i.d. samples,
but dependent ones. Using the above bounds directly with these would make the tests overconfident.
We overcome this problem, approximately, by borrowing the concept of effective sample size (ESS)
from the statistics literature. Intuitively, the ESS reflects how many independent samples,N ′, a set of
N correlated sample is equivalent to. In first order 1, one estimates the effective sample size asN ′ =
1−r
1+rN , where r is the first order autocorrelation coefficient, r = 1

N−1

∑N−1
j=1

(x(j)−µ̂)(x(j+1)−µ̂)
σ2 , and

σ2 is the estimated variance of the sample sequence. Consequently, we can adjust the confidence
tests defined above to correlated data: we first collecting a small number of samples, N0, which we
use to estimate initial values of σ2 and r. Subsequently, we estimate the confidence of a decision by

p(z = 0|S) = I 1
2
(µ̂N ′ + 1, (1− µ̂)N ′ + 1), (5)

i.e. we replace the sample sizeN by the effective sample sizeN ′ and the raw countm by its adjusted
value µ̂N ′.

2.2 Adaptive Sampling in Graphical Models

In this section we extend the above confidence criterion from single binary decisions to the situation
of joint sampling from the joint probability of multiple binary variables. Note that we are only inter-
ested in per-variable decisions, so we can treat the value of each variable x(j)

i in a joint sample x(j) as
a separate sample from the marginal probability p(xi). We will have to take the dependence between
different samples x(j)

i and x(k)
i into account, but between variable dependencies within a sample do

not pose problems. Consequently, estimate the confidence of any decision variable zi is straight
forward from Equation (5), applied separately to the binary sample set Si = {x(1)

i , . . . , x
(N)
i }. Note

that all quantities defined above for the single variable case need to be computed separately for each
decision. For example, each variable has its own autocorrelation estimate and effective sample size.

1Many more involved methods for estimating the effective sample size exist, see, for example, [17], but in
our experiments the first-order method proved sufficient for our purposes.
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The difference to the binary situation lies in what we do when we are confident enough about the
decision of some subset of variables, V c ⊂ V . Simply stopping all sampling would be too risky,
since we are still uncertain about the decisions of V u := V \ V c. Continuing to sample until we are
certain about all decision will be wasteful, since we know that variables with marginal close to 0.5
require many more samples than others for a confident decision. We therefore propose to continue
sampling, but only for the variables about which we are still uncertain. This requires us to derive an
expression for p(xu), the marginal probability of all variables that we are still uncertain about.

Computing p(xu) =
∑
x̄c∈{0,1}V c p(x̄c, xu) exactly is almost always infeasible, otherwise, we

would not have needed to resort to sampling based inference in the first place. An alternative idea
would be to continue using the original factor graph, but to clamp all variables we are certain about
to their MMP values. This is computationally feasible, but it results in samples from a conditional
distribution, p(xu|xc = zc), not from the desired marginal one. The new construction that we in-
troduce combines advantages of both previous ideas: it is computationally as efficient as the value
clamping, but it uses a distribution that approximates the marginal distribution as closely as possible.
Similar as in mean-field methods [7], the main step consists of finding distributions q and q′ such
that p(x) ≈ q(xu)q′(xc). Subsequently, q(xu) can be used as approximate replacement to p(xu),
because p(xu) =

∑
x̄c∈{0,1}V c p(x) ≈

∑
x̄c∈{0,1}V c q′(x̄c)q(xu) = q(xu). The main difference to

mean-field inference lies in the fact that q and q′ have different role in our construction. For q′ we
prefer a distribution that factorizes over the variables that we are confident about. Because we want
q also to respect the marginal probabilities, µ̂i for i ∈ V c, as estimated them from the sampling
process so far, we obtain q′(xc) =

∏
i∈V c µ̂

xi
i (1 − µ̂i)xi . The distribution q contain all variables

that we are not yet confident about, so we want to avoid making any limiting assumptions about its
potential values or structure. Instead, we define it as the solution of minimizing KL(p|qq′) over all
distributions q, which yields the solution

q(xu) ∝ exp( −Ex̄c∼q′(xc){E(x̄c, xu)} ). (6)

What remains is to define factors F ′ and log-potentials ψ′, such that q(xu) ∝ exp
(
−∑

F∈F ′ ψ′F (xF )
)

while also allowing for efficient sampling from q. For this we partition the orig-
inal factor set into three disjoint sets, F = Fc ∪ Fu ∪ F0, with Fc := {F ⊂ F : F ⊂ V c},
Fu := {F ⊂ F : F ⊂ V u}, and F0 := F \ (Fc ∪ Fu). Each factor F0 ∈ F0 we split further into
its certain and uncertain components, F c0 ⊂ V c and Fu0 ⊂ V u, respectively.

With this we obtain a decomposition of the exponent in Equation (6):

Ex̄c∼q′{E(x̄c, xu)} =
∑

F c∈Fc

∑
x̄Fc

q′(x̄c)ψF c(xF c) +
∑

Fu∈Fu

ψFu(xFu)+
∑
F0∈F0

∑
x̄Fc

0

q′(x̄F c
0
)ψF (x̄F c

0
, xFu

0
)

The first sum is a constant with respect to xu, so we can disregard it in the construction of F ′. The
factors and log-potentials in the second sum already depend only on V u, so we can re-use them
in unmodified form for F ′, we set ψ′F = ψF for every F ∈ Fu. The third sum we rewrite as∑
{Fu=F∩V u:F∈F0} ψ

′
Fu(xFu), with

ψ′Fu(xu) :=
∑

x̄c∈{0,1}Fc

[ ∏
i∈Fc

µ̂x̄i
i (1− µ̂i)1−x̄i

]
ψF (x̄c, xu). (7)

for any F ∈ F0, where we have made use of the explicit form of q̄. If factors with identical variable
set occur during this construction, we merge them by summing their log-potentials. Ultimately, we
obtain a new factor set F ′ := Fu ∪ {F ∩ V u : F ∈ F0}, and probability distribution

q(xu) ∝ exp
( ∑
F∈F ′

ψ′F (xF )
)

for xu ∈ {0, 1}V
u

. (8)

Note that during the process, not only the number of variables is reduced, but also the number of
factors and the size of each factor can never grow. Consequently, if sampling was feasible for the
original distribution p, it will also be feasible for q, and potentially more efficient.

3 Related Work
Sequential sampling with the option of early stopping has a long tradition in Bayesian statistics. First
introduced by Wald in 1945 [18], the ability to continuously accumulate information until a decision
can be made with sufficient confidence was one of the key factors that contributed to the success of
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Bayesian reasoning for decision making. Today, it has been a standard technique in areas as diverse
as clinical medicine (e.g. for early stop of drug trials [19]), social sciences (e.g. for designing and
evaluating experiments [20]), and economics (e.g. in modelling stock market behavior [21]).

In current machine learning research, sequential sampling is used less frequently for making indi-
vidual decisions, but in the form of MCMC it has become one of the most successful techniques for
statistical inference of probability distributions with many dependent variables [12, 22]. Neverthe-
less, to the best of our knowledge, the method we propose is the first one that performs early stopping
of subsets of variables in this context. Many other approaches to reduce the complexity of sampling
iterations exist, however, for example to approximate complex graphical models by simpler ones,
such as trees [23], or loopy models of low treewidth [24]. These fall into a different category than the
proposed method, though, as they are usually performed statically and prior to the actual inference
step, so they cannot dynamically assign computational resources where they are needed most. Beam
search [25] and related techniques take an orthogonal approach to ours. They dynamically exclude
low-likelihood label combinations from the inference process, but they keep the size and topology of
the factor graph fixed. Select and sample [26] disregards a data-dependent subset of variables dur-
ing each sampling iterations. It is not directly applicable in our situation, though, since it requires
that the underlying graphical model is bipartite, such that the individual variables are conditionally
independent of each other. Given their complementary nature, we believe that the idea of combining
adaptive MMP with beam search and/or select and sample could be a promising direction for future
work.

4 Experimental Evaluation
To demonstrate the effect of adaptive MMP compared to naive MMP, we performed experiments in
two prototypical applications: multi-label classification and binary image inpainting. In both tasks,
performance is typically measured by the Hamming loss, so MMP is the preferred method of test
time prediction.

4.1 Multi-Label Classification

In multi-label classification, the task is to predict for each input y ∈ Y , which labels out of a label
set L = {1, . . . ,K} are correct. The difference to multi-class classification is that several labels can
be correct simultaneously, or potentially none at all. Multi-label classification can be formulated
as simultaneous prediction of K binary labels (xi)i=1,...K , where xi = 1 indicates that the label i
is part of the prediction, and xi = 0 indicates that it is not. Even though multi-label classification
can in principle be solved by training K independent predictors, several studies have shown that
by making use of dependencies between label, the accuracy of the individual predictions can be
improved [1, 27, 28].

For our experiments we follow [1] in using a fully-connected conditional random field model.
Given an input y, each label variable i has a unary factor Fi = {i} with log-linear potential
ψi(xi) = 〈wi, y〉xi, where wi is a label-specific weight vector that was learned from training
data. Additionally there are K(K − 1)/2 pairwise factors, Fij = {i, j}, with log-potentials
ψij(xi, xj) = ηijxixj . Its free parameter ηij is learned as well. The resulting conditional joint
distribution has the form of a Boltzmann machine, p(x|y) ∝ exp(−Ey(x)), with energy function
Ey(x) =

∑K
i=1 ηixi +

∑L
i=1

∑L
j=i+1 ηijxixj in minimal representation, where ηi and ηij depend

on y. We downloaded several standard datasets and trained the CRF on each of them using a stochas-
tic gradient descent procedure based on the sgd2 package. The necessary gradients are computing
using a junction tree algorithms for problems with 20 variables or less, and by Gibbs sampling
otherwise. For model selection, when required, we used 10-fold cross-validation on the training set.

Note that our goal in this experiment is not to advocate a new model multi-label classification, but to
create probability distributions as they would appear in real problems. Nevertheless, we also report
classification accuracy in Table 1 to show that a) the learned models have similar characteristics as
earlier work, in particular to [29], where the an identical model was trained using structured SVM
learning, and b) adaptive MMP can achieve as high prediction accuracy as ordinary Gibbs sampling,
as long as the confidence parameter ε is not chosen overly optimistically. In fact, in many cases even

2http://leon.bottou.org/projects/sgd
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Dataset #Labels #Train #Test [29] [28] Exact Gibbs Proposed
SYNTH1 [29] 6 471 5045 6.9 — 5.2 5.3 5.2 / 5.2 / 5.2
SYNTH2 [29] 10 1000 10000 7.0 — 10.0 10.0 10.0/10.0/10.0

SCENE 6 1211 1196 10.1 9.5± 2.1 10.4 10.3 10.2/10.2/10.2
RCV1-10 [29] 10 2916 2914 5.6 — 4.2 4.2 4.6 / 4.4 / 4.2

MEDIAMILL-10 [29] 10 29415 12168 18.8 — 18.4 18.6 19.0/18.6/18.4
YEAST 14 1500 917 20.2 20.2± 1.3 20.0 20.2 23.4/21.4/20.5

TMC2007 22 21519 7077 — 3.3± 2.7 5.3 5.3 5.3 / 5.3 / 5.3
AWA [30] 85 24295 6180 — — — 32.2 32.7/32.7/32.7

MEDIAMILL 101 29415 12168 — 3.6± 0.5 — 3.7 3.6 / 3.5 / 3.6
RCV1 103 3000 3000 — — — 1.5 1.7 / 1.6 / 1.5

Table 1: Multi-label classification. Dataset characteristics (number of labels, number of training
examples, number of test examples) and classification error rate in percent. [29] used the same model
as we do, but trained it using a structured SVM framework and predicted using MAP. [28] compared
12 different multi-label classification techniques, we report their mean and standard deviation. The
remaining columns give MMP prediction accuracy of the trained CRF models: Exact computes the
exact marginal values by a junction tree, Gibbs and Proposed performs ordinary Gibbs sampling, or
the proposed adaptive version with ε = 10−2/10−5/10−8, both run for up to 500 iterations.
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Figure 1: Results of adaptive pruning on RCV1 dataset for ε = 10−2, 10−5, 10−8 (left to right).
x-axis: regularization parameter C used for training, y-axis: ratio of iterations/variables/factors/
runtime used by adaptive sampling relative to Gibbs sampling.

a relative large value, such as ε = 0.01 results in a smaller loss of accuracy than the potential 1%,
but overall, a value of 10−5 or less seems advisable.

Figures 1 and 2 show in more detail how the adaptive sampling behaves on two exemplary datasets
with respect to four aspects: the number of iterations, the number of variables, the number of fac-
tors, and the overall runtime. For each aspect we show a box plot of the corresponding relative
quantity compared to the Gibbs sampler. For example, a value of 0.5 in iterations means that the
adaptive sample terminated after 250 iterations instead of the maximum of 500, because it was con-
fident about all decisions. Values of 0.2 in variables and factors means that the number of variable
states samples by the adaptive sampler was 20%, and the number of factors in the corresponding
factor graphs was 10% of the corresponding quantities for the Gibbs sampler. Within each plot, we
reported results for the complete range of regularization parameters in order to illustrate the effect
that regularization has on the distribution of marginals.
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Figure 2: Results of adaptive pruning on YEAST dataset for ε = 10−2, 10−5, 10−8 (left to right).
x-axis: regularization parameter C used for training, y-axis: ratio of iterations/variables/factors/
runtime used by adaptive sampling relative to Gibbs sampling. Note that the scaling of the y-axis
differs between columns.

Figure 1 shows results for the relatively simple RCV1 dataset. As one can see, a large number of
variables and factors are removed quickly from the factor graph, leading to a large speedup compared
to the ordinary Gibbs sampler. In fact, as the first row shows, it was possible to make a confident
decision for all variables far before the 500th iteration, such that the adaptive method terminated
early. As a general trend, the weaker the regularization (larger C value in the plot), the earlier the
adaptive sampler is able to remove variables and factors, presumably because more extreme values
of the energy function result in more marginal probabilities close to 0 or 1. A second insight is that
despite the exponential scaling of the confidence parameter between the columns, the runtime grows
only roughly linearly. This indicates that we can choose ε conservatively without taking a large
performance hit. On the hard YEAST dataset (Figure 2) in the majority of cases the adaptive sampling
does not terminate early, indicating that some of the variables have marginal probabilities close to
0.5. Nevertheless, a clear gain in speed can be observed, in particular in the weakly regularized case,
indicating that nevertheless, many tests for confidence are successful early during the sampling.

4.2 Binary Image Inpainting

Inpainting is a classical image processing task: given an image (in our case black-and-white) in
which some of the pixels are occluded or have missing values, the goal is to predict a completed
image in which the missing pixels are set to their correct value, or at least in a visually pleasing
way. Image inpainting has been tackled successfully by grid-shaped Markov random field models,
where each pixel is represented by a random variable, unary factors encode local evidence extracted
from the image, and pairwise terms encode the cooccurrence of pixel value. For our experiment, we
use the Hard Energies from Chinese Characters (HECC) dataset [31], for which the authors provide
pre-computed energy functions. The dataset has 100 images, each with between 4992 and 17856
pixels, i.e. binary variables. Each variable has one unary and up to 64 pairwise factors, leading to an
overall factor count of 146224 to 553726. Because many of the pairwise factors act repulsively, the
underlying energy function is highly non-submodular, and sampling has proven a more successful
mean of inference than, for example, message passing [31].

Figure 3 shows exemplary results of the task. The complete set can be found in the supplemental
material. In each case, we ran an ordinary Gibbs sampler and the adaptive sampler for 30 seconds,
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Figure 3: Example results of binary image inpainting on HECC dataset. From left to right: image to
be inpainted, result of Gibbs sampling, result of adaptive sampling, where each method was run for
up to 30 seconds per image. The left plot of each result shows the marginal probabilities, the right
plot shows how often each pixel was sampled on a log scale from 10 (dark blue) to 100000 (bright
red). Gibbs sampling treats all pixels uniformly, reaching around 100 sampling sweeps within the
given time budget. Adaptive sampling stops early for parts of the image that it is certain about, and
concentrates its samples in the uncertain regions, i.e. pixels with marginal probability close to 0.5.
The larger ε, the more pronounced this effect it.

and we visualize the resulting marginal probabilities as well as the number of samples created for
each of the pixels. One can see that adaptive sampling comes to a more confident prediction within
the given time budget. The larger the ε parameter, the earlier to stops sampling the ’easy’ pixels,
spending more time on the difficult cases, i.e. pixel with marginal probability close to 0.5.

5 Summary and Outlook

In this paper we derived an analytic expression for how confident one can be about the maximum
marginal predictions (MMPs) of a binary graphical model after a certain number of samples, and
we presented a method for pruning factor graphs when we want to stop sampling for a subset of
the variables. In combination, this allowed us to more efficiently infer the MMPs: starting from
the whole factor graph, we sample sequentially, and whenever we are sufficiently certain about a
prediction, we prune it from the factor graph before continuing to sample. Experiments on multi-
label classification and image inpainting show a clear increase in performance at virtually no loss in
accuracy, unless the confidence is chosen too optimistically.

Despite the promising results there are two main limitations that we plan to address. On the one
hand, the multi-label experiments showed that sometimes, a conservative estimate of the confidence
is required to achieve highest accuracy. This is likely a consequence of the fact that our pruning
uses the estimated marginal to build a new factor graph, and even if the decision confidence is high,
the marginals can still vary considerately. We plan to tackle this problem by also integrating bounds
on the marginals with data-dependent confidence into our framework. A second limitation is that
we can currently only handle binary-valued labelings. This is sufficient for multi-label classification
and many problems in image processing, but ultimately, one would hope to derive similar early
stopping criteria also for graphical models with larger label set. Our pruning method would be
readily applicable to this situation, but an open challenge lies in finding a suitable criterion when
to prune variables. This will require a deeper understanding of tail probabilities of multinomial
decision variables, but we are confident it will be achievable, for example based on existing prior
works from the case of i.i.d. samples [14, 32].
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