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Abstract

In this paper, we consider the problem of clustering data points into low-
dimensional subspaces in the presence of outliers. We pose the problem using a
density estimation formulation with an associated generative model. Based on this
probability model, we first develop an iterative expectation-maximization (EM) al-
gorithm and then derive its global solution. In addition, we develop two Bayesian
methods based on variational Bayesian (VB) approximation, which are capable
of automatic dimensionality selection. While the first method is based on an al-
ternating optimization scheme for all unknowns, the second method makes use of
recent results in VB matrix factorization leading to fast and effective estimation.
Both methods are extended to handle sparse outliers for robustness and can han-
dle missing values. Experimental results suggest that proposed methods are very
effective in subspace clustering and identifying outliers.

1 Introduction
Modeling data using low-dimensional representations is a fundamental approach in data analysis,
motivated by the inherent redundancy in many datasets and to increase the interpretability of data
via dimensionality reduction. A classical approach is principal component analysis (PCA), which
implicitly models data to live in a single low-dimensional subspace within the high-dimensional
ambient space. However, a more suitable model in many applications is the union of multiple
low-dimensional subspaces. This modeling leads to the more challenging problem of subspace
clustering, which attempts to simultaneously cluster data points into multiple subspaces and find the
basis of the corresponding subspace for each cluster.

Mathematically, subspace clustering can be defined as follows: Let Y be the M × N data matrix
consisting of N vectors {yi ∈ RM}Ni=1, which are assumed be drawn from a union of K linear (or
affine) subspaces Sk of unknown dimensions dk = dim(Sk) with 0 < dk < M . The subspace
clustering problem is to find the number of subspaces K, their dimensions {dk}Kk=1, the subspace
bases, and the clustering of vectors yi into these subspaces.

Subspace clustering is widely investigated problem due to its application in a large number of fields,
including computer vision [6, 12, 23], machine learning [11, 22] and system identification [31]
(see [22, 28] for comprehensive reviews). Some of the common approaches include algebraic-
geometric approaches such as generalized PCA (GPCA) [19, 29], spectral clustering [18], and mix-
ture models [9, 26]. Recently, there has been a great interest in methods based on sparse and/or
low-rank representation of the data [5, 7, 8, 14–17, 25]. The general approach in these methods is to
first find a sparse/low-rank representation X of the data and then apply a spectral clustering method
on X. It has been shown that with appropriate modeling, X provides information about the seg-

1



mentation of the vectors into the subspaces. Two common models for X are summarized below.

• Sparse Subspace Clustering (SSC) [7, 25]: This approach is based on representing data
points yi as sparse linear combinations of other data points. A possible optimization for-
mulation is

min
D,X

β‖Y −D‖2F + ‖D−DX‖2F + λ‖X‖1 , subject to diag(X) = 0 , (1)

where ‖ · ‖F is the Frobenius norm and ‖ · ‖1 is the l1-norm.
• Low-Rank Representation (LRR) [8, 14–17] : These methods are based on a principle

similar to SSC, but X is modeled as low-rank instead of sparse. A general formulation for
this model is

min
D,X

β‖Y −D‖2F + ‖D−DX‖2F + λ‖X‖∗ , (2)

where ‖ · ‖∗ is the nuclear norm.

In these formulations, D is a clean dictionary and data Y is assumed to be the noisy version of D
possibly with outliers. When β → ∞, Y = D, and thus the data itself is used as the dictionary
[7,15,25]. If the subspaces are disjoint or independent1, the solution X in both formulations is shown
to be such that Xik 6= 0 only if data points yi and yk belong to the same subspace [7, 14, 15, 25].
That is, the sparsest/lowest rank solution is obtained when each point yi is represented as a linear
combination of points in its own subspace. The estimated X is used to define an affinity matrix [18]
such as |X|+ |XT | and a spectral clustering algorithm, such as normalized cuts [24], is applied on
this affinity to cluster the data vectors. The subspace bases can then be obtained in a straightforward
manner using this clustering. These methods have also been extended to include sparse outliers.

In this paper, we develop probabilistic modeling and inference procedures based on a principle
similarly to LRR. Specifically, we formulate the problem using a latent variable model based on
the factorized form X = AB, and develop inference procedures for estimating A, B, D (and
possibly outliers), along with the associated hyperparameters. We first show a maximum-likelihood
formulation of the problem, which is solved using an expectation-maximization (EM) method. We
derive and analyze its global solution, and show that it is related to closed-form solution of the rank-
minimization formulation (2) in [8]. To incorporate automatic estimation of the latent dimensionality
of subspaces and the algorithmic parameters, we further present two Bayesian approaches: The first
one is based on same probability model as the EM method, but additional priors are placed on the
latent variables and variational Bayesian inference is employed for approximate marginalization to
avoid overfitting. The second one is based on a matrix-factorization formulation, and exploits the
recent results on Bayesian matrix factorization [20] to achieve fast estimation that is less prone
to errors due to alternating optimization. Finally, we extent both methods to handle large errors
(outliers) in the data, to achieve robust estimation.

Compared to deterministic methods, proposed Bayesian methods have the advantages of automati-
cally estimating the dimensionality and the algorithmic parameters. This is crucial in unsupervised
clustering as the parameters can have a drastic effect on the solution, especially in the presence of
heavy noise and outliers. While our methods are closely related to Bayesian PCA [2, 3, 20] and
mixture models [9,26], our formulation is based on a different model and leads to robust estimation
less dependent on the initialization, which is one of the main disadvantages of such methods.

2 Probabilistic Model for Low-Rank Subspace Clustering
In the following, without loss of generality we assume that M ≤ N and Y is full row-rank. We also
assume that each subspace is sufficiently sampled, that is, for each Si of dimension di, there exist at
least di data vectors yi in Y that span Si. As for notation, the expectations are denoted by 〈 · 〉, N
is the normal distribution, and diag() denotes the diagonal of a matrix. We do not differentiate the
variables from the parameters of the model to have a unified presentation throughout the paper.

We formulate the latent variable model as
yi = di + nY , (3)
di = DAbi + nD , i = 1, . . . , N (4)

1The subspaces Sk are called independent if dim(
⊕K

k=1 SK) =
∑K

k=1 dim(Sk) with
⊕

the direct sum.
The subspaces are disjoint if they only intersect at the origin.
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where D is M × N , A is N × N , and nY , nD are i.i.d. Gaussian noise independent of the data.
The associated probability model is given by2

p(yi|di) = N
(
yi |di, σ2

y IM
)
, (5)

p(di|D,A,bi) = N
(
di |DAbi, σ

2
d IM

)
, (6)

p(bi) = N (bi |0, IN ) . (7)

We model the components as independent such that p(Y|D) =
∏N
i=1 p(yi|di), p(D|A,B) =∏N

i=1 p(di|D,A,bi), and p(B) =
∏N
i=1 p(bi). This model has the generative interpretation where

latent vectors bi are drawn from an isotropic Gaussian distribution, shaped by A to obtain Abi,
which then chooses a sample of points from the dictionary D to generate the ith dictionary element
di. In this sense, matrix DA has a role similar to principal subspace matrix in probabilistic principal
component analysis (PPCA) [26]. However, notice that in contrast to this and related approaches
such as mixture of PPCAs [9, 26], the principal subspaces are defined using the data itself in (6).

In (5), the observations yi are modeled as corrupted versions of dictionary elements di with iid
Gaussian noise. Such separation of D and Y is not necessary if there are no outliers, as the presence
of noise nY and nD makes them unidentifiable. However, we use this general formulation to later
include outliers.

2.1 An Expectation-Maximization (EM) Algorithm

In (5) - (7), latent variables bi can be regarded as missing data and D, A as parameters, and an EM
algorithm can be devised for their joint estimation. The complete log-likelihood is given by

LC =

N∑
i=1

log p(yi,bi) (8)

with p(yi,bi) = p(yi|di) p(di|D,A,bi) p(bi). The EM algorithm can be obtained by taking the
expectation of this log-likelihood with respect to (w.r.t.) B (E-step) and maximizing it w.r.t. D, A,
σd, and σy (M-step). In the E-step, the distribution p(B|D,A, σ2

d) is found as N (〈B〉,ΣB) with

〈B〉 = ΣB
1

σ2
d

ATDTD, Σ−1B = I +
1

σ2
d

ATDTDA , (9)

and the expectation of the likelihood is taken w.r.t. this distribution. In the M-step, maximizing the
expected log-likelihood w.r.t. D and A in an alternating fashion yields the update equations

D =
1

σ2
y

Y

[
1

σ2
y

I +
1

σ2
d

〈 (I−AB) (I−AB)
T 〉B

]−1
, A = 〈B〉T

[
〈BBT 〉

]−1
, (10)

with 〈BBT 〉 = BBT +NΣB. Finally, the estimates of σ2
d and σ2

y are found as

σ2
d =
‖D−DA〈B〉‖2F +N tr(ATDTDAΣB)

MN
, σ2

y =
‖Y −D‖2F
MN

. (11)

In summary, the maximum likelihood solution is obtained by an alternating iterative procedure
where first the statistics of B are calculated using (9), followed by the M-step updates for D, A, σd,
and σy in (10) and (11), respectively.

2.2 Global Solution of the EM algorithm

Although the iterative EM algorithm above can be applied to estimate A, B, D, the global solutions
can in fact be found in closed form. Specifically, the optimal solution is found (see the supplemen-
tary) as either A〈B〉 = 0 or

A〈B〉 = Vq

[
Iq −Nσ2

d Λ̄−2q
]

VT
q , (12)

2Here we assume that Abi 6= wi where wi is a zero vector with 1 as the ith coefficient, to have a proper
density. This is a reasonable assumption if each subspace is sufficiently sampled and the dictionary element di

belongs to one of them (i.e., it is not an outlier). Outliers are explicitly handled later.
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where Λ̄q is a q × q diagonal matrix with coefficients λ̄j = max(λj ,
√
Nσd). Here, D = UΛVT

is the singular value decomposition (SVD) of D, and Vq contains its q right singular vectors that
correspond to singular values that are larger than or equal to

√
Nσd. Hence, the solution (12) is

related to the rank-q shape interaction matrix (SIM) VqV
T
q [6], while in addition it involves scaling

of the singular vectors via thresholded singular values of D.

Using A〈B〉 in (10), the singular vectors of the optimal D and Y are found to be the same, and the
singular values λj of D are related to the singular values ξj of Y as

ξj =

{
λj +Nσ2

y λ
−1
j , if λj >

√
Nσd

λj
σ2
y+σ

2
d

σ2
d

, if λj ≤
√
Nσd

(13)

This is a combination of two operations: down-scaling and the solutions a quadratic equation, where
the latter is a polynomial thresholding operation on the singular values ξj of Y (see supplementary).
Hence, the optimal D is obtained by applying the thresholding operation (13) on the singular values
of Y, where the shrinkage amount is small for large singular values so that they are preserved,
whereas small singular values are shrank by down-scaling. This is an interesting result, as there is
no explicit penalty on the rank of D in our modeling. As shown in [8], the nuclear norm formulation
(2) leads to a similar closed-form solution, but it requires the solution of a quartic equation.

Finally, at the stationary points, the noise variance σ2
d is found as

σ2
d =

1

N − q

N∑
q′=q+1

λ2q′ , (14)

that is, the average of the squared discarded singular values of D when computing DA〈B〉. A
simple closed form expression of σ2

y cannot be found due to the polynomial thresholding in (13),
but it can simply be calculated using (11).

In summary, if σ2
y and σ2

d are given, the optimal D and A〈B〉 are found by taking the SVD of Y
and applying shrinkage/thresholding operations on the singular values of Y. However, this method
requires setting σ2

y and σ2
d manually. When Y itself is used as the dictionary D (i.e., σ2

y = 0),
an alternative method is to choose q, the total number of independent dimensions to be retained in
DA〈B〉, calculate σ2

d from (14), and finally use (12) to obtain A〈B〉. However, when σ2
y 6= 0,

q cannot directly be set and a trial-and-error procedure is required to find it. Although σ2
d and σ2

y
can also be estimated automatically using the iterative EM procedure in Sec. 2.1, this method is
susceptible to local minima, as the trivial solution A〈B〉 = 0 also maximizes the likelihood.

These issues can be overcome by employing a Bayesian estimation to automatically determine the
effective dimensionality of D and AB. We develop two methods towards this goal, which are
described next.

3 Variational Bayesian Low-Rank Subspace Clustering

Bayesian estimation of D, A and B can be achieved by treating them as latent variables to be
marginalized over to avoid overfitting and trivial solutions such as AB = 0. Here we develop
such a method based on the probability model in the previous section but with additional priors
introduced on A, B and the noise variances. Before presenting our complete probability model, we
first introduce the matrix-variate normal distribution as its use significantly simplifies the algorithm
derivation. For a M ×N matrix X, the matrix-variate normal distribution is given by [10]

N (X|M,Σ,Ω) = (2π)
NM
2 |Σ|−N

2 |Ω|−M
2 exp

[
−1

2
tr
(
Σ−1 (X−M) Ω−1 (X−M)

T
)]

(15)

where M is the mean, and Σ, Ω are M ×M row and N ×N column covariances, respectively.

To automatically determine the number of principal components in AB, we employ an automatic
relevance determination mechanism [21] on the columns of A and rows of B using priors p(A) =
N (A|0, I,CA), p(B) = N (B|0,CB, I), where CA and CB are diagonal matrices with CA =
diag(cA,i) and CB = diag(cB,i), i = 1, . . . , N . Jeffrey’s priors are placed on cA,i and cB,i, and
they are assumed to be independent. To avoid scale ambiguity, the columns of A and rows of B can
also be coupled using the same set of hyperparameters CA = CB, as in [1].
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For inference, we employ the variational Bayesian (VB) method [4] which leads to a fast algorithm.
Let q(D,A,B,CA,CB, σ

2
d, σ

2
y) be the distribution that approximates the posterior. The variational

free energy is given by the following functional

F = 〈 log q(D,A,B,CA,CB, σ
2
d, σ

2
y)− log p(Y,D,A,B,CA,CB, σ

2
d, σ

2
y)〉 . (16)

Using the mean field approximation, the approximate posterior is factorized as
q(D,A,B,CA,CB, σ

2
d, σ

2
y) = q(D) q(A) q(B) q(CA) q(CB) q(σ2

d) q(σ2
y). Using the pri-

ors defined above with the conditional distributions in (5) and (6), the approximating distributions
of D, A and B minimizing the free energy F are found as matrix-variate normal distributions3

q(D) = N (〈D〉, I,ΩD), q(A) = N (〈A〉,ΣA,ΩA) and q(B) = N (〈B〉,ΣB, I), with parameters

〈D〉 =
1

〈σ2
y〉

Y ΩD, Ω−1D =

(
1

〈σ2
y〉

)
IN +

1

〈σ2
d〉
〈 (I−AB) (I−AB)

T 〉 (17)

Σ−1A =
1

N
tr(C−1A ΩA) I +

1

Nσ2
d

tr(ΩA〈BBT 〉) 〈DTD〉 (18)

Ω−1A =
1

N
tr(ΣA)C−1A +

1

Nσ2
d

tr(ΣA〈DTD〉) 〈BBT 〉 (19)

〈A〉C−1A +
1

σ2
d

〈DTD〉〈A〉〈BBT 〉 =
1

σ2
d

〈DTD〉〈B〉T (20)

〈B〉 = ΣB
1

〈σ2
d〉
〈ATDTD〉, Σ−1B = C−1B +

1

〈σ2
d〉
〈ATDTDA〉 . (21)

The estimate 〈A〉 in (20) is solved using fixed-point iterations. The hyperparameter updates are
given by

〈c−1A,i〉 =
N

〈ATA〉ii
, 〈c−1B,i〉 =

N

diag(〈BBT 〉ii)
, (22)

〈σ2
d〉 =

〈‖D−DAB‖2F〉
MN

, 〈σ2
y〉 =

〈‖Y −D‖2F〉
MN

. (23)

Explicit forms of the required moments are given in the supplementary. In summary, the algorithm
alternates between calculating the sufficient statistics of the distributions of D, A and B, and the
updates of the hyperparameters cA,i, cB,i, σ2

d and σ2
y . The convergence can be monitored during

iterations using the variational free energy F . F is also useful in model comparison, which we use
for detecting outliers, as explained in Sec. 5.

Similarly to the matrix factorization approaches [2, 3, 13], automatic dimensionality selection is
invoked via hyperparameters cA,i and cB,i, which enforce sparsity in the columns and rows of A
and B, respectively. Specifically, when a particular set of variances cA,i, cB,i assume very small
values, the posteriors of the ith column of A and ith row of B will be concentrated around zero,
such that the effective number of principal directions in AB will be reduced. In practice, this is
performed via thresholding of variances cA,i, cB,i with a small threshold (e.g., 10−10).

4 A Factorization-Based Variational Bayesian Approach
Another Bayesian method can be developed by further investigating the probability model. Es-
sentially, the estimates of A and B is based on the factorization of D and are independent of Y.
Thus, one can apply a matrix factorization method to D, and relate this factorization to DAB to
find AB. Based on this idea, we modify the probabilistic model to p(D) = N (D|DLDR, I,

1
σ2
d
I),

p(DL) = N (DL|0, I,CL), p(DR) = N (DR|0,CR, I), where diagonal covariances CL and CR

are used to induce sparsity in the columns of DL and rows of DR, respectively. It has been shown
in [20] that when variational Bayesian inference is applied to this model, the global solution is found
analytically and given by

DLDR = UΛFVT , (24)

3The optimal distribution q(A) does not have a matrix-variate normal form. However, we force it to have
this form for computational efficiency (see supplementary for details).
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where U, V contain the singular vectors of D, and ΛF is a diagonal matrix, obtained by applying a
specific shrinkage method to the singular values of D [20]. The number of retained singular values
are therefore automatically determined. Then, setting DLDR equal to DAB, we obtain the solution
AB = VfΛ

−1
f ΛFVT

f , where the subscript f denotes the retained singular value and vectors.

The only modification to the method in the previous section is to replace the estimation of A and
B in (18)-(21) with the global solution VfΛ

−1
f ΛFVT

f . Thus, this method allows us to avoid the
alternating optimization for finding A and B, which potentially can get stuck in undesired local
minima. Although the probability model is slightly different than the one described in the previous
section, we anticipate that its global solution to be related to the factorization-based solution.

5 Robustness to Outliers
Depending on the application, the outliers might be in various forms. For instance in motion tracking
applications, an entire data point might become an outlier if the tracker fails at that instance. In
other applications, only a subset of coordinates might be corrupted with large errors. Both types
(and possibly others) can be handled in our modeling. The only required change in the model is in
the conditional distribution of the observations as

p(Y|D) = N (Y|D + E, σ2
y) , (25)

where E is the sparse outlier matrix for which we introduce the prior

p(E) = N (E|0,CC
E,C

R
E) = N (vec(E)|0,CC

E ⊗CR
E) . (26)

The shape of the column covariance matrix CC
E and row covariance matrix CR

E depends on the nature
of outliers. If only entire data points might be corrupted, we can use CC

E = I and independent terms
in CR

E such that CR
E = diag(cRE,i), i = 1, . . . , N . When entire coordinates can be corrupted,

row-sparsity in E can be imposed using CR
E = I and CC

E = diag(cCE,i). In the first case, the VB
estimation rule becomes q(ei) = N (〈ei〉, I,Σei

) with

〈ei〉 = Σei

1

〈σ2
y〉

(yi − 〈di〉) Σei
= diag

(
1

〈σ2
y〉

+
1

〈cRE,i〉

)−1
, (27)

with the hyperparameter update 〈cRE,i〉 = 〈ei〉T 〈ei〉+tr (Σei). The estimation rules for other outlier
models can be derived in a similar manner.

In the presence of outlier data points, there is an inherent unidentifiability between AB and E
which can prevent the detection of outliers and hence reduce the performance of subspace clustering.
Specifically, an outlier yi can be included in the sparse component as ei = yi or included in the
dictionary D with its own subspace, which leads to (AB)ii ≈ 1. To avoid the latter case, we
introduce a heuristic inspired by the birth and death method in [9]. During iterations, data points
yi with (AB)ii larger than a threshold (e.g., 0.95) are assigned to the sparse component ei. As
this might initially increase the variational energy F , we monitor its progress over a few iterations
and reject this “birth” of the sparse component if F does not decrease below its original state.
This method is observed to be very effective in identifying outliers and alleviating the effect of the
initialization.

Finally, missing values in Y can also be handled by modifying the distribution of the observations
in (5) to p(yi|di) =

∏
k∈Zi

N
(
yik |dik, σ2

y

)
, where Zi is the set containing the indices of the

observed entries in vector yi. The inference procedures can be modified with relative ease to ac-
commodate this change.

6 Experiments
In this section, we evaluate the performance of the three algorithms introduced above, namely, the
EM method in Sec. 2.2, the variational Bayesian method in Sec. 3 (VBLR) and the factorization-
based method in Sec. 4 (VBLR-Fac). We also include comparisons with deterministic subspace
clustering and mixture of PPCA (MPPCA) methods. In all experiments, the estimated AB matrix is
used to find the affinity matrix and the normalized cuts algorithm [24] is applied to find the clustering
and hence the subspaces.
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(a) (b)

Figure 1: Clustering 1D subspaces (points in the same
cluster are in the same color) (a) MPPCA [3] result, (b)
the result of the EM algorithm (global solution). The
Bayesian methods give results almost identical to (b).
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Figure 2: Accuracy of clustering 5 inde-
pendent subspaces of dimension 5 for dif-
ferent percentage of outliers.

Synthetic Data. We generated 27 line segments intersecting at the origin, as shown in Fig. 1, where
each contains 800 points slightly corrupted by iid Gaussian noise of variance 0.1. Each line can
be considered as a separate 1D subspace, and the subspaces are disjoint but not independent. We
first applied the mixture of PPCA [3] to which we provided the dimensions and the number of the
subspaces. This method is sensitive to the proximity of the subspaces, and in all of our trials gave
results similar to Fig. 1(a), where close lines are clustered together. On the other hand, the EM
method accurately clusters the lines into different subspaces (Fig. 1(b)), and it is extremely efficient
involving only one SVD. Both Bayesian methods VBLR and VBLR-Fac gave similar results and
accurately estimated the subspace dimensions, while the VB-variant of MPPCA [9] gave results
similar to Fig. 1(a).

Next, similarly to the setup in [15], we construct 5 independent subspaces {Si} ⊂ R50 of dimension
5 with bases Ui generated as follows: We first generate a random 50× 5 orthogonal matrix U1, and
then rotate it with random orthonormal matrices Ri to obtain Ui = RiU1, i = 2, 3, 4. Dictionary
D is obtained by sampling 25 points from each subspace using Di = UiVi where Vi are 5 × 25
matrices with elements drawn from N (0, 1). Finally, Y is obtained by corrupting D with outliers
sampled from N (0, 1) and normalized to lie on the unit sphere. We applied our methods VBLR
and VBLR-Fac to cluster the data into 5 groups, and compare their performance with MPPCA
and LRR. Average clustering errors (over 20 trials) in Fig. 2 show that LRR and the proposed
methods provide much better performance than MPPCA. VBLR and VBLR-Fac gave similar results,
while VBLR-Fac converges much faster (generally about 10 vs 100 iterations). Although LRR also
gives very good results, its performance varies with its parameters. As an example, we included its
results obtained by the optimal and a slightly different parameter value, where in the latter case the
degradation in accuracy is evident.

Table 1: Clustering errors (%) on the Hopkins155 motion database

Method GPCA [19] LSA [30] SSC [7] LRR [15] VBLR VBLR-Fac
Mean 30.51 8.77 3.66 1.71 1.75 1.85
Max 55.67 38.37 37.44 32.50 35.13 37.32
Std 11.79 9.80 7.21 4.85 4.92 5.10

Real Data with Small Corruptions. The Hopkins155 motion database [27] is frequently used to
test subspace clustering methods. It consists of 156 sequences where each contains 39 to 550 data
vectors corresponding to either 2 or 3 motions. Each motion corresponds to a subspace and each
sequence is regarded as a separate clustering task. While most existing methods use a pre-processing
stage that generally involves dimensionality reduction using PCA, we do not employ pre-processing
and apply our Bayesian methods directly (the EM method cannot handle outliers and thus is not
included in the experiments). The mean and maximum clustering errors and the standard deviation
in the whole set are shown in Table 1. The proposed methods provide close to state-of-the-art
performance, while competing methods require manual tuning of their parameters, which can affect
their performance. For instance, the results of LRR is obtained by setting its parameter λ = 4,
while changing it to λ = 2.4 gives 3.13% error [15]. The method in [8], which is similar to our EM-
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method except that it also handles outliers, achieves an error rate of 1.44%. Finally, the deterministic
method [17] achieves an error rate of 0.85% and to our knowledge, is the best performing method
in this dataset.

Real Data with Large Corruptions. To test our methods in real data with large corruptions, we
use the Extended Yale Database B [12] where we chose the first 10 classes that contain 640 frontal
face images. Each class contains 64 images and each image is resized to 48 × 42 and stacked to
generate the data vectors. Figure 3 depicts some example images, where significant corruption due
to shadows and heavy noise is evident. The task is to cluster the 640 images into 10 classes. The
segmentation accuracies achieved by the proposed methods and some existing methods are listed in
Table 2, where it is evident that the proposed methods achieve state-of-art-performance. Example
recovered clean dictionary and sparse outlier components are shown in Fig. 3.

Table 2: Clustering accuracy (%) on the Extended Yale Database B

Method LSA [30] SSC [7] LRR [15] VBLR VBLR-Fac
Average 31.72 37.66 62.53 69.72 67.62

VBLR VBLR-Fac
Y DAB E DAB E

Figure 3: Examples of recovered clean data and large corruptions. Original images are shown in the
left column (denoted by Y), the clean dictionary elements obtained by VBLR and VBLR-Fac are
shown in columns denoted by DAB, and columns denoted by E show corruption captured by the
sparse element.

7 Conclusion
In this work we presented a probabilistic treatment of low dimensional subspace clustering. Using
a latent variable formulation, we developed an expectation-maximization method and derived its
global solution. We further proposed two effective Bayesian methods both based on the automatic
relevance determination principle and variational Bayesian approximation for inference. While the
first one, VBLR, relies completely on alternating optimization, the second one, VBLR-Fac, makes
use of the global solution of VB matrix factorization to eliminate one alternating step and leads
to faster convergence. Both methods have been extended to handle sparse large corruptions in the
data for robustness. These methods are advantageous over deterministic methods as they are able
to automatically determine the total number of principal dimensions and all required algorithmic
parameters. This property is particularly important in unsupervised settings. Finally, our formulation
can potentially be extended for modeling multiple nonlinear manifolds, by the use of kernel methods.
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