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1 Proof of Theorem[1

Theorem 1. Given training examples (P;,y;) € & x R, i = 1,...,m, a strictly monotonically
increasing function 2 : [0, +o0) — R, and a loss function ¢ : (£ x R?)™ — R U {+o0o}, any
f € H minimizing the regularized risk functional

¢ (PlaylaEM [f]a s apnuymv]E]P’m [f]) +Q (”fH’H) (1)
admits a representation of theform f = >~ | a;up, for someo; € R, i =1,...,m.

Proof. By virtue of Proposition 2 in[[1], the linear function&ly|-] are bounded for alP € 4.
Then, giveriPy, P, ..., P,,,, any f € H can be decomposed as

f=futfr

where f,, € H lives in the span ofwp,, i.e., f, = Y-, c;up, and f+ € H satisfying, for allj,
(f*+, up,) = 0. Hence, for allj, we have

E]Pj[f] = EIP’j[f,u +fJ_] = <f/»¢ +fJ_7/'l’]Pj> = <fp.7/1'IP’j> + <fJ_71LL]P]'> = <flL7[LL]P]'>

which is independent of . As a result, the loss functionain () does not depend ofi-. For the
regularization functionaf, sincef* is orthogonal to>_;" | c;up, and(2 is strictly monotonically
increasing, we have

QUL = QUfu+ £ = QG/IFll2 + 1LF412) = Qllfull)

with equality if and only if f- = 0 and thusf = f,. Consequently, any minimizer must take the
form f =370 aupe, = 37070 i, [k(z, ). u

2 Proof of Theorem[3

Theorem 3. Given an arbitrary probability distribution IP with variance o2, a Lipschitz continuous
function f : R — R with constant C'y, an arbitrary loss function ¢ : R x R — R that is Lipschitz
continuous in the second argument with constant C,, it follows that

|EINP[€(y7 f(l’))] - g(yaEer[f(l)]” S QCZOfU
for any y € R.
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Proof. Assume that: is distributed according tB. Letm x be the mean ok in R?. Thus, we have

[Ee[e(y, f(2))] — £y, Be[f ()] < /\5 (y, f(2)) — €y, Bp[f (x)])| dP(Z)
()] dP(z)

f(mx)|dP(2) + Co|f(mx) — Ep[f(2)]] -
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Control of (A) The first term is upper bounded by

Ci [ €l - m|dp(z) < CiCyo @)
where the last inequality is given B (|7 — mx|]] < \/Ep[[|7 — mx |2 = o
Control of (B) Similarly, the second term is upper bounded by

dP(&) < Cy / Cyllmx — | dP() < C:Cjo . @)

f(mx) —

Combining [2) and{3) yields

[Ep[¢(y, f(2))] — £y, Ep[f (@)])| < 2CeCyo |
thus completing the proof. |

3 Proof of Lemmal4

Lemma 4. Let k(z, =) be a bounded p.d. kernel on a measure space suchthat [ k(z,z)? dzdz <
o0, and g(z,Z) be a square integrable function such that [ g(z,%)dz < oo for al z. Given
a sample {(P;,y;)}7, where each IP; is assumed to have a density given by g(z;, z), the lin-
ear SMIM is equivalent to the SYM on the training sample {(z;, y;)}/~, with kernel Ky(z,2) =
[ k&, 2)g(x, 8)g(z, 2) di dz.

Proof. For a training samplé(z;, y;)}/",, the SVM with kernelK, minimizes
(i yir f u»+ﬂm>+Mmm&

By the representer theoremi(z) = > | o Ky (z, ;) with somew; € R, hence this is equivalent
to

{I“y“ZOZJ m“l’J +b}z 1 +>‘ Z O“'Oéﬂ g(xi’xj) .

1,7=1
Next, consider the kernel mean of the probability measyte;,z)dz given by u; =
J k(-,2)g(x;, 2) dZ and note thaty;, f), = [ f(Z)g(x;, &)dE for any f € Hj. The linear
SMM with loss? and kernek minimizes

U i (s s, + OHZ1) + A fIF, -
By Theorent]L, each minimizgf‘radmits a representation of the form

f= Za]uj Za]/k’ g(xj, &

Thus, for thisf we have

(bi, f E 04]// Z2,2)g(xi, %)g(x;5, 2 dxdz—g a; Kg(z,25)

and
m m
||f\|%ak = Z i (i, py) = Z oo Ky (4, 25)
i,j=1 i,5=1
, as above. This completes the proof. [ |
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