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1 Proof of Theorem 1

Theorem 1. Given training examples (Pi, yi) ∈ P × R, i = 1, . . . ,m, a strictly monotonically
increasing function Ω : [0,+∞) → R, and a loss function ℓ : (P × R

2)m → R ∪ {+∞}, any
f ∈ H minimizing the regularized risk functional

ℓ (P1, y1,EP1
[f ], . . . ,Pm, ym,EPm

[f ]) + Ω (‖f‖H) (1)

admits a representation of the form f =
∑m

i=1
αiµPi

for some αi ∈ R, i = 1, . . . ,m.

Proof. By virtue of Proposition 2 in [1], the linear functionalEP[·] are bounded for allP ∈ P.
Then, givenP1,P2, ...,Pm, anyf ∈ H can be decomposed as

f = fµ + f⊥

wherefµ ∈ H lives in the span ofµPi
, i.e., fµ =

∑m
i=1

αiµPi
andf⊥ ∈ H satisfying, for allj,

〈f⊥, µPj
〉 = 0. Hence, for allj, we have

EPj
[f ] = EPj

[fµ + f⊥] = 〈fµ + f⊥, µPj
〉 = 〈fµ, µPj

〉+ 〈f⊥, µPj
〉 = 〈fµ, µPj

〉

which is independent off⊥. As a result, the loss functionalℓ in (1) does not depend onf⊥. For the
regularization functionalΩ, sincef⊥ is orthogonal to

∑m
i=1

αiµPi
andΩ is strictly monotonically

increasing, we have

Ω(‖f‖) = Ω(‖fµ + f⊥‖) = Ω(
√

‖fµ‖2 + ‖f⊥‖2) ≥ Ω(‖fµ‖)

with equality if and only iff⊥ = 0 and thusf = fµ. Consequently, any minimizer must take the
form f =

∑m
i=1

αiµPi
=

∑m
i=1

αiEPi
[k(x, ·)]. �

2 Proof of Theorem 3

Theorem 3. Given an arbitrary probability distribution P with variance σ2, a Lipschitz continuous
function f : R → R with constant Cf , an arbitrary loss function ℓ : R × R → R that is Lipschitz
continuous in the second argument with constant Cℓ, it follows that

|Ex∼P[ℓ(y, f(x))]− ℓ(y,Ex∼P[f(x)])| ≤ 2CℓCfσ

for any y ∈ R.
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Proof. Assume thatx is distributed according toP. LetmX be the mean ofX in R
d. Thus, we have

|EP[ℓ(y, f(x))]− ℓ(y,EP[f(x)])| ≤

∫

|ℓ(y, f(x̃))− ℓ(y,EP[f(x)])| dP(x̃)

≤ Cℓ

∫

|f(x̃)− EP[f(x)]| dP(x̃)

≤ Cℓ

∫

|f(x̃)− f(mX)| dP(x̃)

︸ ︷︷ ︸

A

+Cℓ|f(mX)− EP[f(x)]|
︸ ︷︷ ︸

B

.

Control of (A) The first term is upper bounded by

Cℓ

∫

Cf‖x̃−mX‖dP(x̃) ≤ CℓCfσ , (2)

where the last inequality is given byEP[‖x̃−mX‖] ≤
√

EP[‖x̃−mX‖2] = σ.

Control of (B) Similarly, the second term is upper bounded by

Cℓ

∣
∣
∣
∣

∫

f(mX)− f(x̃)

∣
∣
∣
∣
dP(x̃) ≤ Cℓ

∫

Cf‖mX − x̃‖dP(x̃) ≤ CℓCfσ . (3)

Combining (2) and (3) yields

|EP[ℓ(y, f(x))]− ℓ(y,EP[f(x)])| ≤ 2CℓCfσ ,

thus completing the proof. �

3 Proof of Lemma 4

Lemma 4. Let k(x, z) be a bounded p.d. kernel on a measure space such that
∫∫

k(x, z)2 dx dz <

∞, and g(x, x̃) be a square integrable function such that
∫
g(x, x̃) dx̃ < ∞ for all x. Given

a sample {(Pi, yi)}
m
i=1

where each Pi is assumed to have a density given by g(xi, x), the lin-
ear SMM is equivalent to the SVM on the training sample {(xi, yi)}

m
i=1

with kernel Kg(x, z) =∫∫
k(x̃, z̃)g(x, x̃)g(z, z̃) dx̃ dz̃.

Proof. For a training sample{(xi, yi)}
m
i=1

, the SVM with kernelKg minimizes

ℓ({xi, yi, f(xi) + b}mi=1
) + λ‖f‖2HKg

.

By the representer theorem,f(x) =
∑m

i=1
αiKg(x, xj) with someαi ∈ R, hence this is equivalent

to

ℓ({xi, yi,

m∑

j=1

αjKg(xi, xj) + b}mi=1
) + λ

m∑

i,j=1

αiαjKg(xi, xj) .

Next, consider the kernel mean of the probability measureg(xi, x)dx given by µi =∫
k(·, x̃)g(xi, x̃) dx̃ and note that〈µi, f〉Hk

=
∫
f(x̃)g(xi, x̃) dx̃ for any f ∈ Hk. The linear

SMM with lossℓ and kernelk minimizes

ℓ({Pi, yi, 〈µi, f〉Hk
+ b}mi=1

) + λ‖f‖2Hk
.

By Theorem 1, each minimizerf admits a representation of the form

f =

m∑

j=1

αjµj =

m∑

j=1

αj

∫

k(·, x̃)g(xj , x̃) dx̃ .

Thus, for thisf we have

〈µi, f〉Hk
=

m∑

j=1

αj

∫∫

k(z̃, x̃)g(xi, x̃)g(xj , z̃) dx̃ dz̃ =
m∑

j=1

αjKg(xi, xj)

and

‖f‖2Hk
=

m∑

i,j=1

αiαj〈µi, µj〉 =

m∑

i,j=1

αiαjKg(xi, xj)

, as above. This completes the proof. �
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