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A. Proofs

Proof of Lemma 2

Let α ∈ (0, 1) denote a confidence threshold, and let ∆ = R[f1] − R[f2] 6= 0 denote the true risk
difference. The quantity
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only depends on q through σn,q . For sufficiently large n, βn,q is a monotonically decreasing function
of σn,q , because the partial derivative
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is negative for large n.

Let q, q′ denote two sampling distributions. Since σn,q =
√
nVar[∆̂n,q],

lim
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holds if and only if σn,q < σn,q′ for sufficiently large n. Condition 16 is thus equivalent to βn,q >
βn,q′ for sufficiently large n.

Proof of Lemma 3

Let ∆̂0
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i=1 wi`i andWn =

∑n
i=1 wi with wi = p(xi)

q(xi)
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We note that for examples drawn according to q(x), E[∆̂0
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1
n∆̂0

n,q and 1
nWn are asymptotically normally distributed with

√
n

(
1

n
∆̂0
n,q −∆

)
n→∞−→ N (0,Var[wi`i])

√
n

(
1

n
Wn − 1

)
n→∞−→ N (0,Var[wi]),

1



where n→∞−→ denotes convergence in distribution.

We employ the multivariate delta method (see, e.g., [10], Chapter 5) to extend the convergence
results for ∆̂0

n,q andWn to a convergence result for the normalized estimator ∆̂n,q . The delta method
allows to derive the asymptotic distribution of a differentiable function f whose input variables are
asymptotically normally distributed. Applying it to the function f(x, y) = x
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where ∇f denotes the gradient of f and Σ is the (asymptotic) covariance matrix of the input argu-
ments
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Taking the variance of both sides of Equation 17, we observe that
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From this, the claim follows by canceling q(x).

Derivation 4

Rewriting the result of Theorem 2 for p(x) = 1
m in a classification setting, we obtain
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Equation 18 expands the zero-one loss, exploiting `(y, y′) = (y − y′)2 for y, y′ ∈ {0, 1}. The claim
follows by case differentiation according to the value of fj(x).

Derivation 5

Rewriting the result of Theorem 2 for p(x) = 1
m in a regression setting, we obtain
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Equation 19 expands the loss function, orders terms by decreasing order of y, and makes use of the
abbreviations

c1 = 4(f1(x)− f2(x))2,

c2 = 4(f1(x)− f2(x))(∆θ − (f21 (x)− f22 (x))), and

c3 = ((f21 (x)− f22 (x))−∆θ)
2.
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Equation 20 exploits that the two integrals over Y are sums of raw moments of the Gaussian predic-
tive distribution under the mixture model assumption (Equation 13). Furthermore, a straightforward
calculation shows that the introspective risk difference ∆θ equals zero. The claim follows by rein-
serting ci.

B. Detailed Experimental Setup

For the classification tasks, we train logistic regression models. The regularization parameter is
tuned a priori on the training portion of each data set by cross validation and then kept fixed. For the
regression tasks, we employ Gaussian processes [8], using Bayesian model selection to determine
the hyperparameters. All prediction models provide us with an estimate of p(y|x).

For the evaluation methods active, active0, active∞, active6= and ARE we compute p-values ac-
cording to the Wald test for weighted test samples discussed in Section 2 (Equation 5). For the
passive evaluation method passive that draws an unweighted sample of test instances we use the
more standard t-test. The confidence parameter of the active learning baselines A2 and IWAL is set
to δ = 0.05, corresponding to a 95% confidence of the corresponding finite-sample error bound.

Spam Filtering Domain. We collected 169,612 emails described by 541,713 binary bag-of-words
features from an email service provider between June 2007 and April 2010; approximately 75%
of all emails are spam. In this domain, spammers impose a shift on the distribution of instances
over time as they employ new strategies to generate spam messages. We compare models that differ
in the recency of their training data. Specifically, we compare a logistic regression model trained
on 5,000 randomly sampled messages received between June 2000 and October 2007 to a logistic
regression model trained on 5,000 randomly sampled messages received between December 2007
and April 2008. Both models employ a linear kernel. Emails received after April 2008 constitute the
pool of test instances. Experimental results are averaged over 10 different sets of models and 5,000
repetitions of the evaluation process. Note that we could not use the standard Spam TREC bench-
mark data set because in this data set the original time stamps cannot be reconstructed, and messages
therefore cannot be chronologically stratified.

Object Recognition Domain. We study the problem of detecting whether a given image contains a
car (positive class) or not (negative class). Using Google Image Search, we built a corpus of 4,560
images; approximately 50% of the images belong to the positive class. For building the detection
models, we follow a bag-of-visual-words approach. First, interest points are identified for all im-
ages, and SIFT [7] features at the interest points are computed. Second, a visual vocabulary is built
by clustering all SIFT features using k-means. Third, images are encoded as real vectors with one
feature per cluster; a feature indicates how many interest points in the image fall into the corre-
sponding cluster. Logistic regression models are trained on the resulting feature representation. We
train 12 detection models that result from varying the interest point detection method (Harris op-
erator [5], Canny edge detector [2], Förstner operator [3]) and the size of the visual vocabulary
k ∈ {50, 100, 500, 1000}. Additionally, we train a detection model based on SURF [1] interest
point detection and a pyramid matching kernel, using the LIBPMK toolkit described in [6]. The 13
models are trained on approximately 10% of the available images, the remaining images constitute
the pool of unlabeled test examples on which the models are compared. Experimental results are
averaged over 5,000 repetitions of the evaluation process.

Inverse Dynamics Domain. In this regression problem, the task is to predict one of seven torques
based on the motions of a seven degrees-of-freedom anthropomorphic robot arm. We use the Sarcos
dataset, containing 48,933 instances described by 21 features [9]. As a two-model comparison prob-
lem, we evaluate whether Gaussian process models with linear kernel or Matern kernels are prefer-
able (Figure 1, top; Figure 2; Figure 3). As a multi-model comparison problem, we study the rela-
tive performance of Gaussian process models using polynomial kernels of degree d ∈ {1, 2, 3, 4, 5}
(Figure 1, bottom). Models are trained on a randomly selected set of 500 training instances, the
remaining data constitute the unlabeled pool of test instances. Experimental results are averaged
over 10 different sets of models and 5,000 repetitions of the evaluation process.

Abalone Domain. In this regression problem, the task is to predict the age of Abalone from ten
physical measurements including length, diameter, and weight. We use the Abalone benchmark
dataset, which includes 4,177 instances [4]. We again study the comparison of Gaussian process
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Table 1: Average labeling costs, true-positive significance rate, and false decision rate when drawing
test instances until significance at α = 0.05 is obtained or a labeling budget of n = 800 is exhausted.

Abalone Inverse Dynamics
costs significance false decisions costs significance false decisions

active 362.35 82.56% 0.65% 354.73 79.51% 1.17%
active∞ 390.24 80.16% 0.73% 357.28 78.65% 1.35%
active0 395.36 76.57% 1.28% 380.56 75.10% 1.82%
ARE 484.79 66.10% 1.78% 428.59 68.86% 1.85%
passive 544.74 52.39% 1.87% 444.56 66.10% 2.32%

models with linear kernels and Matern kernels (two-model comparison) and with polynomial kernels
of degree d ∈ {1, 2, 3, 4, 5} (multi-model comparison). Models are trained on a randomly selected
set of 500 training instances, the remaining data constitute the unlabeled pool of test instances.
Experimental results are averaged over 10 different sets of models and 5,000 repetitions of the
evaluation process.

C. Additional Experimental Results

For the comparison tasks discussed in Section 4.2 (two-model comparison, inverse dynamics and
Abalone domains) we have also studied a protocol in which test instances are drawn and labeled
until the null hypothesis is rejected at α = 0.05, or a labeling budget of n = 800 is exhausted.
We do not enforce the null hypothesis by swapping prediction labels; the true risk incurred by the
prediction models is never equal. Note that due to the repeated statistical testing in this protocol, the
resulting p-values will not be correctly calibrated. Table 1 shows average labeling costs incurred,
fraction of experiments in which a significant result is obtained, and the fraction of experiments in
which a significance result is obtained but the wrong model is chosen (false decision rate). In both
domains, active incurs the lowest average labeling costs, obtains significance results most often, and
has the lowest false decision rate.
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