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Abstract

We present a new formulation for binary classification. Instead of relying
on convex losses and regularizers such as in SVMs, logistic regression and
boosting, or instead non-convex but continuous formulations such as those
encountered in neural networks and deep belief networks, our framework
entails a non-convex but discrete formulation, where estimation amounts to
finding a MAP configuration in a graphical model whose potential functions
are low-dimensional discrete surrogates for the misclassification loss. We
argue that such a discrete formulation can naturally account for a number
of issues that are typically encountered in either the convex or the contin-
uous non-convex approaches, or both. By reducing the learning problem
to a MAP inference problem, we can immediately translate the guarantees
available for many inference settings to the learning problem itself. We
empirically demonstrate in a number of experiments that this approach
is promising in dealing with issues such as severe label noise, while still
having global optimality guarantees. Due to the discrete nature of the for-
mulation, it also allows for direct regularization through cardinality-based
penalties, such as the `0 pseudo-norm, thus providing the ability to perform
feature selection and trade-off interpretability and predictability in a prin-
cipled manner. We also outline a number of open problems arising from
the formulation.

1 Introduction

A large fraction of the machine learning community is concerned itself with the formulation
of a learning problem as a single, well-defined optimization problem. This is the case for
many popular techniques, including those associated with margin or likelihood-based esti-
mators, such as SVMs, logistic regression, boosting, CRFs and deep belief networks. Among
these optimization-based frameworks for learning, two paradigms stand out: the one based
on convex formulations (such as SVMs) and the one based on non-convex formulations (such
as deep belief networks). The main argument in favor of convex formulations is that we
can effectively decouple modeling from optimization, what has substantial theoretical and
practical benefits. In particular, it is of great value in terms of reproducibility, modularity
and ease of use. Coming from the other end, the main argument for non-convexity is that
a convex formulation very often fails to capture fundamental properties of a real problem
(e.g. see [1, 2] for examples of some fundamental limitations of convex loss functions).
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The motivation for this paper starts from the observation that the above tension is not really
between convexity and non-convexity, but between convexity and continuous non-convexity.
Historically, the optimization-based approach to machine learning has been virtually a syn-
onym of continuous optimization. Estimation in continuous parameter spaces in some cases
allows for closed-form solutions (such as in least-squares regression), or if not we can resort
to computing gradients (for smooth continuous functions) or subgradients (for non-smooth
continuous functions) which give us a generic tool for finding a local optimum of an arbitrary
continuous function (global optimum if the continuous function is convex). On the contrary,
unless P=NP there is no general tool to efficiently optimize discrete functions. We suspect
this is one of the reasons why machine learning has traditionally been formulated in terms
of continuous optimization: it is indeed convenient to compute gradients or subgradients
and delegate optimization to some off-the-shelf gradient-based algorithm.

The formulation we introduce in this paper is non-convex, but discrete rather than con-
tinuous. By being non-convex we will attempt at capturing some of the expressive power
of continuous non-convex formulations (such as robustness to labeling noise), and by being
discrete we will retain the ability of convex formulations to provide theoretical guarantees in
optimization. There are highly non-trivial classes of non-convex discrete functions defined
over exponentially large discrete spaces which can be optimized efficiently. This is, after all,
the main topic of combinatorial optimization. Discrete functions factored over cliques of
low-treewidth graphs can be optimized efficiently via dynamic programming [3]. Arbitrary
submodular functions can be minimized in polynomial time [4]. Particular submodular
functions can be optimized very efficiently using max-flow algorithms [5]. Discrete functions
defined over other particular classes of graphs also have polynomial-time algorithms (planar
graphs [6], perfect graphs [7]). And of course although many discrete optimization prob-
lems are NP-hard, several have efficient constant-factor approximations [8]. In addition to
all that, much progress has been done recently on developing tight LP relaxations for hard
combinatorial problems [9]. Although all these discrete approaches have been widely used
for solving inference problems in machine learning settings, we argue in this paper that they
should also be used to solve estimation problems, or learning per se.

The discrete approach does pose several new questions though, which we list at the end. Our
contribution is to outline the overall framework in terms of a few key ideas and assumptions,
as well as to empirically evaluate in real-world datasets particular model instances within
the framework. Although these instances are very simple, they already display important
desirable behavior that is missing in state-of-the-art estimators such as SVMs.

2 Desiderata

We want to rethink the problem of learning a linear binary classifier. In this section we
list the features that we would like a general-purpose learning machine for this problem to
possess. These features essentially guide the assumptions behind our framework.

Option to decouple modeling from optimization: As discussed in the introduction,
this is the great appeal of convex formulations, and we would like to retain it. Note however
that we want the option, not necessarily a mandate of always decoupling modeling from
optimization. We want to be able to please the user who is not an optimization expert or
doesn’t have the time or resources to refine the optimizer, by having the option of requesting
the learning machine to configure itself in a mode in which global optimization is guaranteed
and the runtime of optimization is precisely predictable. However we also want to please the
user who is an expert, and is willing to spend a lot of time in refining the optimizer, to achieve
the best possible results regardless of training time considerations. In our framework, we
have the option to explore the spectrum between simpler models in which we can generate
precise estimates of the runtime of the whole algorithm, and more complex models where
we can focus on boosted performance at the expense of runtime predictability or demand
for expert-exclusive fine-tuning skills.

Option of Simplicity: This point is related to the previous one, but it’s more general.
The complexity of a learning algorithm is a great barrier for its dissemination, even if it
promises exceptional results once properly implemented. Most users of machine learning
are not machine learning experts themselves, and for them in particular the cost of getting
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a complex algorithm to work often outweighs the accuracy gains, especially if a reasonably
good solution can be obtained with a very simple algorithm. For instance, in our framework
the user has the option of reducing the learning algorithm to a series of matrix multiplications
and lookup operations, while having a precise estimate of the total runtime of the algorithm
and retaining good performance.

Robustness to label noise: SVMs are considered state-of-the-art estimators for binary
classifiers, as well as boosting and logistic regression. All these optimize convex loss func-
tions. However, when label noise is present, convex loss functions inflict arbitrarily large
penalty on misclassifications because they are unbounded. In other words, in high label
noise settings these convex loss functions become poor proxies for the 0/1 loss (the loss we
really care about). This fundamental limitation of convex loss functions is well understood
theoretically [1]. The fact that the loss function of interest is itself discrete is indeed a hint
that maybe we should investigate discrete surrogates rather than continuous surrogates for
the 0/1 loss: optimizing discrete functions over continuous spaces is hard, but not necessarily
over discrete spaces. In our framework we directly address this issue.

Ability to achieve sparsity: Often we need to estimate sparse models. This can be for
several reasons, including interpretability (be able to tell which are the ‘most important’ fea-
tures), efficiency (at prediction time we can only afford to use a limited number of features)
or, importantly, for purely statistical reasons (constraining the solution to low-dimensional
subspaces has a regularization effect). The standard convex approach uses `1 regularization.
However the assumptions required to make `1-regularized models be actually good proxies
for the support cardinality function (`0 pseudo-norm) are very strong and in practice rarely
met [10]. In fact this has motivated an entire new line of work on structured sparsity, which
tries to further regularize the solution so as to obtain better statistical properties in high
dimensions [11, 12, 13]. This however comes at the price of more expensive optimization
algorithms. Ideally we would like to regularize with `0 directly ; maybe this suggests the
possibility of exploring an inherently discrete formulation? In our approach we have the
ability to perform direct regularization via the `0 pseudo-norm, or other scale-invariant
regularizers.

Leverage the power of low-dimensional approximations: Machine learning folklore
has it that the Naive Bayes assumption (features conditionally independent given the class
label) often produces remarkably good classifiers. So a natural question is: is it really
necessary to work directly in the original high-dimensional space, such as SVMs do? A
key aspect of our framework is that we explicitly exploit the concept of composing a high-
dimensional model from low-dimensional pieces. However we go beyond the Naive Bayes
assumption by constructing graphs that model dependencies between variables. By varying
the properties of these graphs we can trade-off model complexity and optimization efficiency
in a straightforward manner.

3 Basic Setting

Much of current machine learning research studies estimators of the type

argmin
θ∈Θ

∑
n

`(yn, f(xn; θ)) + λΩ(θ) (1)

where {xn, yn} is a training set of inputs x ∈ X and outputs y ∈ Y, assumed sampled
independently from an unknown probability measure P on X × Y. f : X → Y is a member
of a given class of predictors parameterized by θ, Θ is a continuous space such as a Hilbert
space, and ` as well as Ω are continuous and convex functions of θ. ` is a loss function which
enforces a penalty whenever f(xn) 6= yn, and therefore the first term in (1) measures the
total loss incurred by predictor f on the training sample {xn, yn} under parameterization θ.
Ω controls the complexity of θ so as to avoid overfitting, and λ trades-off the importance of a
good fit to the training set versus model parsimony, so that good generalization is hopefully
achieved.

Problem (1) is often called regularized empirical risk minimization, since the first term is
the risk (expected loss) under the empirical distribution of the training data, and the second
is a regularizer. This formulation is used for regression (Y continuous) as well as classifica-
tion and structured prediction (Y discrete). Logistic Regression, Regularized Least-Squares
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Regression, SVMs, CRFs, structured SVMs, Lasso, Group Lasso and a variety of other es-
timators are all instances of (1) for particular choices of `, f , Θ and Ω. The formulation in
(1) is a very general formulation for machine learning under the i.i.d. assumption.

In this paper we study problem (1) under the assumption that the parameter space Θ is
discrete and finite, focusing on binary classification, when Y = {−1, 1}.

4 Formulation

Our formulation departs from the one in (1) in two ways. The first assumption is that both
the loss ` and the regularizer Ω are additive on low-dimensional functions defined by a graph
G = (V,E), i.e.,

`(y, f(x; θ)) =
∑
c∈C

`c(y, fc(x; θc)) (2)

Ω(θ) =
∑
c∈C′

Ωc(θc) (3)

where C ∪ C′ is the set of maximal cliques in G. Note that (3) is standard: `1 and `2
norms for example are both additive on singletons (in which case C′ = V ). The arguably
strong assumption here is (2). C is the set of parts where each part c is, in principle, an
arbitrary subset of {1, . . . , D}, where D is the dimensionality of the parameterization, i.e.,
θ = (θ1, . . . , θD). `c is a low-dimensional discrete surrogate for `, and fc is a low-dimensional
predictor, both to be defined below. Note that in general two parameter subvectors θci and
θcj are not independent since the cliques ci and cj can overlap. Indeed, one of the key
reasons sustaining the power of this formulation is that all θc are coupled either directly or
indirectly through the connected graph G = (V,E).

The second assumption is that Θ is discrete and therefore the vector θ = (θ1, . . . , θD) is
discrete in the sense that θi is only allowed to take on finitely many values, including the
value 0 (this will be important when we discuss regularization). For simplicity of exposition
let’s assume that the number of discrete values (bins) for each θi is the same: B. B can be
potentially quite large, for example it can be in the hundreds.

Random Projections. An instance x above in reality is not the raw feature vector but
instead a random projection of it into a space of the same or higher dimension, i.e., we
effectively apply X = RX ′ where X ′ is the original data matrix, R is a random matrix with
entries drawn from N(0, 1) and X is the new data matrix. This often provides improved
performance for our model due to the spreading of higher-order dependencies over lower-
order cliques (when mapping to a higher dimensional space) and also is motivated from a
theoretical argument (section 6). In what follows x is the feature vector after the projection.

Low-Dimensional Predictor. We will assume a standard linear predictor of the kind

fc(x; θ) = argmax
y∈{−1,1}

y 〈xc, θc〉 = sign 〈xc, θc〉 (4)

In other words, we have a linear classifier that only considers the features in clique c.1

Low-Dimensional Discrete Surrogates for the 0/1 loss The low-dimensional discrete
surrogate for the 0/1 loss is simply defined as the 0/1 loss incurred by predictor fc:

`c(y; fc(x; θ)) = (1− yfc(x; θ))/2 (5)

A key observation now is that fc and therefore `c can be computed in O(Bk) by full enu-
meration over the Bk instantiations of θc, where k is the size of clique c. In other words,
the 0/1 loss constrained to the discretized subspace defined by clique c can be exactly and
efficiently computed (for small cliques).

Regularization. One critical technical issue is that linear predictors of the kind
argmaxy 〈φ(x, y), θ〉 are insensitive to scalings of θ [14]. Therefore, the loss ` will be such
that `(y, f(x;αθ)) = `(y, f(x; θ)) for α 6= 0. This means that any regularizer that depends

1For notational simplicity we assume an offset parameter is already included in θc and a corre-
sponding entry of 1 is appended to the vector xc.
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on scale (such as `1 and `2 norms) is effectively meaningless since the minimization in (1)
will drive Ω(θ) to 0 (as this doesn’t affect the loss). In other words, in such discrete setting
we need a scale-invariant regularizer, such as the `0 pseudo-norm. Note that `0 is trivial to
implement in this formulation, as we have enforced that the zero value must be included in
the set of B values attainable by each θi:

Ω(θ) = `0(θ) =
∑
i

1θi 6=0 (6)

In addition, since this regularizer is additive on singletons θi, it comes for free the fact that
it does not contribute to the complexity of inference in the graphical model (i.e., it is a
unary potential), which is a convenient property. Nothing prevents us however from having
group regularizers, for example of the form

∑
c∈C′ λc1θc 6=0. Again, we can trade-off model

simplicity and optimization efficiency by controlling the size of the maximal clique in C′.

Final optimization Problem. After compiling the low-dimensional discrete proxies for
the 0/1 loss (the functions lc) and incorporating our regularizer, we can assemble the fol-
lowing optimization problem

argmin
θ∈Θ

∑
c∈C

N∑
n=1

`c(y
n, fc(x

n; θc))︸ ︷︷ ︸
:=−Nψc(θc)

+

D∑
i=1

λ1θi 6=0︸ ︷︷ ︸
:=−λφi(θi)

(7)

which is a relaxation of (1) under all the above assumptions. The critical observation
now is that (7) is a MAP inference problem in a discrete graphical model with clique set
C, high-order clique potentials ψc(θc) and unary potentials φi(θi) [15]. Therefore we can
resort to the vast literature on inference in graphical models to find exact or approximate
solutions for (7). For example, if G = (V,E) is a tree, then (7) can be solved exactly
and efficiently using a dynamic programming algorithm that only requires matrix-vector
multiplications in the (min,+) semiring, in addition to elementary lookup operations [3].
For more general graphs the problem (7) can become NP-hard, but even in that case there
are several principled approaches that often find excellent solutions, such as those based
on linear programming relaxations [9] for tightly outer-bounding the marginal polytope
[16]. In the experimental section we explore several options for constructing G, from simply
generating a random chain (where MAP inference can be solved efficiently by dynamic
programming) to generating dense random graphs (where MAP inference requires a more
sophisticated approach such as an LP relaxation).

5 Related Work

The most closely related work we found is a recent paper by Potetz [17]. In a similar spirit
to our approach, it also addresses the problem of estimating linear binary classifiers in a
discrete formulation. However, instead of composing low-dimensional discrete surrogates of
the 0/1 loss as we do, it instead uses a fully connected factor graph and performs inference by
estimating the mean of the max-marginals rather than MAP. Inference is approached using
message-passing, which for the fully connected graph reduces to an intractable knapsack
problem. In order to obtain a tractable model, the problem is then relaxed to a linear
multiple choice knapsack problem, which can be solved efficiently. All the experiments
though are performed on very low-dimensional datasets2 and it is unclear how this approach
would scale to high dimensionality while keeping a fully connected graph.

6 Analysis

Here we sketch arguments supporting the assumptions driving our formulation. Obtaining a
rigorous theoretical analysis is left as an open problem for future research. Our assumptions
involve three approximations of the problem of 0/1 loss minimization. First, the discretiza-
tion of the parameter space. Second, the computation of low-dimensional proxies for the
0/1 loss rather than attacking the 0/1 loss directly in the resulting discrete space. Finally,
the use of a graph G = (V,E) which in general will be sparse, i.e., not fully connected. We
now discuss each of these assumptions.

2Seven datasets with dimensionalities 7,9,10,11,14,15 and 61. See [17].

5



6.1 Discretization of the parameter space

The explicit enforcement of a finite number of possible values for each parameter may seem at
first a strong assumption. However, a key observation here is that we are restricting ourselves
to linear predictors, which basically means that, for any sample, small perturbations of a
random hyperplane will with high probability induce at most small changes in the 0/1 loss.
Therefore there are good reasons to believe that indeed, for linear predictors, increasing
binning has a diminishing returns behavior and after only a moderate amount of bins no
much improvement can be obtained. This assumption is also used in [17].

6.2 Low-dimensional proxies for the 0/1 loss

This assumption can be justified using recent results stating that the margin is well-preserved
under random projections to low-dimensional subspaces [18, 19]. For instance, Theorem 6 in
[19] shows that the margin is preserved with high probability for embeddings with dimension
only logarithmic on the sample size (a result similar in spirit to the Johnson-Lindenstrauss
Lemma [20]). Since the (soft)margin upper bounds the 0/1 loss, this should also be preserved
with at least equivalent guarantees.

6.3 Graph sparsity

This is apparently the strongest assumption. In our formulation, we impose conditional
independence assumptions on the set of random variables used as features. There are two
main observations. The first is that in real high-dimensional data the existence of (ap-
proximate) conditional independences is more of a rule than an exception. This is directly
related to the fact that usually high-dimensional data inhabit low-dimensional manifolds
or subspaces. In our case, we have a graph with the nodes representing different features,
and this can be seen as a patching of low-dimensional subspaces, where each subspace is
defined by one of the cliques in the graph. We do not address in this work how to optimally
determine a subgraph, leaving that as an open problem in this framework. Rather, we show
that even with random subgraphs, and in particular subgraphs as simple as chains, we can
obtain models that have high accuracy and remarkable robustness to high degrees of label
noise. The second observation is that nothing prevents us from using quite dense graphs
and seeking approximate rather than exact MAP inference, say through LP relaxations [9].
Indeed we illustrate this possibility in the experimental section below.

7 Experiments

Settings. To evaluate our method (DISCRETE) for binary classification problems, we
apply it to real-world datasets and compared it to linear Support Vector Machines (SVM),
which are a state-of-the-art estimator for linear classifiers. We note that although both use
linear predictors, the model classes are not identical: since we use discretization, the set of
hyperplanes our estimator will optimize over is strictly smaller. We run these algorithms on
publicly available datasets from the UCI machine learning repository [21]. See Table 1 for
the details of these datasets. For both algorithms, the only hyperparameter is the trade-
off between the loss and the regularization term. We run 5-fold cross validation for both
methods to select the optimal hyperparameters. The number of bins used for discretization
may affect the accuracy of DISCRETE. For the experiments, we fix it to 11, since for larger
values there was negligible improvement (which supports our argument from section 6.1).

Robustness to Label Noise. In the first experiment, we test the robustness of different
methods to increasing label noise. We first flip the labels of the training data with increasing
probability from 0 to 0.4 and then run these algorithms on the noisy training data. The plots
of the classification accuracy at each noise level are shown in Figure 1. For DISCRETE, we
used as the graph G a random chain, i.e., the simplest possible option for a connected graph.
In this case, optimization is straightforward via a Viterbi algorithm: a sequence of matrix-
vector multiplications in the (min,+) semiring with trivial bookkeeping and subsequential
lookup, which will run in O(B2D) since we have B states per variable and D variables. To
assess the effect of randomization, we run on 20 random chains and plot both the average
and the standard error obtained. The impact of randomization seems negligible. From
Figure 1, DISCRETE demonstrates classification accuracy only slightly inferior to SVM in
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(a) GISETTE (b) MNIST 5 vs 6 (c) A2A

(d) USPS 8 vs 9 (e) ISOLET (f) ACOUSTIC

Figure 1: Comparison of the Discrete Method and Linear SVM

the noiseless regime (i.e., when the hinge loss is a good proxy for the 0/1 loss). However,
as soon as a significant amount of label noise is present, SVM degrades substantially while
DISCRETE remains remarkably stable, delivering high accuracy even after flipping labels
with 40% probability. We believe these are significant results given the truly elementary
nature of the optimization procedure: the method is simple, fast and the runtime can be
predicted with high accuracy since there is a determined number of operations; 2(D − 1)
messages are passed, each with worst-case runtime of O(B2) determined by the matrix-
vector multiplication. Note in particular how this differs from continuous optimization
settings in which the analysis is in terms of rate of convergence rather than the precise
number of discrete operations performed. It is also interesting to observe that for different
values of the cross-validation parameter our algorithm runs in precisely the same amount of
time, while for SVMs convergence will be much slower for small scalings of the regularizer
since the relative importance of the non-differentiable hinge loss over the strongly convex
quadratic term increases. This experiment shows that even if we have the simplest setting
of our formulation (random chains, which comes with very fast and exact MAP inference)
we can still obtain results that are close or similar to those obtained by the state-of-the-art
linear SVM classifier in the noiseless case, and superior for high levels of label noise.

Evaluation without Noise. As seen in Figure 1, in the noiseless (or small noise) regime
SVM is often slightly superior to our random chain model. A natural question to ask is
therefore how would more complex graph topologies perform. Here we run experiments
on two other types of graphs: a random 2-chain (i.e. a random junction tree with cliques
{i, i+ 1, i+ 2}) and a random k-regular graph, where k is set to be such that the resulting
graph has 10% of the possible edges. For the 2-chain, the optimization algorithm is exact
inference via (min,+) message-passing, just as the Viterbi algorithm, but now applied to
a larger clique, which increases the memory and runtime cost by O(B). For the random
graph, we obtain a more complex topology in which exact inference is intractable. In our
experiments we used the approximate inference algorithm from [22], which solves optimally
and efficiently an LP relaxation via the alternating direction method of multipliers, ADMM
[23].
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Table 1: Datasets used for the experiments in Figure 1

GISETTE MNIST A2A USPS ISOLET ACOUSTIC
# Train 6000 10205 2265 950 480 19705
# Test 1000 1134 30296 237 120 78823

# Features 5000 784 123 256 617 50

Table 2: Error rates of different methods for binary classification, without label noise. In
this setting, the hinge loss used by SVM is an excellent proxy for the 0/1 loss. Yet, the
proposed variants (top 3 rows) are still competitive in most datasets.

GISETTE MNIST A2A USPS ISOLET ACOUSTIC
random chain 89.23 93.79 82.55 97.51 100 76.01
random 2-chain 89 94.47 82.65 97.78 100 76.55
random graph 88.6 94.89 83.17 97.44 100 74.80
SVM 97.7 96.47 83.88 98.4 100 76.01

8 Extensions and Open Problems

Clearly the results in this paper are only a first step in the direction proposed. Several
questions arise from this formulation.

Theory. In section 6 we only sketched the reasons why we pursued the assumptions laid
out in this paper. We did not present any rigorous quantitative arguments analyzing the
limitations of our formulation. This is left as an open problem. However we believe section
6 does point to the key ideas that will ultimately underly a quantitative theory.

Extension to multi-class and structured prediction. In this work we only study
binary classification problems. The extension to multi-class and structured prediction, as
well as other learning settings is an open problem.

Adaptive binning. When discretizing the parameters, we used a fixed number of bins.
This can be made more elaborate through the use of adaptive binning techniques that are
dependent on the information content of each variable.

Informative graph construction. We only explored randomly generated graphs. The
problem of selecting a graph topology in an informative way is highly relevant and is left
open. For example B-matching can be used to generate an informative regular graph [24].
This problem is essentially a manifold learning problem and there are several ways it could
be approached. Existing work on supervised manifold learning is very relevant here.

Nonparametric extension. We considered only linear parametric models. It would be
interesting to consider nonparametric models, where the discretization occurs at the level of
parameters associated with each training instance (as in the dual formulation of SVMs).

9 Conclusion

We presented a discrete formulation for learning linear binary classifiers. Parameters associ-
ated with features of the linear model are discretized into bins, and low-dimensional discrete
surrogates of the 0/1 loss restricted to small groups of features are constructed. This results
in a data structure that can be seen as a graphical model, where regularized risk minimiza-
tion can be performed via MAP inference. We sketch theoretical arguments supporting the
assumptions underlying our proposal and present empirical evidence that very simple, easily
and quickly trainable models estimated with such a procedure can deliver results that are
often comparable to those obtained by linear SVMs for noiseless scenarios, and superior
under moderate to severe label noise.
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