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Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by pro-
gressive impairment of memory and other cognitive functions. Regression analy-
sis has been studied to relate neuroimaging measures to cognitive status. However,
whether these measures have further predictive power to infer a trajectory of cog-
nitive performance over time is still an under-explored butimportant topic in AD
research. We propose a novel high-order multi-task learning model to address this
issue. The proposed model explores the temporal correlations existing in imag-
ing and cognitive data by structured sparsity-inducing norms. The sparsity of the
model enables the selection of a small number of imaging measures while main-
taining high prediction accuracy. The empirical studies, using the longitudinal
imaging and cognitive data of the ADNI cohort, have yielded promising results.

1 Introduction

Neuroimaging is a powerful tool for characterizing neurodegenerative process in the progression
of Alzheimer’s disease (AD). Neuroimaging measures have been widely studied to predict disease
status and/or cognitive performance [1, 2, 3, 4, 5, 6, 7]. However, whether these measures have
further predictive power to infer a trajectory of cognitiveperformance over time is still an under-
explored yet important topic in AD research. A simple strategy typically used in longitudinal studies
(e.g., [8]) is to analyze a single summarized value such as averagechange, rate of change, or slope.
This approach may be inadequate to distinguish the completedynamics of cognitive trajectories
and thus become unable to identify underlying neurodegenerative mechanism. Figure 1 shows a
schematic example. Let us look at the plot of Cognitive Score2. The red and blue groups can be
easily separated by their complete trajectories. However,given very similar score values at the time
points of t0 and t3, any of the aforementioned summarized values may not be sufficient to identify the
group difference. Therefore, if longitudinal cognitive outcomes are available, it would be beneficial
to use the complete information for the identification of relevant imaging markers [9, 10].

∗Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) database (adni.loni.ucla.edu). As such, the investigators within the ADNI contributed to
the design and implementation of ADNI and/or provided data but did not participate in analysis or writ-
ing of this report. A complete listing of ADNI investigatorscan be found at: http://adni.loni.ucla.edu/wp-
content/uploads/howto apply/ADNI AcknowledgementList.pdf.
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Figure 1: Longitudinal multi-task regression of cognitivetrajectories on MRI measures.

However, how to identify the temporal imaging features thatpredict longitudinal outcomes is a chal-
lenging machine learning problem. First, the input data andresponse measures often are high-order
tensors, not regular data/label matrix. For example, both input neuroimaging measures (samples×
features× time) and output cognitive scores (samples× scores× time) are 3D tensors. Thus, it is
not trivial to build the longitudinal learning model for tensor data. Second, the associations between
features and a specific task (e.g.cognitive score) at two consecutive time points are often correlated.
How to efficiently include such correlations of associations cross time is unclear. Third, some longi-
tudinal learning tasks are often interrelated to each other. For example, it is well known that [3, 4] in
RAVLT assessment, the total number of words remembered by the participants in the first 5 learning
trials heavily impacts the total number of words which can berecalled in the 6th learning trial, and
the results of these two measures both partially determinesthe final recognition rate after 30 minutes
delay. How to integrate such tasks correlations into longitudinal learning model is under-explored.

In this paper, we focus on the problem of predicting longitudinal cognitive trajectories using neu-
roimaging measures. We propose a novel high-order multi-task feature learning approach to iden-
tify longitudinal neuroimaging markers that can accurately predict cognitive scores over all the time
points. The sparsity-inducing norms are introduced to integrate the correlations existing in both
features and tasks. As a result, the selected imaging markers can fully differentiate the entire lon-
gitudinal trajectory of relevant scores and better capturethe associations between imaging markers
and cognitive changes over time. Because the structured sparsity-inducing norms enforce the cor-
relations along two directions of the learned coefficient tensor, the parameters in different sparsity
norms are tangled together by distinct structures and lead to a difficult optimization problem. We
derive an efficient algorithm to solve the proposed high-order multi-task feature learning objective
with closed form solution in each iteration. We further prove the global convergence of our algo-
rithm. We apply the proposed longitudinal multi-task regression method to the ADNI cohort. In
our experiments, the proposed method not only achieves competitive prediction accuracy but also
identifies a small number of imaging markers that are consistent with prior knowledge.

2 High-Order Multi-Task Feature Learning Using Sparsity-I nducing Norms

For AD progression prediction using longitudinal phenotypic markers, the input imaging features
are a set of matricesX = {X1, X2, . . . , XT } ∈ R

d×n×T corresponding to the measurements at
T consecutive time points, whereXt is the phenotypic measurements for a certain type of imaging
markers, such as voxel-based morphometry (VBM) markers (see details in Section 3) used in this
study, at timet (1 ≤ t ≤ T ). Obviously,X is a tensor data withd imaging features,n subject
samples andT time points. The output cognitive assessments for the same set of subjects are a set of
matricesY = {Y1, Y2, . . . , YT } ∈ R

n×c×T for a certain type of the cognitive measurements, such
as RAVLT memory scores (see details in Section 3), at the sameT consecutive time points. Again,
Y is a tensor data withn samples,c scores, andT time points. Our goal is to learn from{X ,Y} a
model that can reveal the longitudinal associations between the imaging and cognitive trajectories,
by which we expect to better understand how the variations ofdifferent regions of human brains
affect the AD progression, such that we can improve the diagnosis and treatment to the disease.

Prior regression analyses typically study the associations between imaging features and cognitive
measures at each time point separately, which is equivalentto assume that the learning tasks,i.e.,
cognitive measures, at different time points are independent. Although this assumption can sim-
plify the problem and make the solution easier to obtain, it overlooks the temporal correlations of
imaging and cognitive measures. To address this, we proposeto jointly learn a single longitudinal
regression model for the all time points to identify imagingmarkers which are associated to cog-
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Figure 2:Left : visualization of the coefficient tensorB learned for the association study on longi-
tudinal data.Middle : the matrix unfolded fromB along the first mode (feature dimension).Right:
the matrix unfolded fromB along the second mode (task dimension).

nitive patterns. As a result, we aim to learn a coefficient tensor (a stack of coefficient matrices)
B = {B1, · · · , Bn} ∈ R

d×c×T , as illustrated in the left panel of Figure 2, to reveal the temporal
changes of the coefficient matrices. Given the additional time dimension, our problem becomes a
difficult high-order data analysis problem, which we call ashigh-order multi-task learning.

2.1 Longitudinal Multi-Task Feature Learning

In order to associate the imaging markers and the cognitive measures, the multivariate regression
model was used in traditional association studies, which minimizes the following objective:

min
B

J0 =

∥

∥

∥
B ⊗1 X

T −Y
∥

∥

∥

2

F
+ α ‖B‖22 =

T
∑

t=1

||XT
t Bt − Yt||

2
F + α

T
∑

t=1

d
∑

k=1

||bk
t ||

2
2 . (1)

wherebk
t denotes thek-th row of coefficient matrixBt at timet. Apparently, the objectiveJ0 in

Eq. (1) can be decoupled for each individual time point. Therefore it does not take into account the
longitudinal correlations between imaging features and cognitive measures. Because our goal in the
association study is to select the imaging markers which areconnected to the temporal changes of
all the cognitive measures, theT groups of regression tasks at different time points should not be
decoupled and have to be performed simultaneously. To achieve this, we select imaging markers
correlated to all the cognitive measures at all time points by introducing the sparse regularization
[11, 12, 13] into the longitudinal data regression and feature selection model as follows:

min
B

J1 =

T
∑

t=1

||XT
t Bt − Yt||

2
F + α

d
∑

k=1

√

√

√

√

T
∑

t=1

||bk
t ||

2
2 =

T
∑

t=1

||XT
t Bt − Yt||

2
F + α

∥

∥B(1)

∥

∥

2,1
, (2)

where we denoteunfoldk (B) = B(k) ∈ R
Ik×(I1...Ik−1Ik+1...In) as the unfolding operation to a gen-

eraln-mode tensorB along thek-th mode, andB(1) = unfold1 (B) = [B1, . . . , BT ] as illustrated
in the middle panel of Figure 2. By solving the objectiveJ1, the imaging features with common
influences across all the time points for all the cognitive measures will be selected due to the second
term in Eq. (2), which is a tensor extension of the widely usedℓ2,1-norm for matrix.

2.2 High-Order Multi-Task Correlations

The objectiveJ1 in Eq. (2) couples all the learning tasks together, which, though, still does not ad-
dress the correlations among different learning tasks at different time points. As discussed earlier,
during the AD progression, many cognitive measures are interrelated together and their effects dur-
ing the process could overlap, thus it is necessary to further develop the objectiveJ1 in Eq. (2) to
leverage the useful information conveyed by the correlations among different cognitive measures.
In order to capture the longitudinal patterns of the AD data,we consider two types of tasks corre-
lations. First, for an individual cognitive measure, although its association to the imaging features
at different stages of the disease could be different, its associations patterns at two consecutive time
points tend to be similar [9]. Second, we know that [4, 14] during the AD progression, different
cognitive measures are interrelated to each other. Mathematically speaking, the above two types of
correlations can both be described by the low ranks of the coefficient matrices unfolded from the
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coefficient tensor along different modes. Thus we further develop our learning model in Eq. (2) to
impose additional low rank regularizations to exploit these task correlations.

Let B(2) = unfold2 (B) =
[

BT
1 , . . . , B

T
T

]

as illustrated in the right panel of Figure 2, we minimize
the ranks ofB(1) andB(2) to capture the two types of task correlations, one for each type, as follows:

min
B

J2 =

T
∑

t=1

||XT
t Bt − Yt||

2
F + α

∥

∥B(1)

∥

∥

2,1
+ β

(∥

∥B(1)

∥

∥

∗
+

∥

∥B(2)

∥

∥

∗

)

, (3)

where‖·‖∗ denote the trace norm of a matrix. Given a matrixM ∈ R
n×m and its singular

valuesσi (1 ≤ i ≤ min (n,m)), the trace norm ofM is defined as‖M‖∗ =
∑min (n,m)

i=1 σi =

Tr
(

MMT
)

1
2 . It has been shown that [15, 16, 17] the trace-norm is the bestconvex approximation

of the rank-norm. Therefore, the third and fourth terms ofJ2 in Eq. (3) indeed minimize the rank of
the unfolded learning modelB, such that the two types of correlations among the learning tasks at
different time points can be utilized. Due to its capabilities for both imaging marker selection and
task correlation integration on longitudinal data, we callJ2 defined in Eq. (3) as the proposedHigh-
Order Multi-Task Feature Learningmodel, by which we will study the problem of longitudinal data
analysis to predict cognitive trajectories and identify relevant imaging markers.

2.3 New Optimization Algorithm and Its Global Convergence

Despite its nice properties, our new objectiveJ2 in Eq. (3) is a non-smooth convex problem. Some
existing methods can solve it, but not efficiently. Thus, in this subsection we will derive a new
efficient algorithm to solve this optimization problem withglobal convergence proof, where we
employ an iteratively reweighted method [18] to deal with the non-smooth regularization terms.

Taking the derivative of the objectiveJ2 in Eq. (3) with respect toBt and set it as 0, we obtain1:

2XtX
T
t Bt − 2XtYt + 2αDBt + 2β

(

D̄Bt +BtD̂
)

= 0 , (4)

whereD is a diagonal matrix withD (i, i) = 1

2
√

∑

T
t=1‖bk

t ‖
2

2

, D̄ = 1
2

(

B(1)B
T
(1)

)−1/2

andD̂ =

1
2

(

B(2)B
T
(2)

)−1/2

. We can re-write Eq. (4) as following:
(

XtX
T
t + αD + βD̄

)

Bt + βBtD̂ = XtYt , (5)

which is a Sylvester equation and can be solved in closed form. When the timet changes from 1 to
T , we can calculateBt (1 ≤ t ≤ T ) by solving Eq. (5). BecauseD, D̄ andD̂ are dependent onB
and can be seen as latent variables, we propose an iterative algorithm to obtain the global optimum
solutions ofBt (1 ≤ t ≤ T ), which is summarized in Algorithm 1.

Convergence analysis of the new algorithm.We first prove the following two useful lemmas, by
which we will prove the convergence of Algorithm 1.

Lemma 1 Given a constantα > 0, for functionf (x) = x − x2

2α , we havef (x) ≤ f (α) for any
x ∈ R. The equality holds if and only ifx = α.

The proof of Lemma 1 is obvious and skipped due to space limit.

Lemma 2 Given two semi-positive definite matricesA andÃ, the following inequality holds:

tr
(

Ã
1
2

)

−
1

2
tr
(

ÃA
−

1
2

)

≤ tr
(

A
1
2

)

−
1

2
tr
(

AA
−

1
2

)

. (6)

The equality holds if and only ifA = Ã.
1‖M‖2,1 is a non-smooth function ofM and not differentiable when one of its rowmi

= 0. Following

[18], we introduce a small perturbationζ > 0 to replace‖M‖2,1 by
∑

i

√

‖mi‖22 + ζ, which is smooth and

differentiable with respect toM . Apparently,
∑

i

√

‖mi‖22 + ζ is reduced to‖M‖2,1 whenζ → 0. In the

sequel of this paper, we implicitly apply this replacement for all ‖·‖2,1. Following the same idea, we also

introduce a small perturbationξ > 0 to replace‖M‖
∗

by tr
(

MMT
+ ξI

)
1
2 for the same reason.
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Algorithm 1: A new algorithm to solve the optimization problem in Eq. (3).
Data: X = [X1, X2, . . . , XT ] ∈ R

d×n×T , Y = [Y1, Y2, . . . , YT ] ∈ R
n×c×T .

1. Setg = 1. InitializeB
(1)
t ∈ R

d×c (1 ≤ t ≤ T ) using the linear regression results at each individual time point.
repeat

2. Calculate the diagonal matrixD(g) , where thei-th diagonal element is computed asD(g) (i, i) = 1

2

√

∑T
t=1

∥

∥

∥

∥

b
(g),k
t

∥

∥

∥

∥

2

2

;

calculateD̄(g) = 1
2

(

B
(g)

(1)

(

B
(g)

(1)

)T
)

−
1
2

; calculateD̂(g) = 1
2

(

B
(g)

(2)

(

B
(g)

(2)

)T
)

−
1
2

.

3. UpdateB(g+1)
t (1 ≤ t ≤ T ) by solving the Sylvester equation in Eq. (5).

4. g = g + 1.
until Converges

Result: B = [B1, B2, . . . , BT ] ∈ R
d×c×T .

Proof : BecauseA and Ã are two semi-positive definite matrices and we know thattr
(

AÃ
)

=

tr
(

ÃA
)

, we can derive:

tr
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1
2 − 2Ã

1
2 + ÃA

−
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2
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= tr
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1
2
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1
4
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1
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=

∥

∥

∥
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−
1
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(

A
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∥

∥
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F
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(7)

by which we have the following inequalitytr
(

Ã
1
2

)

− 1
2 tr

(

ÃA− 1
2

)

≤ 1
2 tr

(

A
1
2

)

, which is equiv-

alent to Eq. (6) and completes the proof of Lemma 2. �

Now we prove the convergence of Algorithm 1, which is summarized by the following theorem.

Theorem 1 Algorithm 1 monotonically decreases the objective of the problem in Eq.(3) in each
iteration, and converges to the globally optimal solution.

Proof : In Algorithm 1, we denote the updatedBt in each iteration as̃Bt. We also denote the
least square loss in theg-th iteration asL(g) =

∑T
t=1 ||X

T
t B

(g)
t − Yt||

2
F . According to Step 3 of

Algorithm 1 we know that the following inequality holds:
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t

)

.

(8)

Denote the updatedB(1) asB̃(1), and the updatedB(2) asB̃(1), from Eq. (8) we can derive:

L(g+1)
+ α tr

(

B̃
T
(1)DB̃(1)

)

+ β tr
(
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T
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(9)

According to the definitions ofD, D̄ andD̂, we have:
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2
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(10)

Then according to Lemma 1 and Lemma 2, the following three inequalities hold:
√

√

√

√

T
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||b
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Adding the both sides of of Eqs. (10–13) together, we can obtain:

L(g+1) + α

d
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k=1

√

√

√
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T
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Thus, our algorithm decreases the objective value of Eq. (3)in each iteration. When the objective
value keeps unchange, Eq. (4) is satisfied,i.e., the K.K.T. condition of the objective is satisfied.
Thus, our algorithm reaches one of the optimal solutions. Because the objective in Eq. (3) is a
convex problem, Algorithm 1 will converge to one of the globally optimal solution. �

3 Experiments

We evaluate the proposed method by applying it to the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) cohort to examine the association between a wide range of imaging measures and two types
of cognitive measures over a certain period of time. Our goalis to discover a compact set of imaging
markers that are closely related to cognitive trajectories.

Imaging markers and cognitive measures.Data used in this work were obtained from the ADNI
database (adni.loni.ucla.edu). One goal of ADNI has been to test whether serial MRI, PET,
other biological markers, and clinical and neuropsychological assessment can be combined to mea-
sure the progression of Mild Cognitive Impairment (MCI) andearly AD. For up-to-date information,
seewww.adni-info.org. We downloaded 1.5 T MRI scans and demographic information for
821 ADNI-1 participants. We performed voxel-based morphometry (VBM) on the MRI data by
following [8], and extracted mean modulated gray matter (GM) measures for 90 target regions of
interest (ROIs) (see Figure 3 for the ROI list and detailed definitions of these ROIs in [3]). These
measures were adjusted for the baseline intracranial volume (ICV) using the regression weights de-
rived from the healthy control (HC) participants at the baseline. We also downloaded the longitudinal
scores of the participants in two independent cognitive assessments including Fluency Test and Rey’s
Auditory Verbal Learning Test (RAVLT). The details of thesecognitive assessments can be found
in the ADNI procedure manuals2. The time points examined in this study for both imaging markers
and cognitive assessments included baseline (BL), Month 6 (M6), Month 12 (M12) and Month 24
(M24). All the participants with no missing BL/M6/M12/M24 MRI measurements and cognitive
measures were included in this study. A total of 417 subjectswere involved in our study, including
84 AD, and 191 MCI and 142 HC participants. We examined 3 RAVLTscores RAVLTTOTAL,
RAVLT TOT6 and RAVLTRECOG, and 2 Fluency scores FLUANIM and FLU VEG.

3.1 Improved Cognitive Score Prediction from Longitudinal Imaging Markers

We first evaluate the proposed method by applying it to the ADNI cohort for predicting the two types
of cognitive scores using the VBM markers, tracked over fourdifferent time points. Our goal in this
experiment is to improve the prediction performance.

Experimental setting. We compare the proposed method against its two close counterparts includ-
ing multivariate linear regression (LR) and ridge regression (RR). LR is the simplest and widely
used regression model in statistical learning and brain image analysis. RR is a regularized version
of LR to avoid over-fitting. Due to their mathematical nature, these two methods are performed for

2http://www.adni-info.org/Scientists/ProceduresManuals.aspx
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Table 1: Performance comparison for memory score prediction measured by RMSE.
LR RR TGL Ours (ℓ2,1-norm only) Ours (trace norm only) Ours

RAVLT 0.380 0.341 0.318 0.306 0.301 0.283
Fluency 0.171 0.165 0.155 0.144 0.147 0.135

each cognitive measure at each time point separately, and thus they cannot make use of the temporal
correlation. We also compare our method to a recent longitudinal method, called as Temporal Group
Lasso Multi-Task Regression (TGL) [9]. TGL takes into account the longitudinal property of the
data, which, however, is designed to analyze only one singlememory score at a time. In contrast,
besides imposing structured sparsity via tensorℓ2,1-norm regularization for imaging marker selec-
tion, our new method also imposes two trace norm regularizations to capture the interrelationships
among different cognitive measures over the temporal dimension. Thus, the proposed method is
able to perform association study for all the relevant scores of a cognitive test at the same time,e.g.,
our method can simultaneously deal with the three RAVLT scores, or the two Fluency scores.

To evaluate the usefulness of each component of the proposedmethod, we implement three versions
of our method as follows. First, we only impose theℓ2,1-norm regularization on the unfolded co-
efficient tensorB along the feature mode, denoted as “ℓ2,1-norm only”. Second, we only impose
the trace norm regularizations on the two coefficient matrices unfolded from the coefficient tensorB
along the feature and task modes respectively, denoted as “trace norm only”. Finally, we implement
the full version of our new method that solves the proposed objective in Eq. (3). Note that, if no
regularization is imposed, our method is degenerated to thetraditional LR method.

To measure prediction performance, we use standard 5-fold cross-validation strategy by computing
the root mean square error (RMSE) between the predicted and actual values of the cognitive scores
on the testing data only. Specifically, the whole set of subjects are equally and randomly partitioned
into five subsets, and each time the subjects within one subset are selected as the testing samples
and all other subjects in the remaining four subsets are usedfor training the regression models. This
process is repeated for five times and average results are reported in Table 1. To treat all regression
tasks equally, data for each response variable is normalized to have zero mean and unit variance.

Experimental results. From Table 1 we can see that the proposed method is consistently better than
the three competing methods, which can be attributed to the following reasons. First, because LR
and RR methods by nature can only deal with one individual cognitive measure at one single time
point at a time, they cannot benefit from the correlations across different cognitive measures over the
entire time course. Second, although TGL method improves the previous two methods in that it does
take into account longitudinal data patterns, it still assumes all the test scores (i.e., learning tasks)
from one cognitive assessment to be independent, which, though, is not true in reality. For example,
it is well known that [3, 4] in RAVLT assessment, the total number of words remembered by the
participants in the first 5 learning trials (RAVLTTOTAL) heavily impacts the total number of words
which can be recalled in the 6th learning trial (RAVLTTOT6), and the results of these two measures
both partially determines the final recognition rate after 30 minutes delay (RAVLTRECOG). In
contrast, our new method considers allc learning tasks (c = 3 for RAVLT assessment andc =
2 for Fluency assessment) as an integral learning object as formulated in Eq. (3), such that their
correlations can be incorporated by the two imposed low-rank regularization terms.

Besides, we also observe that the two degenerated versions of the proposed method do not perform as
well as their full version counterpart, which provides a concrete evidence to support the necessities of
the component terms of our learning objective in Eq. (3) and justifies our motivation to imposeℓ2,1-
norm regularization for feature selection and trace norm regularization to capture task correlations.

3.2 Identification of Longitudinal Imaging Markers

Because one of the primary goals of our regression analysis is to identify a subset of imaging markers
which are highly correlated to the AD progression reflected by the cognitive changes over time.
Therefore, we examine the imaging markers identified by the proposed methods with respect to the
longitudinal changes encoded by the cognitive scores recorded at the four consecutive time points.

7



L
A
m
y
g
d
a
la

R
A
m
y
g
d
a
la

L
A
n
g
u
la
r

R
A
n
g
u
la
r

L
C
a
lc
a
ri
n
e

R
C
a
lc
a
ri
n
e

L
C
a
u
d
a
te

R
C
a
u
d
a
te

L
A
n
tC
in
g
u
la
te

R
A
n
tC
in
g
u
la
te

L
M
id
C
in
g
u
la
te

R
M
id
C
in
g
u
la
te

L
P
o
s
tC
in
g
u
la
te

R
P
o
s
tC
in
g
u
la
te

L
C
u
n
e
u
s

R
C
u
n
e
u
s

L
In
fF
ro
n
ta
l_
O
p
e
r

R
In
fF
ro
n
ta
l_
O
p
e
r

L
In
fO
rb
F
ro
n
ta
l

R
In
fO
rb
F
ro
n
ta
l

L
In
fF
ro
n
ta
l_
T
ri
a
n
g

R
In
fF
ro
n
ta
l_
T
ri
a
n
g

L
M
e
d
O
rb
F
ro
n
ta
l

R
M
e
d
O
rb
F
ro
n
ta
l

L
M
id
F
ro
n
ta
l

R
M
id
F
ro
n
ta
l

L
M
id
O
rb
F
ro
n
ta
l

R
M
id
O
rb
F
ro
n
ta
l

L
S
u
p
F
ro
n
ta
l

R
S
u
p
F
ro
n
ta
l

L
M
e
d
S
u
p
F
ro
n
ta
l

R
M
e
d
S
u
p
F
ro
n
ta
l

L
S
u
p
O
rb
F
ro
n
ta
l

R
S
u
p
O
rb
F
ro
n
ta
l

L
F
u
s
if
o
rm

R
F
u
s
if
o
rm

L
H
e
s
c
h
l

R
H
e
s
c
h
l

L
H
ip
p
o
c
a
m
p
u
s

R
H
ip
p
o
c
a
m
p
u
s

L
In
s
u
la

R
In
s
u
la

L
L
in
g
u
a
l

R
L
in
g
u
a
l

L
In
fO
c
c
ip
it
a
l

R
In
fO
c
c
ip
it
a
l

L
M
id
O
c
c
ip
it
a
l

R
M
id
O
c
c
ip
it
a
l

L
S
u
p
O
c
c
ip
it
a
l

R
S
u
p
O
c
c
ip
it
a
l

L
O
lf
a
c
to
ry

R
O
lf
a
c
to
ry

L
P
a
lli
d
u
m

R
P
a
lli
d
u
m

L
P
a
ra
h
ip
p

R
P
a
ra
h
ip
p

L
P
a
ra
c
e
n
tr
a
l

R
P
a
ra
c
e
n
tr
a
l

L
In
fP
a
ri
e
ta
l

R
In
fP
a
ri
e
ta
l

L
S
u
p
P
a
ri
e
ta
l

R
S
u
p
P
a
ri
e
ta
l

L
P
o
s
tc
e
n
tr
a
l

R
P
o
s
tc
e
n
tr
a
l

L
P
re
c
e
n
tr
a
l

R
P
re
c
e
n
tr
a
l

L
P
re
c
u
n
e
u
s

R
P
re
c
u
n
e
u
s

L
P
u
ta
m
e
n

R
P
u
ta
m
e
n

L
R
e
c
tu
s

R
R
e
c
tu
s

L
R
o
la
n
d
ic
_
O
p
e
r

R
R
o
la
n
d
ic
_
O
p
e
r

L
S
u
p
p
M
o
to
rA
re
a

R
S
u
p
p
M
o
to
rA
re
a

L
S
u
p
ra
m
a
rg

R
S
u
p
ra
m
a
rg

L
In
fT
e
m
p
o
ra
l

R
In
fT
e
m
p
o
ra
l

L
M
id
T
e
m
p
o
ra
l

R
M
id
T
e
m
p
o
ra
l

L
M
id
T
e
m
p
P
o
le

R
M
id
T
e
m
p
P
o
le

L
S
u
p
T
e
m
p
P
o
le

R
S
u
p
T
e
m
p
P
o
le

L
S
u
p
T
e
m
p
o
ra
l

R
S
u
p
T
e
m
p
o
ra
l

L
T
h
a
la
m
u
s

R
T
h
a
la
m
u
s

BL

M6

M12

M24
0.001

0.002

0.003

0.004

0.005

0.006

Figure 3: Top panel: Average regression weights of imaging markers for predicting three RAVLT
memory scores. Bottom panel: Top 10 average weights mapped onto the brain.

Shown in Figure 3 are (1) the heat map of the learned weights (magnitudes of the average regression
weights for all three RAVLT scores at each time point) of the VBM measures at different time points
calculated by our method; and (2) the top 10 weights mapped onto the brain anatomy. A first glance
at the heat map in Figure 3 indicates that the selected imaging markers have clear patterns that span
across all the four studied time points, which demonstratesthat these markers are longitudinally
stable and thereby can potentially serve as screening targets over the course of AD progression.

Moreover, we observe that the bilateral hippocampi and parahippocampal gyri are among the top
selected features. These findings are in accordance with theknown knowledge that in the patho-
logical pathway of AD, medial temporal lobe is firstly affected, followed by progressive neocortical
damage [19, 20]. Evidence of a significant atrophy of middle temporal region in AD patients has
also been observed in previous studies [21, 22, 23].

In summary, the identified longitudinally stable imaging markers are highly suggestive and strongly
agree with the existing research findings, which warrants the correctness of the discovered imaging-
cognition associations to reveal the complex relationships between MRI measures and cognitive
scores. This is important for both theoretical research andclinical practices for a better understand-
ing of AD mechanism.

4 Conclusion

To reveal the relationship between longitudinal cognitivemeasures and neuroimaging markers, we
have proposed a novel high-order multi-task feature learning model, which selects the longitudinal
imaging markers that can accurately predict cognitive measures at all the time points. As a result,
these imaging markers could fully differentiate the entirelongitudinal trajectory of relevant cognitive
measures and better capture the associations between imaging markers and cognitive changes over
time. To solve our new objective, which uses the non-smooth structured sparsity-inducing norms,
we have derived an iterative algorithm with a closed form solution in each iteration. We have further
proved our algorithm converges to the global optimal solution. The validations using ADNI imaging
and cognitive data have demonstrated the promise of our method.
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