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Abstract

Time delay is pervasive in neural information processing. To achieve real-time
tracking, it is critical to compensate the transmission and processing delays in a
neural system. In the present study we show that dynamical synapses with short-
term depression can enhance the mobility of a continuous attractor network to the
extent that the system tracks time-varying stimuli in a timely manner. The state
of the network can either track the instantaneous position of a moving stimulus
perfectly (with zero-lag) or lead it with an effectively constant time, in agreement
with experiments on the head-direction systems in rodents. The parameter regions
for delayed, perfect and anticipative tracking correspond to network states that are
static, ready-to-move and spontaneously moving, respectively, demonstrating the
strong correlation between tracking performance and the intrinsic dynamics of the
network. We also find that when the speed of the stimulus coincides with the
natural speed of the network state, the delay becomes effectively independent of
the stimulus amplitude.

1 Introduction

Time delay is pervasive in neural information processing. Its occurrence is due to the time for signals
to transmit in the neural pathways, e.g., 50-80 ms for electrical signals to propagate from the retina
to the primary visual cortex [13], and the time for neurons responding to inputs, which is in the
order of 10-20 ms. Delay is also inevitable for neural information processing. For a neural system
carrying out computations in the temporal domain, such as speech recognition and motor control,
input information needs to be integrated over time, which necessarily incur delays.

To achieve real-time tracking of fast moving objects, it is critical for a neural system to compensate
for the delay; otherwise, the object position perceived by the neural system will lag behind the
true object position considerably. A natural way to compensate for delays is to predict the future
position of the moving stimulus. Experimental findings suggested that delay compensations are
widely adopted in neural systems. A remarkable example is the head-direction (HD) systems in
rodents, which encode the head direction of a rodent in the horizontal plane relative to a static
environment [14, 17]. It was found that when the head of a rodent is moving continuously in space,
the direction perceived by the HD neurons in the postsubicular cortex has nearly zero-lag with
respect to the instantaneous position of the rodent head [18]. More interestingly, in the anterior
dorsal thalamic nucleus, the HD neurons perceive the future direction of the rodent head, leading the
current position by a constant time [3]. The similar anticipative behavior is also observed in the eye-
position neurons when animals make saccadic eye movement, the so-called saccadic remapping [16].
In human psychophysical experiments, the classic flash-lag effect also supports the notion of delay
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Figure 1: (a) Profiles of u (x, t) and Iext (x, t) in the absence of STD, where the center of mass of
the stimulus is moving with constant velocity v = 0.02a/τs. As shown, the profile of u (x, t) is
almost Gaussian. (b) The centers of mass of u (x, t) and Iext (x, t) as functions of time. Parameters:
ρ = 128/2π, a = 0.5, J0 =

√
2πa and ρJ0A = 1.0.

compensation [12]. In the experiment, a flash is perceived to lag behind a moving object, even
though they are physically aligned. The underlying cause is that the visual system predicts the
future position of the continuously moving object, but is unable do so for the unpredictable flash.

Depending on the available information, the brain may employ different strategies for delay com-
pensation. In the case of self-motion, such as an animal rotating its head actively or performing
saccadic eye movements, the motor command responsible for the motion can serve as a cue for
delay compensation. It was suggested that an efference copy of the motor command, called corol-
lary discharge, is sent to the corresponding internal representation system prior to the motion [18].
For the head rotation, the advanced time can be up to 20 ms; for the saccadic eye movement, the
advanced time is about 70 ms. In the case of tracking an external moving stimulus, the neural sys-
tem has to rely on the moving speed of the stimulus for prediction. Asymmetric neural interactions
have been proposed to drive the network states to catch up with changes in head directions [22] or
positions [4]. These may be achieved by the so-called conjunctive cells projecting neural signals
between successive modules in forward directions [10]. To explain the flash-lag effect, Nijhawan et
al. proposed a dynamical routing mechanism to compensate the transmission delay in the visual sys-
tem, in which retinal neurons dynamically choose a pathway according to the speed of the stimulus,
and transmit the signal directly to the future position in the cortex [13].

In this study we propose a novel mechanism of how a neural system compensates for the processing
delay. By the processing delay, we mean the time consumed by a neural system in response to
external inputs. The proposed mechanism does not require corollary discharge, or efforts of choosing
signal pathways, or specific network structures such as asymmetric interactions or conjunctive cells.
It is based on the short-term depression (STD) of synapses, the inherent and ubiquitous nature that
the synaptic efficacy of a neuron is reduced after firing due to the depletion of neurotransmitters [11].
It has been found that STD enhances the mobility of the states of neural networks [21, 9, 6]. The
underlying mechanism is that neurotransmitters become depleted in the active region of the network
states compared with the neighboring regions, thus increasing the likelihood of the locally active
network state to shift to its neighboring positions when it is tracking a continuously shifting stimulus.
When STD is sufficiently strong, the tracking state of the network can even overtake the moving
stimulus, demonstrating its potential for generating predictions.

2 The Model

We consider continuous attractor neural networks (CANNs) as the internal representation models
for continuous stimuli [7, 2, 15]. A CANN holds a continuous family of bump-shaped stationary
states, which form a subspace in which the neural system is neutrally stable [20]. This property
endows the neural system the capacity of tracking time-varying stimuli smoothly.

Consider a continuous stimulus x being encoded by a neural ensemble. The variable xmay represent
the orientation, the head direction, or the spatial location of an object. Neurons with preferred stimuli
x produce the maximum response when an external stimulus is present at x. Their preferred stimuli
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are uniformly distributed in the space −∞ < x < ∞. In the continuum limit, the dynamics of
the neural ensemble can be described by a CANN. We denote as u(x, t) the population-averaged
synaptic current to the neurons at position x and time t. The dynamics of u(x, t) is determined
by the external input, the lateral interactions among the neurons, and its relaxation towards zero
response. It is given by

τs
∂u (x, t)

∂t
= Iext (x, t) + ρ

∫
dx′J (x, x′) p (x′, t) r (x′, t)− u (x, t) , (1)

where τs is the synaptic time constant, which is typically in the order of 1 to 5 ms, Iext(x, t) the
external input, ρ the density of neurons, J(x, x′) the coupling between neurons at x and x′, and
r(x, t) is the firing rate of the neurons. The variable p(x, t) represents the fraction of available
neurotransmitters, which evolves according to [6, 19]

τd
∂p (x, t)

∂t
= 1− p (x, t)− τdβp (x, t) r (x, t) , (2)

where τd is the STD time scale, which is typically of the order of 102 ms. In this work, we choose
τd = 50τs. The STD effect is controlled by the parameter β, which can be considered as the fraction
of total neurotransmitters consumed per spike.

The actual forms of J(x, x′) and r(x, t) depend on the details of the neural dynamics. Here, for the
convenience of analysis, we choose them to be

J (x, x′) =
J0

a
√
2π

exp

[
− (x− x′)

2

2a2

]
, (3)

r (x, t) = Θ[u(x, t)]
u (x, t)

2

1 + kρ
∫
dx′u (x′, t)

2 , (4)

where J0 and a control the magnitude and range of the neuronal excitatory interactions respectively.
J(x, x′) is translationally invariant in the space x, since it is a function of (x−x′), which is essential
for the network state to be neutrally stable. In the expression for the firing rate, Θ is the step func-
tion. Here, the stabilizing effect of inhibitory interactions is achieved by the divisive normalization
operation in Eq. (4).

Let us consider first the case without STD by setting β = 0. Hence, p (x, t) = 1 in Eq. (1). For
k ≤ kc ≡ ρJ2

0/(8
√
2πa), the network holds a continuous family of Gaussian-shaped stationary

states when Iext(x, t) = 0. These stationary states are

ū (x) = ū0 exp

[
− (x− z)

2

4a2

]
. (5)

where ū is the rescaled variable ū ≡ ρJ0u, and ū0 is the rescaled bump height. The parameter z,
i.e., the center of the bump, is a free parameter, implying that the stationary state of the network can
be located anywhere in the space x.

Next, we consider the case that the network receives a moving input,

Iext(x, t) = A exp

[
− (x− z0(t))

2

4a2

]
, (6)

where A is the magnitude of the input and z0 the stimulus position.

Without loss of generality, we consider the stimulus position at time t = 0 to be z0 = 0, and the
stimulus moves at a constant speed thereafter, i.e., z0 = vt for t ≥ 0. Let s ≡ z(t) − z0(t) be the
displacement between the network state and the stimulus position. It has been shown that without
STD, the steady value of the displacement is determined by [5]

v = −As
τs

exp

(
− s2

8a2

)
. (7)

Note that s has the opposite sign of v, implying that the network state always trails behind the
stimulus (see Fig. 1(a)). This is due to the response delay of the network relative to the input.
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3 Tracking in the Presence of STD

The analysis of tracking in the presence of STD is more involved. Motivated by the nearly Gaussian-
shaped profile of the network states, we adopt a perturbation approach to solve the network dynam-
ics [5]. The key idea is to expand the network states as linear combinations of a set of orthonormal
basis functions corresponding to different distortion modes of the bump, that is,

u (x, t) =
∑
n

un (t)ψn (x− z) , (8)

1− p (x, t) =
∑
n

pn (t)ϕn (x− z) , (9)

where the basis functions are

ψn (x− z) =
1√√

2πa2nn!
Hn

(
x− z√

2a

)
exp

[
− (x− z)

2

4a2

]
, (10)

ϕn (x− z) =
1√√
πa2nn!

Hn

(
x− z

a

)
exp

[
− (x− z)

2

2a2

]
. (11)

Here, Hn is the nth-order Hermite polynomial function. ψn (x− z) and ϕn (x− z) have clear phys-
ical meanings. For instance, for n = 1, 2, 3, 4, they corresponds to, respectively, the height, the
position, the width and the skewness changes of the Gaussian bump. Depending on the approxima-
tion precision, we can take the above expansions up to a proper order, and substituting them into
Eqs. (1) and (2) to solve the network dynamics analytically.

Results obtained from the 11th order perturbation are shown in Fig. 2(a) for three representa-
tive cases. They depend on the rescaled inhibition k̄ ≡ k/kc and the rescaled STD strength
β̄ ≡ τdβ/(ρ

2J2
0 ). When STD is weak, the tracking state lags behind the stimulus. When the

STD strength increases to a critical value β̄perfect, s becomes effectively zero in a rather broad range
of stimulus velocity, achieving perfect tracking. When the STD strength is above the critical value,
the tracking state leads the stimulus.

Hence delay compensation in a tracking task can be implemented at two different levels. The first
one is perfect tracking, in which the tracking state has zero-lag with respect to the true stimulus
position independent of the stimulus speed. The second one is anticipative tracking, in which the
tracking state leads by a constant time τant relative to the stimulus position, that is, the tracking state
is at the position the stimulus will travel to at a later time τant. To achieve a constant anticipation
time, it requires the leading displacement to increase with the stimulus velocity proportionally, i.e.,
s = vτant. Both forms of delay compensation have been observed in the head-direction systems of
rodents, and may serve different functional purposes.

3.1 Prefect Tracking

To analyze the parameter regime for perfect tracking, it is instructive to consider the 1st order per-
turbation of the network dynamics, i.e.,

u [x− z (t)] = u0 (t) exp

[
− (x− z (t))

2

4a2

]
, (12)

p [x− z (t)] = 1− p0 (t) exp

[
− (x− z (t))

2

2a2

]
+ p1 (t)

[
x− z (t)

a

]
exp

[
− (x− z (t))

2

2a2

]
.

(13)
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Figure 2: (a) The dependence of the displacement between the bump and the stimulus on the velocity
of the moving stimulus for different values of β̄. Parameters: k̄ = 0.4 and Ā = 1.8. (b) The
dependence of β̄perfect on k̄ with Ā = 1.0. Symbols: simulations. Solid line: the predicted curve
of β̄perfect. Dashed line: the boundary separating the static and metastatic phases according to the
1st order perturbation [6]. Inset: the dependence of β̄perfect on Ā. Symbols: simulations. Lines:
theoretical prediction according to the 1st order perturbation.

Substituting them into Eqs. (1) and (2) and utilizing the orthogonality of the basis functions, we get
(see Supplementary Material)

τs
dū0
dt

=
ū20
B
√
2

(
1− p0

√
4

7

)
− ū0 + Āe−

(vt−z)2

8a2 , (14)

τs
2a

dz

dt
=

ū0
B

(
2

7

)3/2

p1 +
Ā

2ū0

(
vt− z

a

)
e−

(vt−z)2

8a2 , (15)

τs
dp0
dt

=
τs
τd

[
β̄ū20
B

(
1− p0

√
2

3

)
− p0

]
− τsp1

2a

dz

dt
, (16)

τs
p0

dp1
dt

= − τs
τd

[
1 +

β̄ū20
B

(
2

3

)3/2
]
p1
p0

+
τs
a

dz

dt
. (17)

At the steady state, dū0/dt = dp0/dt = dp1/dt = 0, and dz/dt = v. Furthermore, for a sufficiently
small displacements, i.e., |s|/a ≪ 1, one can approximate Ā exp[−(vt − z)2/(8a2)] ≈ Ā and
Ā[(vt − z)/a] exp[−(vt − z)2/(8a2)] ≈ −Ās/a. Solving the above equations, we find that s/a
can be expressed in terms of the variables ū0/Ā, τs/τd and vτd/a. When vτd/a ≪ 1, the rescaled
displacement s/a can be approximated by a power series expansion of the rescaled velocity vτd/a.
Since the displacement reverses sign when the velocity reverses, s/a is an odd function of vτd/a.
This means that s/a ≈ c1(vτd/a) + c3(vτd/a)

3. For perfect tracking in the low velocity limit, we
have c1 = 0 and find

s

a
= −C

2

ū0
Ā

τs
τd

(vτd
a

)3
, (18)

whereC is a parameter less than 1 (the detailed expression can be found in Supplementary Material).
For the network tracking a moving stimulus, the input magnitude cannot be too small. This means
that ū0/Ā is not a large number. Therefore, for tracking speeds up to vτd/a ∼ 1, the displacement
s is very small and can be regarded as zero effectively (see Fig. 2(a)). The velocity range in which
the tracking is effectively perfect is rather broad, since it scales as (τd/τs)1/3 ≫ 1.

Equation (18) is valid when β̄ takes a particular value. This ields an extimate of β̄perfect in the 1st

order perturbation. Its expression is derived in Supplementary Material and plotted in Fig. 2(b).
For reference, we also plot the boundary that separates the metastatic phase above it from the static
phase below, as reported in the study of intrinsic properties of CANNs with STD in [6]. In the static
phase, the bump is stable at any position, whereas in the metastatic phase, the static bump starts to
move spontanaeously once it is pushed. Hence we say that the phase boundary is in a ready-to-move
state. Fig. 2(b) shows that β̄perfect is just above the phase boundary. Indeed, when Ā approaches
0, the expression of β̄perfect reduces to the value of β̄ along the phase boundary for the 1st order
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Figure 3: (a) The anticipatory time as a function of the speed of the stimulus. Different sets of
parameters may correspond to different levels of anticipatory behavior. Parameter: k̄ = 0.4. The
numerical scales are estimated from parameters in [8]. (b) The contours of constant anticipatory
time in the space of rescaled inhibition k̄ and the rescaled STD strength β̄ in the limit of very small
stimulus speed. Dashed line: boundary separating the static and metastatic phases. Dotted line:
boundary separating the existence and non-existence phases of bumps. Calculations are done using
11th order perturbation.

perturbation. The inset of Fig. 2(b)) confirms that β̄perfect does not change significantly with Ā for
different values of k̄. This implies that the network with β̄ = β̄perfect exhibits effectively perfect
tracking performance because it is intrinsically in a ready-to-move state.

3.2 Anticipative Tracking

We further explore the network dynamics when the STD strength is higher than that for achieving
perfect tracking. By solving the network dynamics with the perturbation expansion up to the 11th

order, we obtain the relation between the displacement s and the stimulus speed v. The solid curve in
Fig. 2(a) shows that for strong STD, s increases linearly with v over a broad range of v. This implies
that the network achieves a constant anticipatory time τant over a broad range of the stimulus speed.

To gain insights into how the anticipation time depends on the stimulus speed, we consider the
regime of small displacements. In this regime, the rescaled displacement s/a can be approxi-
mated by a power series expansion of the rescaled velocity vτd/a, leading to s/a = c1(vτd/a) +
c3(vτd/a)

3. The coefficients c1and c3 are determined such that the anticipation time in the limit
v = 0 should be τant(0) = s/v, and that s/a reaches a maximum when v = vmax. This yields the
result

s

a
=
τant (0)

τd

[
vτd
a

− 1

3

(
a

vmaxτd

)2 (vτd
a

)3]
. (19)

Hence the anticipatory time is given by

τant (v) = τant (0)

(
1− v2

3v2max

)
. (20)

This shows that the anticipation time is effectively constant in a wide range of stimulus velocities, as
shown in Fig. 3(a). Even for v = 0.5vmax, the anticipation time is only reduced from its maximum
by 9%.

The contours of anticipatory times for slowly moving stimuli are shown in Fig. 3(b). Hence the
region of anticipative behavior effectively coincides with the metastatic phase, as indicated by the
region above the phase line (dashed) in Fig. 2(b). In summary, there is a direct correspondence
between delayed, perfect, and anticipative tracking on one hand, and the static, ready-to-move, and
spontaneously moving beahviors on the other. This demonstrates the strong correlation between the
tracking performance and the intrinsic behaviors of the CANN.

We compare the prediction of the model with experimental data. In a typical HD experiment of
rodents [8], τs = 1 ms, a = 28.5 degree/

√
2, and the anticipation time drops from 20 ms at v = 0

to 15 ms at v = 360 degree/s. Substituting into Eq. (19) and assuming τd = 50τs, these parameters
yield a slope of 0.41 at the origin and the maximum lead at vmaxτd/a = 1.03. This result can be
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compared favorably with the curve of β̄ = 0.022 in Fig. 2(a), where the slope at the origin is 0.45
and the maximum lead is located at vmaxτd/a = 1.01. Based on these parameters, the lowest curve
plotted in Fig. 3(a) is consistent with the real data in Fig. 4 of [8].
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Figure 4: Confluence points at natural
speeds. There are six curves in two
groups with different sets of parame-
ters. Curves in one group intersect at
the confluence point with the natural
speed at the corresponding value of β̄.
Symbols: simulations. Thin lines: pre-
diction of the displacement-velocity re-
lation by 11th order perturbation. L1:
natural speed at β̄ = 0.005. L2: nat-
ural speed at β̄ = 0.01. L3: the line
for natural tracking at high Ā limit. Pa-
rameter: k̄ = 0.3.

3.3 Natural Tracking

For strong enough STD, a CANN holds spontaneously moving bump states. The speed of the
spontaneously moving bump is an intrinsic property of the network depending only on the network
parameters. We call this the natural speed of the network, denoted as vnatural. An interesting issue is
the tracking performance of the network when the stimulus is moving at its natural speed.

Two sets of curves corresponding to two values of β̄ are shown in Fig. 4, when the stimulus am-
plitude Ā is sufficiently strong. The lines L1 and L2 indicate the corresponding natural speeds of
the system for these values of β̄. Remarkably, we obtain a confluence point of these curves at the
natural speed. This point is referred to as the natural tracking point. It has the important property
that the lag is independent of the stimulus amplitude. This independence of s from Ā persists in the
asymptotic limit of large Ā. In this limit, s approaches −vnaturalτs , corresponding to a delay time
of τs, showing that the response is limited by the synaptic time scale in this limit. This asymptotic
limit is described by the line L3 and is identical for all values of k̄ and β̄. Hence the invariant point
for natural tracking is given by (v, s) = (vnatural,−vnaturalτs) for all values of k̄ and β̄.

We also consider natural tracking in the weak Ā limit. Again we find a confluence point of the
displacement curves at the natural speed, but the delay time (and in some cases the anticipation
time) depends on the value of k̄. For example, at k̄ = 0.3, the natural tracking point traces out an
effectively linear curve in the space of v and s when β̄ increases, with a slope equal to 0.8τs. This
shows that the delay time is 0.8τs, effectively independent of β̄ at k̄ = 0.3. Since the delay time is
different from the value of τs applicable in the strong Ā limit, the natural tracking point is slowly
drifting from the weak to the strong Ā limit. However, the magnitude of the natural time delay
remains of the order of τs. This is confirmed by the analysis of the dynamical equations when the
stimulus speed is vnatural + δv in the weak Ā limit.

3.4 Extension to other CANNs

To investigate whether the delay compensation behavior and the prediction of the natural tracking
point are general features of CANN models, we consider a network with Mexican-hat couplings.
We replace J(x, x′) in Eq. (1) by

JMH (x, x′) = J0

[
1

2
−
(
x− x′

2a

)2
]
exp

[
− (x− x′)

2

2a2

]
, (21)

and r (x, t) in Eqs. (1) and (2) by

r (x, t) = Θ [u (x, t)]
u (x, t)

2

1 + u (x, t)
2 (22)
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Figure 5: (a) The dependence of anticipatory time on the stimulus speed in the Mexican-hat model.
Parameter: β = 0.003. (b) Natural speed of the network as a function of β. (c) Plot of s against v.
There is a confluence point at the natural speed of the system. L1: the natural speed of the system
at β = 0.0011. Common parameters: ρ = 128/ (2π) , J0 = 0.5 and a = 0.5.

Fig. 5 shows that the network exhibits the same behaviors as the model in Eqs. (1) and (2). As
shown in Fig. 5(a), the anticipatory times are effectively constant and similar in magnitude in the
range of stimulus speed comparable to experimental settings. In Fig. 5(b), the natural speed of the
bump is zero for β less than a critical value. As β increases, the natural speed increases from zero.
In Fig. 5(c), the displacement s is plotted as a function of the stimulus speed v. The invariance
of the displacement at the natural speed, independent of the stimulus amplitude, also appears in
the Mexican-hat model. The confluence point of the family of curves is close to the natural speed.
Furthermore, the displacement at the natural tracking point increases with the natural speed.

4 Conclusions

In the present study we have investigated a simple mechanism of how processing delays can be com-
pensated in neural information processing. The mechanism is based on the intrinsic dynamics of a
neural circuit, utilizing the STD property of neuronal synapses. The latter induces translational in-
stability of neural activities in a CANN and enhances the mobility of the network states in response
to external inputs. We found that for strong STD, the neural system can track moving stimuli with
either zero-lag or a lead of a constant time. The conditions for perfect and anticipative tracking hold
for a wide range of stimulus speeds, making them applicable in practice. By choosing biologically
plausible parameters, our model successfully justifies the experimentally observed delay compen-
sation behaviors. We also made an interesting prediction in the network dynamics, that is, when
the speed of the stimulus coincides with the natural speed of the network state, the delay becomes
effectively independent of the stimulus amplitude. We also studied more than one kind of CANN
models to confirm the generality of our results.

Compared with other delay compensation strategies relying on corollary discharge or dynamical
routing, the mechanism we propose here is fully dependent on the intrinsic dynamics of the network,
namely, the network automatically “adjusts” its tracking speed according to the input information.
There exists strong correlations between tracking performance and the intrinsic dynamics of the
network. The parameter regions for delayed, perfect and anticipative tracking correspond to network
states being static, ready-to-move and spontaneously moving, respectively. It has been suggested the
anticipative response of HD neurons in anterior dorsal thalamus is due to the corollary discharge of
motor neurons responsible for moving the head. However, experimental studies revealed that when
rats were moved passively (and hence no corollary discharge is available), either by hand or by a
chart, the anticipative response of HD neurons still exists and has an even larger leading time [1].
Our model provides a possible mechanism to describe this phenomenon.
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