
Supplements to “Gradient-based kernel dimension reduction for
feature extraction and variable selection”

A Table 1 with standard errors

The following is the experimental results with standard errors for Table 1. See the main body of the
paper for the experimental setting. The large standard errors in the KDR show that the optimization
sometimes fails to find the optimal projector.

gKDR
-FEX

gKDR
-FEXi

gKDR
-FEXv IADE SIR II KDR

gKDR-FEX
+KDR

(A) n = 100 0.1989 0.1639 0.2002 0.1372 0.2986 0.2807 0.0883
(0.0553) (0.0479) (0.0555) (0.0552) (0.1021) (0.3364) (0.1473)

(A) n = 200 0.1264 0.0995 0.1287 0.0857 0.2077 0.1175 0.0501
(0.0321) (0.0352) (0.0351) (0.0258) (0.0554) (0.2184) (0.0964)

(B) n = 100 0.1500 0.1358 0.1630 0.1690 0.3137 0.2138 0.1076
(0.0363) (0.0331) (0.0325) (0.0624) (0.0679) (0.2202) (0.0967)

(B) n = 200 0.0755 0.0750 0.0802 0.0940 0.2129 0.1440 0.0506
(0.0157) (0.0153) (0.0160) (0.0318) (0.0359) (0.2190) (0.0729)

(C) n = 200 0.1919 0.2322 0.1930 0.7724 0.7326 0.1479 0.1285
(0.0791) (0.1512) (0.0763) (0.1665) (0.0153) (0.1307) (0.0483)

(C) n = 400 0.1346 0.1372 0.1369 0.7863 0.7167 0.0897 0.0893
(0.0472) (0.0644) (0.0499) (0.1846) (0.0470) (0.0294) (0.0294)

Table 5: gKDE-FEX for synthetic data: mean discrepancies and standard errors (in brackets) over
100 runs.

B Consistency of the kernel estimator for the regression function

We discuss the consistency of the estimator
(
ĈXX + εnI

)−1
Ĉ

(n)
XY g for E[g(Y )|X = ·]. While this

consistency has been already proved in some literature suchas [2, 4, 8, 9] in various contexts, we
show the proof in our terminology for completeness.

Theorem 5. Let g ∈ HY and assume thatE[g(Y )|X = ·] ∈ R(Cν
XX) for ν ≥ 0, whereR(C0

XX)
for ν = 0 is interpreted asHX . If εn → 0 (n → ∞), then

∥∥(Ĉ(n)
XX + εnI

)−1
Ĉ

(n)
XY g − E[g(Y )|X = ·]

∥∥
HX

is of the order {
Op(ε

−1
n n−1/2) +O(ενn), for 0 ≤ ν < 1,

Op(ε
−1
n n−1/2) +O(εn), for ν ≥ 1.

Consequently, ifεn = n−max{ 1
4 ,

1
2ν+2}, then the estimator is consistent of the order

O
(
n−min{ 1

4 ,
ν

2ν+2}
)
.

Proof. Takeη ∈ HX such thatE[g(Y )|X = ·] = Cν
XXη. From the factCXXE[g(Y )|X = ·] =

CXY g ([5], Theorem 2), we haveCXY g = CXXE[g(Y )|X = ·] = Cν+1
XX η.

First, we show
∥∥(Ĉ(n)

XX + εnI
)−1

Ĉ
(n)
XY g − (CXX + εnI)

−1CXY g
∥∥
HX

= Op(ε
−1
n n−1/2) (n → ∞). (11)

SinceB−1 − A−1 = B−1(A − B)A−1 for any invertible operatorsA andB, the left hand side is
upper bounded by

∥∥(Ĉ(n)
XX + εnI

)−1(
CXX − Ĉ

(n)
XX

)
(CXX + εnI)

−1CXY g
∥∥
HX

+
∥∥(Ĉ(n)

XX + εnI
)−1(

Ĉ
(n)
XY − CXY

)
g
∥∥
HX

.
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FromCXY g = Cν+1
XX η, we have‖(CXX + εnI)

−1CXY g‖ ≤ ‖Cν
XXη‖HX

. Combination of this

fact with ‖Ĉ(n)
XX − CXX‖ = Op(n

−1/2) proves that the first term is of the orderOp(ε
−1
n n−1/2).

The second term is of the same order from‖Ĉ(n)
XY − CXY ‖ = Op(n

−1/2), which implies Eq. (11).

Next, we derive the upper bounds

∥∥(CXX + εnI
)−1

CXY g − E[g(Y )|X = ·]
∥∥
HX

=

{
O(ενn), for 0 ≤ ν < 1,

O(εn), for ν ≥ 1.
(12)

It follows fromE[g(Y )|X = ·] = Cν
XXη andCXY g = Cν+1

XX η that

(CXX + εnI)
−1CXY g − E[g(Y )|X = ·] = (CXX + εnI)

−1Cν+1
XX η − Cν

XXη.

Let CXX =
∑

i λiφi〈φi, ·〉 be the eigendecomposition ofCXX such thatλi > 0 are the
eigenvalues andφi are the ohorthonormal eigenvectors. The eigendespectrum of the operator
(CXX + εnI)

−1Cν+1
XX η − Cν

XX is then given by

λν+1
i

λi + εn
− λν

i =
λν
i εn

λi + εn
(i = 1, 2, . . .).

If 0 ≤ ν < 1, from λνεn
λ+εn

= ενn
λνε1−ν

n

λ+εn
≤ ενn

ε1−ν
n

(λ+εn)1−ν and
∣∣ ε1−ν

n

(λ+εn)1−ν

∣∣ ≤ 1 we have

‖(CXX + εnI)
−1Cν+1

XX η − Cν
XX‖ ≤ ενn.

If ν ≥ 1, then λνεn
λ+εn

≤ εn
λν

λ+εn
≤ εnλ

ν−1. It follows

‖(CXX + εnI)
−1Cν+1

XX η − Cν
XX‖ ≤ εn‖CXX‖ν−1.

From Eqs. (11) and (12), the proof is completed.

C Proof of Theorems in Section 2.4

Proof of Theorem 1.Note that, from Eqs. (6) and (7), the eigenvectors ofE[M(x)] is contained in
Span(B) if and only if ∂E[g(Y )|X = x]/∂x ∈ Span(B) for anyg ∈ HY almost surely.

Let B⊥ be anm × (m − d) matrix such thatBT
⊥B⊥ = Im−d and the column vectors ofB⊥ are

orthogonal to those ofB, and write(U, V ) = (BTX,BT
⊥X). Then, the condition∂E[g(Y )|X =

x]/∂x ∈ Span(B) almost surely is equivalent toE[g(Y )|(U, V ) = (u, v)] = E[g(Y )|U = u] for
anyg ∈ HY almost surely. SincekY is characteristic, this implies that the conditional probability of
Y given (U, V ) is equal to that ofY givenU , which means the desired conditional independence.

Proof of Theorem 2.Let ga = ∂kX (·,x)
∂xa . Since

Mab(x) =
〈〈

E[kY(∗, Y )|X = ·], ga〉HX
,
〈
E[kY(∗, Y )|X = ·], gb

〉
HX

〉
HY

=
〈
E[kY(∗, Y )|ga(X)], E[kY(∗, Y )|gb(X)]

〉
HY

and
M̂n,ab(x) =

〈
Ĉ

(n)
Y X

(
Ĉ

(n)
XX + εnI

)−1
ga, Ĉ

(n)
Y X

(
Ĉ

(n)
XX + εnI

)−1
gb
〉
HY

,

we have
∣∣M̂n,ab(x)−Mab(x)

∣∣

≤
∣∣〈Ĉ(n)

Y X

(
Ĉ

(n)
XX + εnI

)−1
ga, Ĉ

(n)
Y X

(
Ĉ

(n)
XX + εnI

)−1
gb − E[kY(∗, Y )|gb(X)]

〉
HY

∣∣

+
∣∣〈Ĉ(n)

Y X

(
Ĉ

(n)
XX + εnI

)−1
ga − E[kY(∗, Y )|ga(X)], E[kY(∗, Y )|gb(X)]

〉
HY

∣∣.

Notingεn
√
n → ∞ and the expression

(
Ĉ

(n)
XX + εnI

)−1
= (CXX + εnI)

−1
{
I −

(
CXX − Ĉ

(n)
XX

)
(CXX + εnI)

−1
}−1

,
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Lemma 4 in [9] shows‖
(
CXX−Ĉ

(n)
XX

)
(CXX+εnI)

−1‖HS = Op(ε
−1
n n−1/2). Notingεn

√
n → ∞

and the expression
(
Ĉ

(n)
XX + εnI

)−1
= (CXX + εnI)

−1
{
I −

(
CXX − Ĉ

(n)
XX

)
(CXX + εnI)

−1
}−1

,

we obtain ∥∥CXX

(
Ĉ

(n)
XX + εnI

)−1∥∥ = Op(1).

Fromga = Cβ+1
XX η for someη ∈ HX , we have‖Ĉ(n)

Y X

(
Ĉ

(n)
XX + εnI

)−1
ga‖ = Op(1). For the proof

of the first assertion of Theorem 2, it is then sufficient to prove the following theorem.

Theorem 6. Assume thatg ∈ HX satisfiesR(Cβ+1
XX ) for someβ ≥ 0 and thatE[kY(y, Y )|X =

·] ∈ HX for everyy ∈ Y. Then, forεn > 0 with εn = n−max{ 1
3 ,

1
2(β+1)

}, we have
∥∥Ĉ(n)

Y X

(
Ĉ

(n)
XX + εnIn

)−1
g − E[kY(·, Y )|g(X)]

∥∥
HY

= Op

(
n−min{ 1

3 ,
2β+1
4β+4}

)

asn → ∞.

Proof. It suffices to show
∥∥Ĉ(n)

Y X

(
Ĉ

(n)
XX + εnI

)−1
g − CY X

(
CXX + εnI

)−1
g
∥∥2
HY

= Op

(
ε−1/2
n n−1/2

)
(13)

and ∥∥CY X

(
CXX + εnI

)−1
g − E[kY(·, Y )|g(X)]

∥∥2
HY

= O
(
εmin{1,(2β+1)/2}
n

)
(14)

asn → ∞. In fact, optimizing the rate derives the assertion of the theorem.

Let g = Cβ+1
XX h, whereh ∈ HX . SinceB−1−A−1 = B−1(A−B)A−1 for any invertible operators

A andB, the left hand side of Eq. (13) is upper bounded by
∥∥Ĉ(n)

Y X

(
Ĉ

(n)
XX + εnI

)−1
(CXX − Ĉ

(n)
XX)

(
CXX + εnI

)−1
Cβ+1

XX h
∥∥
HY

+
∥∥(Ĉ(n)

Y X − CY X)
(
CXX + εnI

)−1
Cβ+1

XX h
∥∥
HY

.

By the decompositionĈ(n)
Y X = Ĉ

(n)1/2
Y Y ŴY XĈ

(n)1/2
XX with ‖ŴY X‖ ≤ 1 ([1]), we have

‖Ĉ(n)
Y X

(
Ĉ

(n)
XX + εnI

)−1‖ = O(ε
−1/2
n ). It is known that‖CXX − Ĉ

(n)
XX‖ = Op(n

−1/2). From these

two fact, we see that the first term is ofOp(ε
−1/2
n n−1/2). Since the second term is ofOp(n

−1/2),
Eq. (13) is obtained.

For Eq. (14), first note that for eachy

E[kY(y, Y )|g(X)] = 〈E[kY(y, Y )|X = ·], g〉 = 〈E[kY(y, Y )|X = ·], Cβ+1
XX h〉

= 〈CXXE[kY(y, Y )|X = ·], Cβ
XXh〉 = 〈CXY kY(y, ·), Cβ

XXh〉
= 〈kY(y, ·), CY XCβ

XXh〉 = (CY XCβ
XXh)(y),

which meansE[kY(·, Y )|g(X)] = CY XCβ
XXh. LetCY X = C

1/2
Y Y WY XC

1/2
XX be the decomposition

with ‖WY X‖ ≤ 1. Then, we have
∥∥CY X

(
CXX + εnI

)−1
g − E[kY(·, Y )|g(X)]

∥∥
HY

= ‖C1/2
Y Y WY X‖

∥∥Cβ+3/2
XX

(
CXX + εnI

)−1
h− C

β+1/2
XX h

∥∥
HY

.

Let{φi} be the unit eigenvectors ofCXX such thatCXXf =
∑

i λi〈φi, f〉. Then the eigenspectrum

of Cβ+3/2
XX

(
CXX + εnI

)−1 − C
β+1/2
XX is given by

−εnλ
(2β+1)/2
i

λi + εn
(i = 1, 2, . . .).

If 0 ≤ β < 1/2, we haveεnλ
(2β+1)/2
i

λi+εn
=

λ
(2β+1)/2
i

(λi+εn)(2β+1)/2

ε(1−2β)/2
n

(λi+εn)(1−2β)/2 ε
(2β+1)/2
n ≤ ε

(2β+1)/2
n . If

β ≥ 1/2, then εnλ
(2β+1)/2
i

λi+εn
≤ λ

β−1/2
i εn. We have thus Eq. (14), which completes the proof of

Theorem 6
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For the second assertion of Theorem 2, note

∥∥∥∥∥
1

n

n∑

i=1

M̂n(Xi)− E[M(X)]

∥∥∥∥∥
F

≤
∥∥∥∥∥
1

n

n∑

i=1

M̂n(Xi)−
1

n

n∑

i=1

M(Xi)

∥∥∥∥∥
F

+

∥∥∥∥∥
1

n

n∑

i=1

M(Xi)− E[M(X)]

∥∥∥∥∥
F

.

The second term in the right hand side is ofOp(n
−1/2) by the central limit theorem. By replacing

g andh in the proof of Theorem 6 by
∑n

i=1 gXi
/n and

∑n
i=1 hXi

/n, respectively, the assertion is
obtained as a corollary.

D Proof of Theorems in Section 3.2

The proof is essentially the same as that of Theorems 1 and 2 inChen et al. [3] with appropriate
change of the consistency rate, but we show the proofs for completeness.

Let St(m, d) denote the Stiefel manifold, that is, the space ofm× d matrixB with BTB = Id. We
first summarize fundamental facts on Stiefel manifolds (see[6] for details). ForB ∈ St(m, d), the
tangent space ofSt(m, d) atB is denoted byTB(m, d). It is known thatTB(m, d) is given by

TB(m, d) = {Z ∈ R
m×d | Z = BF +B⊥G,F ∈ R

d×d, F + FT = 0, G ∈ R
(m−d)×d},

whereB⊥ is a matrix inSt(m,m− d) such that(B,B⊥) ∈ O(m).

LetΠ denote the projection of a generalm× d matrix onto the Stiefel manifoldSt(m, d),

Π(W ) = arg min
B∈St(m,d)

‖B −W‖F .

Lemma 7. LetB ∈ St(m, d) andZ ∈ TB(m, d), then

Π(B + tZ) = B + tZ − t2

2
BZTZ +O(t3)

ast → 0.

LetQ(B) denote the objective function of gKDR-VS, i.e.,

Q(B) = −Tr[BT M̃nB] +

m∑

j=1

λj‖vj‖.

For B ∈ St(m, d), let [B] denote the corresponding element in Gramsmann manifoldGr(m, d),
which is the manifold ofd dimensional subspaces inRm. Note that the first term ofQ(B) depends
only on[B].

ForZ ∈ TB(m, d) consider a perturbationΠ(B + tZ). It is known [3] that ift is sufficiently small,
there existsG ∈ R

(m−d)×d such that

[Π(B + tZ)] = [Π(B + tB⊥G)]. (15)

We can thus use only theB⊥G component of the tangent space, when the contribution of perturba-
tion is considered in Gramsmann manifold .

Proof of Theorem 3.It suffices to prove that for anyε > 0 there isC > 0 such that

lim
n→∞

Pr
(

inf
Z∈TB0

(m,d),‖Z‖=C
Q(Π(B0 + n−τZ)) > Q(B0)

)
> 1− ε.
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Let ej ∈ R
d be the vector with thej-th component 1 and others 0. ForZ ∈ TB0

(m, d), using
Lemma 7 we have

n2τ
[
Q(Π(B0 + n−τZ))−Q(B0)

]

≥
[
−Tr[ZM̃nZ] + Tr[BT

0 M̃nB0Z
TZ]− 2nτTr[BT

0 M̃nZ]
]
(1 + op(1))

+

q∑

j=1

n2τλj

(∥∥∥eTj
(
B0 + n−τZ − n−2τ

2
B0Z

TZ
)∥∥∥− ‖v0j‖

)
(1 + op(1))

≥n2τ
[
−Tr[ZM̃nZ] + Tr[BT

0 M̃nB0Z
TZ]− 2nτTr[BT

0 M̃nZ]
]
(1 + op(1))

− qαnn
τ

2
max
1≤j≤q

‖eTj (Z − n−τ

2 B0Z
TZ)

∥∥∥
‖v0j‖

(1 + op(1)) (16)

where the first inequality holds byv0j = 0 for q + 1 ≤ j ≤ m, and the second one is given by
Taylor expansion.

By the assumptionv0j 6= 0 for 1 ≤ j ≤ q andαnn
τ → 0 asn → ∞, the second term of Eq. (16)

converges to zero in probability.

For the first term, note that from Eq. (15) we can assume thatZ = B0⊥G. SinceB0 consists of
the topd eigenvectors ofM , we haveBT

0 MB0 = Λ(d), whereΛ(d) is the diagonal matrix with the
largestd eigenvalues. We have

∣∣nτTr[BT
0 M̃nZ]

∣∣ ≤
∣∣nτTr

[
BT

0 (M̃n −M)Z]
∣∣+

∣∣nτTr
[
BT

0 MZ]
∣∣

≤
∣∣nτTr

[
BT

0 (M̃n −M)Z] + nτTr[Λ(d)B
T
0 B0⊥G]

= ‖Z‖FOp(1) + 0,

and

− Tr[ZM̃nZ] + Tr[BT
0 M̃nB0Z

TZ]

=− Tr[ZTMZ] + Tr[BT
0 MB0Z

TZ] +Op(n
−τ )

≥− ηd+1Tr[Z
TZ] + Tr[Λ(d)Z

TZ] +Op(n
−τ )

≥(ηd − ηd+1)‖Z‖2F +Op(n
−τ ).

It follows from the assumptionηd > ηd+1 that Eq. (16) is positive for sufficiently large‖Z‖, which
completes the proof.

Proof of Theorem 4.For simplicity we writeB̂ for B̂λ in the proof, andB̂ = (v̂T
1 , . . . , v̂

T
m)T =

(b̂1, . . . , b̂d). The optimization of gKDR-VS is written as

min f(B) + ρ(B) subject to

{
b
T
j bj = 1 (1 ≤ j ≤ m),

b
T
i bj = 0 (1 ≤ i < j ≤ m),

wheref(B) := −Tr[BT M̃nB] andρ(B) :=
∑m

j=1 λj‖vj‖.

Supposêvj 6= 0 for all j. Let t = vec(B). It is known [7] that in this case the Laglangian multiplier
rule gives

R∂f(B)

∂t

∣∣∣
t=t̂

+R∂ρ(B)

∂t

∣∣∣
t=t̂

= 0, (17)

where R = (I − UUT ) is the projection matrix with U =
(u11, . . . ,u1d,u22, . . . ,u2d, . . . ,ud−1,d−1,ud−1,d,udd) ∈ R

m×d(d+1)/2. Them× d-dimensional
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vectoruij is defined by

uii =




0
...
0

b̂i

0
...
0




i-th (1 ≤ i ≤ d), uij =




0
...
0

b̂j

0
...
0

b̂i

0
...
0




i-th

j-th

(1 ≤ i < j ≤ d).

Note thatuij (i < j) hasb̂j at thei-th block and̂bi at thej-th block, and thatUTU = Id(d+1)/2.

Let B̃ = argminB∈St(m,d) f(B), i.e., the topd eigenvectors ofM̃n. Then,R∂f(B)
∂t

∣∣
B=B̃

= 0. Since
∂f(B)
∂t

∣∣
B=B̃

is linear with respect tot, and sinceD(B̃, B0) = Op(n
−τ ) from perturbation theory

andD(B̂, B0) = Op(n
−τ ) from Theorem 3, we have

R∂ρ(B)

∂t

∣∣∣
t=t̂

= Op(n
−τ ).

By the definition ofR, there areγij ∈ R (1 ≤ i ≤ j ≤ d) such that

∂ρ(B)

∂t

∣∣∣
t=t̂

=
∑

i≤j

γijuij +Op(n
−τ ). (18)

Note that

∂ρ(B)

∂t

∣∣∣
t=t̂

=



Db̂1

...
Db̂d




with D = diag(λ1/‖v̂1‖, . . . , λm/‖v̂d‖), and‖∂ρ(B)
∂t ‖2 =

∑m
i=1

∑d
a=1 λ

2
i B̂

2
ia/‖v̂i‖2 = ‖λ‖2.

Taking inner product between Eq. (18) anduij derives

γij = (2− δij)

m∑

k=1

λk
B̂kiB̂kj

‖ṽk‖
+Op(n

−τ )

= (2− δij)

q∑

k=1

λk
B̂kiB̂kj

‖ṽk‖
+ (2− δij)

m∑

k=q+1

λkB̂ki
B̂kj

‖ṽk‖
+Op(n

−τ ).

From Theorem 3, the first term of the last line is ofOp(αn) and the second term is ofOp(‖λ‖n−τ ).
The norm of the left hand side of Eq. (18) is‖λ‖, while the norm of the right hand side isOp(αn +
‖λ‖n−τ + n−τ ). Since‖λ‖ ≥ βn, it contradicts with the assumptionαn � n−τ � βn. There
exists, therefore,j ≥ q + 1 such that̂vj = 0 with probability tending to one.

The rest of the proof is done in exactly the same deduction argument as the proof of Theorem 2 in
Chen et al. [3], and we omit it.
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E Detailed description of Boston Housing data

Variable Description
y MEDV Median value of homes in thousands of dollars
x1 CRIM Crime rate
x2 ZN Proportion of residential land zoned for lots over 25,000 sq. ft.
x3 INDUS Proportion of non-retail business acres (proxy for industry)
x4 CHAS Dummy variable indicating proximity to Charles River
x5 NOX Nitrogen oxide concentrations
x6 RM Average number of rooms
x7 AGE Proportion of units built prior to 1940
x8 DIS Weighted distances to major employment centers in area
x9 RAD Index of accessibility to radial highways
x10 TAX Property tax rate
x11 PTRATIO Pupil-Teacher ratio
x12 B Black proportion of population
x13 LSTAT Proportion of population that is lower socioeconomic status
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