Supplements to “Gradient-based kernel dimension reduction for
feature extraction and variable selection”

A Table 1 with standard errors

The following is the experimental results with standar@esifor Table 1. See the main body of the
paper for the experimental setting. The large standardsimdhe KDR show that the optimization
sometimes fails to find the optimal projector.

gkDR | gKDR | gKDR gKDR-FEX
-FEX | -FEXi | -FEXv || IADE | SIRII KDR +KDR
(A)n=100 || 0.1989 | 0.1639 | 0.2002 || 0.1372 | 0.2986 || 0.2807 | 0.0383
(0.0553) | (0.0479) | (0.0555) || (0.0552) | (0.1021) || (0.3364) | (0.1473)
(A)n=200 || 0.1264 | 0.0995 | 0.1287 || 0.0857 | 0.2077 || 0.1175 | 0.0501
(0.0321) | (0.0352) | (0.0351) || (0.0258) | (0.0554) || (0.2184) | (0.0964)
(B)n =100 | 0.1500 | 0.1358 | 0.1630 || 0.1690 | 0.3137 || 0.2138 | 0.1076
(0.0363) | (0.0331) | (0.0325) || (0.0624) | (0.0679) || (0.2202) | (0.0967)
(B)n =200 | 0.0755 | 0.0750 | 0.0802 || 0.0940 | 0.2129 | 0.1440 |  0.0506
(0.0157) | (0.0153) | (0.0160) || (0.0318) | (0.0359) || (0.2190) | (0.0729)
(C)n =200 || 0.1019 | 0.2322 | 0.1930 || 0.7724 | 0.7326 | 0.1479 | 0.1285
(0.0791) | (0.1512) | (0.0763) || (0.1665) | (0.0153) || (0.1307) | (0.0483)
(C)yn =400 | 0.1346 | 0.1372 | 0.1369 || 0.7863 | 0.7167 | 0.0897 0.0893
(0.0472) | (0.0644) | (0.0499) || (0.1846) | (0.0470) || (0.0294) | (0.0294)

Table 5: gKDE-FEX for synthetic data: mean discrepanciesstandard errors (in brackets) over
100 runs.

B Consistency of the kernel estimator for the regression fuction

We discuss the consistency of the estimi@gx + enI)_légg’,)/g for E[g(Y)|X = -]. While this
consistency has been already proved in some literatureasif® 4, 8, 9] in various contexts, we
show the proof in our terminology for completeness.

Theorem 5. Letg € Hy and assume that[g(Y)|X = -] € R(C% ) for v > 0, whereR(C% )
forv = O isinterpreted as{ . If ¢, — 0 (n — ), then

H( o) Vote ]) ng)/g*E[g(Y”X = ']HHX
is of the order
Op(etn=Y2) 4 0(e%), foro<wv<1,
O,(c; % n~12) 4+ O(e,), forv>1.

Consequently, ife,, = n~ (i) then the estimator is consistent of the order
O(nfmin{%,ﬁ}).

Proof. Taken € Hx such thatE[g(Y)|X = -] = C% yxn. From the facCxxE[g(Y)|X = -] =
Cxyg ([5], Theorem 2), we hav€'xy g = Cxx E[g(Y)|X =] = Ci/n.

First, we show
H X +enl)

SinceB~! — A=! = B~1(A — B)A~! for any invertible operatord and B, the left hand side is
upper bounded by

[0 g — (Cxx +ead)COxvyl,,, = Opler'n™2)  (n—c0). (11)

[(CF% +end) ™ (Cxx — CL%) (Cxx + snl)—lcxngH
+[(CX% +end) " (CRY = Cxv)aly,
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From Cxyg = C%n, we have||(Cxx + e,1) ' Cxy gl < [|C% xnll#.- Combination of this
fact with | C'k — Cxx|| = O,(n~'/2) proves that the first term is of the ordex, (<, n1/2).
The second term is of the same order frﬂﬁ‘\[g?}), — Cxy|| = O,(n~'/2), which implies Eq. (11).

Next, we derive the upper bounds

O(er), foro<wv<l,

-1 n
|(Cxx +end) Cxyg—E[g(Y)|X = ]HHX - {0(6n)7 forv > 1. (12)
It follows from E[g(Y)|X = ] = C% xn andCxy g = C%hln that
(Cxx +end) 'Oxvg = Blg(Y)|X =] = (Cxx +e,0) 'O n — Cxx.

Let Cxx = ) ,M\i¢i(¢i,-) be the eigendecomposition @fxx such thath; > 0 are the
eigenvalues and; are the ohorthonormal eigenvectors. The eigendespectfutinecoperator
(Cxx + e D) 1O — C% y is then given by

Ayt _ Me,

v

i +éen i_>\i+€n

(i=1,2,..).

A e /\u€117’—u v Si_y
If0<v <1, from{2e = ey 52 < e gy

”(CXX +é€n ) 1CV+177 OXXH < 5

1—v
ETL
and| Oy | <1we have

Nen A\ v—1
If v > 1, then ST Senyio < e, AV . It follows

1(Cxx +end) THOK N — Ckx|l < enllCxx "7

From Egs. (11) and (12), the proof is completed. O

C Proof of Theorems in Section 2.4

Proof of Theorem 1Note that, from Eqgs. (6) and (7), the eigenvector&g}/ (x)] is contained in
Span(B) ifand only if OE[g(Y)| X = z]/0x € Span(B) for anyg € Hy almost surely.

Let B, be anm x (m — d) matrix such tha'rBfBL = I,,_q and the column vectors dB; are

orthogonal to those aB, and write(U, V) = (BT X, BT X). Then, the conditio®@E[g(Y)|X =

x]/0z € Span(B) almost surely is equivalent t8g(Y)|(U,V) = (u,v)] = E[g(Y)|U = «] for

anyg € Hy almost surely. Sincgy, is characteristic, this implies that the conditional proibigy of

Y given (U, V) is equal to that ol given U, which means the desired conditional independence.
O

ak;g( I)
Oz

Man() = ((Blhy (5, V)X = o, (Blky (5 V)X = L)y, ),

= <E[k3’(*7 Y)|ga(X)L E[ky(*7 Y)|gb(X)]>Hy

Proof of Theorem 2Let g, = . Since

and
Maan(w) = (CY% (CK% +2nd) " 90 OV (CR% +ul) ),
we have
| My o () — Moy ()|
< (CY% (CX% +2nl) ™ 9as Oy (CKX +€nl) g = Elky (%, V)lgs (X)), |
+ (Y% (CY% +2nd) ™" ga — Elky(%,Y)lga(X)], Elky (5, Y)go(X)]),, |-

Noting e, v/n — oo and the expression

(C( XX +€nI) (CXX +€nI {I_ (OXX - CXX)(CXX +€7LI) 1}_17
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Lemma 4 in [9] show (Cxx—égg))()(CXx-i-EnI)_IHHs = O,(e;'n~1/2). Notinge,,\/n — o
and the expression
(CE% +end) ™ = (Cxx +ead) I = (Cxx — OF%) (Cxx +eal) 1},
we obtain N .
[Cxx (C¥% +en) || = Op(1).
+1

Fromg, = C2% for somen € H.x, we have|CL") (CF) +n1) ™ ga|l = O,(1). For the proof
of the first assertion of Theorem 2, it is then sufficient toverthe following theorem.

Theorem 6. Assume thay € Hy satisfieSR(Cf(}l) for someg > 0 and thatE[ky(y,Y)|X =
-] € Hx for everyy € Y. Then, fors,, > 0 withe,, = n~ ma"{%’ﬂﬁlﬂ)}, we have
~(n) 1 An -1 — min{1,28+1
|CYR (C%% + ) ™9 = Elhy(V)lg(X)][,,, = Op (n ™330
asn — oo.
Proof. It suffices to show
H@(}})( (5;;'))( + EnI)ilg — CYX (CXX + EnI)ilgHiy = Op(€;1/2n71/2) (13)

and
ICyx (Cxx +enl) g = Elky (- Y)lg(X)]|[5,, = O(emin{t@o+1/2} (14)

asn — oo. In fact, optimizing the rate derives the assertion of tletem.
Letg = Oy h, whereh € Hx. SinceB~! — A~! = B~'(A—B) A~ for any invertible operators
A and B, the left hand side of Eq. (13) is upper bounded by
() (Al -1 N(n -1
ICYX (CRx +end) ™ (Cxx — CX%) (Cxx +eal) ™ Oy,
+[[(CF% = Cyx)(Cxx +end) CER AL,

By the decompositionC\") = CUY2Wy xCG? with [Wyx|| < 1 ([1]), we have
ICE(CEY + D) = O(en?). Itis known that|Cx x — Y% || = O,(n~1/2). From these
two fact, we see that the first term is 6%, (¢,, />n~1/2). Since the second term is 6f,(n=1/2),
Eq. (13) is obtained.
For Eq. (14), first note that for eagh
Elky(y,Y)g(X)] = (Elky(y, Y)|X = ],9) = (Elky(y, V)X = ],C5K h)
= (CxxElky(y.Y)IX = ], CXxh) = (Cxvhy(y,), Cxxh)
= (ky(y, ), CyxCxxh) = (CyxCxxh) (),
which meangE[ky (-, Y)|g(X)] = Cy xC% « h. LetCy x = CLZ2Wy xCY% be the decomposition
with |[Wy x| < 1. Then, we have
Cyx (Cxx +enl) ™' g = Elky (- Y)lg(X)]|l,,,
= Wy x |CRE 2 (Cxx + end) ™ h = CRE PR, -
Let{¢;} be the unit eigenvectors 6fx x suchthaC'xx f = >, \i(¢s, f). Then the eigenspectrum
of CLE3/2 (Cxx +e,I) " — Ctl/? is given by
e, AT/

-t 1=1,2,...).
Ai +én ( T )
e APATD/2 (7202 (2B+1)/2 (28+1)/2
If 0 < B < 1/2, we have"5o— = i merom o0 e7Een <en f

\(284+1)/2

< AP=1/2- . We have thus Eq. (14), which completes the proof of

B > 1/2, then ==
Theorem 6

O
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For the second assertion of Theorem 2, note

=3 Ma(X0) - EIM(X)]
i=1

F

F F

The second term in the right hand side isa;f(nfl/Q) by the central limit theorem. By replacing
g andh in the proof of Theorem 6 by""" | gx,/n and> ", hx,/n, respectively, the assertion is
obtained as a corollary.

D Proof of Theorems in Section 3.2

The proof is essentially the same as that of Theorems 1 andChém et al. [3] with appropriate
change of the consistency rate, but we show the proofs foptzieness.

Let St(m, d) denote the Stiefel manifold, that is, the spacewk d matrix B with BT B = I,. We

first summarize fundamental facts on Stiefel manifolds {6kéor details). ForB € St(m, d), the

tangent space &ft(m, d) at B is denoted byl'z(m, d). It is known thatT’z(m, d) is given by
TB(m, d) — {Z E R"LXd | Z — BF+ BJ_G,F e Rdxd7F+ FT — O,G e R(m—d)xd})

whereB is a matrix inSt(m, m — d) such tha{ B, B, ) € O(m).
Let IT denote the projection of a generalx d matrix onto the Stiefel manifolft(m, d),

I(w) = i B-W|F.
(W) = arg pomin | 72
Lemma 7. LetB € St(m,d) andZ € Tg(m,d), then

t2
(B+tZ)=B+tZ — 5BZTZ + O(t%)
ast — 0.

Let Q(B) denote the objective function of gKDR-VS, i.e.,

Q(B) = ~Tx[B" M, B] + ) Ajllv,]l-

j=1

For B € St(m,d), let [B] denote the corresponding element in Gramsmann man@o(a, d),
which is the manifold ofi dimensional subspacesRi”. Note that the first term of)(B) depends
only on[B].

For Z € Ts(m, d) consider a perturbatiofi(B + tZ). It is known [3] that ift is sufficiently small,
there existgy € R(m~4)*d gych that

(B +tZ)] = [II(B + tB. G)]. (15)

We can thus use only the; G component of the tangent space, when the contribution ofi -
tion is considered in Gramsmann manifold .

Proof of Theorem 3lt suffices to prove that for aryy > 0 there isC' > 0 such that

lim Pr( QUI(By+n"7Z)) > Q(By)) >1—ce.

inf
n—oo ZETBO (m,d),||Z]|=C
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Lete; € R? be the vector with thg-th component 1 and others 0. F@r € Tp,(m,d), using
Lemma 7 we have

n*"[Q(II(By + n~"Z)) — Q(By)]
>[—Te[z01, 2] + T (BT M, ByZT Z] — 2nTTr[BOTMnZ]} (1+ 0,(1))

q

—|—Zn27/\j<

j=1

>n2" [—Tr[ZMnZ] + Te[BY M, Bo 27 Z) — 2n" Ty [BY M,LZ]} (1 + 0,(1))

n

;erosz> H - Hvoju)(l + 0,(1))

6JT (BO +n""T7Z —

qann” lef (2 - P B()ZTZ)H

X
2 1<5<q [l vojl|

(14 0p(1)) (16)

where the first inequality holds by,; = 0 for ¢ +1 < j < m, and the second one is given by
Taylor expansion.

By the assumptiow; # 0 for 1 < j < ¢ anda,n” — 0 asn — oo, the second term of Eq. (16)
converges to zero in probability.

For the first term, note that from Eq. (15) we can assumethat By, G. Since B, consists of
the topd eigenvectors of/, we haveBI M B, = A(a), WwhereA ) is the diagonal matrix with the
largestd eigenvalues. We have

|n"Tx[BJ M, Z]| < |n"Tx[BY (M, — M)Z]| + |n"Tx[B§ M Z)|
T

|n"Tr[BY (M,, — M)Z] + n"Tx[A(q) B{ Bo. G]

and
— Tx[ZM,, Z) + Tx[BT M, By ZT 7]
= - T[Z"MZ) + Tt[B MByZ" Z] + O, (n™")
> — a1 T (27 Z) + Te[A @y 27 Z] + Op(n™7)
> (14 = na+1) | Z|[E + Op(n™7).

It follows from the assumption, > 141 that Eq. (16) is positive for sufficiently larde?Z ||, which
completes the proof. 0

Proof of Theorem 4For simplicity we write B for B, in the proof, andB = (v7,...,vZ)T =
(by,...,bg). The optimization of gKDR-VS is written as

min f(B) 4+ p(B)  subject to {bj I 7=

wheref(B) := —Tr[BT M, B] andp(B) := 37", Aj||v;]l.

Suppose; # 0 for all j. Lett = vec(B). Itis known [7] that in this case the Laglangian multiplier
rule gives

RFB) L 0p(B)

=0 17

ot le=t ot le=t (7

where R = (I — UUT) is the projecton matrix with U =
(1111, ..., W1g,U22, ..., U2d, - - -, Ud—1,d—1, Ud—1,d, udd) S Rde(d+1)/2. Them x d-dimensional
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vectoru,; is defined by

0
0 0
: b, | i-th
0 0
wi=|b;|ith (1<i<d), w;=]: (1<i<j<d).
0 0
Bz j'th
0 0
0

Note thatu;; (i < ) hasﬁj at thei-th block andb; at thej-th block, and that/ " U = Ly(as1y/2-

Let B = arg mingesi(m.a) /(B), i-e., the topl eigenvectors ofZ,,. Then,R 225 | ,_5=0. Since

afa(tB) |B: is linear with respect ta, and sinceD(B, By) = O,(n~7) from perturbation theory

B
andD(B, By) = O,(n~7) from Theorem 3, we have

Ip(B)| —r
R ot ’t:f p(n 7).

By the definition ofR, there arey;; € R (1 < ¢ < j < d) such that

9p(B)

at ‘t_f: Z%juij + Op(n_T). (18)
n i<j
Note that
Db
op(B) [
ot le=% -
Dby
with D = diag\i/[[¥1]],- -, A /[19all), and [ 2282212 = S S~ N2B2 /|91 = [|A)J2

Taking inner product between Eq. (18) ang derives

- Eki-/B\k’
Yij = (2_5”)Z>\k ”‘7 ”J
k=1 k

+ Op(n™7)

~

ByiBy; SN L s By -
= (2*5”)Z>\k k~ kj +(2*5”) Z )\kBk1~7kJ+Op(n T).
= [l Mt [Vl

From Theorem 3, the first term of the last line is®f(«,,) and the second term is 6f, (|| A||n~7).
The norm of the left hand side of Eq. (18)|is]], while the norm of the right hand side,(«,, +
[[Aln~" + n~7). Since||A|| > B, it contradicts with the assumption, < n~" < j,. There
exists, thereforej > ¢ + 1 such that; = 0 with probability tending to one.

The rest of the proof is done in exactly the same deductionraegit as the proof of Theorem 2 in
Chen et al. [3], and we omit it. O
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E Detailed description of Boston Housing data

Variable | Description

y MEDV Median value of homes in thousands of dollars

x! CRIM Crime rate

x? ZN Proportion of residential land zoned for lots over 25,000fsq

3 INDUS | Proportion of non-retail business acres (proxy for indgstr

x? CHAS Dummy variable indicating proximity to Charles River

x° NOX Nitrogen oxide concentrations

20 RM Average number of rooms

x’ AGE Proportion of units built prior to 1940

8 DIS Weighted distances to major employment centers in area

z° RAD Index of accessibility to radial highways

z10 TAX Property tax rate

x!l | PTRATIO | Pupil-Teacher ratio

z'2 B Black proportion of population

z'3 | LSTAT | Proportion of population that is lower socioeconomic statu
References

[1] C.R. Baker. Joint measures and cross-covariance apsratans. Amer. Math. Socl86:273—
289, 1973.

[2] A. Caponnetto and E. De Vito. Optimal Rates for the Regedal Least-Squares Algorithm.
Foundations of Computational Mathemati@$3):331-368, 2007.

[3] X. Chen, C. Zou, and R. Dennis Cook. Coordinate-indepahdparse sufficient dimension
reduction and variable selectioAnn. Stat.38(6):3696—3723, 2010.

[4] F. Bauer, S. Pereverzev and L. Rosasco. On regularizatgorithms in learning theoryour-
nal of Complexity23(1):52-72, 2007.

[5] K. Fukumizu, F.R. Bach, and M.I. Jordan. Dimensionafigguction for supervised learning
with reproducing kernel Hilbert spaceiMLR 5:73-99, 2004.

[6] J.H. Manton. Optimization algorithms exploiting unmyaconstraints. IEEE Trans. Signal
Processing50(3):635—-650, 2002.

[7] T. Rapcék. On minimization on stiefel manifold&uro. J. Operational Research43(2):365
— 376, 2002.

[8] S. Smale, D.. Zhou. Shannon sampling Il: Connectiong&oring theory. Applied and Com-
putational Harmonic Analysis, Vol. 19, No. 3. (November 2)(p. 285-302.

[9] S. Smale and D. Zhou. Learning theory estimates via nafegperators and their approxima-
tions. Constructive Appxoximatio26:153-172, 2007.

16



