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Abstract

We consider the problem of recovering a sequence of vectors,(xk)
K
k=0, for which

the incrementsxk−xk−1 areSk-sparse (withSk typically smaller thanS1), based
on linear measurements(yk = Akxk + ek)

K
k=1, whereAk andek denote the mea-

surement matrix and noise, respectively. Assuming eachAk obeys the restricted
isometry property (RIP) of a certain order—depending only onSk—we show that
in the absence of noise a convex program, which minimizes theweighted sum
of the ℓ1-norm of successive differences subject to the linear measurement con-
straints, recovers the sequence(xk)

K
k=1 exactly. This is an interesting result be-

cause this convex program is equivalent to a standard compressive sensing prob-
lem with a highly-structured aggregate measurement matrixwhich does not satisfy
the RIP requirements in the standard sense, and yet we can achieve exact recov-
ery. In the presence of bounded noise, we propose a quadratically-constrained
convex program for recovery and derive bounds on the reconstruction error of the
sequence. We supplement our theoretical analysis with simulations and an ap-
plication to real video data. These further support the validity of the proposed
approach for acquisition and recovery of signals with time-varying sparsity.

1 Introduction

In the field of theoretical signal processing, compressive sensing (CS) has arguably been one of the
major developments of the past decade. This claim is supported in part by the deluge of research
efforts (see for example Rice University’s CS repository [1]) which has followed the inception of
this field [2, 3, 4]. CS considers the problem of acquiring andrecovering signals that are sparse
(or compressible) in a given basis using non-adaptive linear measurements, at a rate smaller than
what the Shannon-Nyquist theorem would require. The work [2, 4] derived conditions under which
a sparse signal can be recoveredexactly from a small set of non-adaptive linear measurements.
In [3], the authors propose a recovery algorithm for the caseof measurements contaminated by
bounded noise. They show that this algorithm is stable, thatis, within a constant of the noise
tolerance. Recovery of these sparse or compressible signals is performed using convex optimization
techniques.

The classic CS setting does not take into account the structure, e.g. temporal or spatial, of the
underlying high-dimensional sparse signals of interest. In recent years, the attention has shifted to
formulations which incorporate the signal structure into the CS framework. A number of problems
and applications of interest deal with time-varying signals which may not only be sparse at any
given instant, but may also exhibit sparse changes from one instant to the next. For example, a video
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of a natural scene consists of a sequence of natural images (compressible signals) which exhibits
sparse changes from one frame to the next. It is thus reasonable to hope that one would be able to
get away with far fewer measurements than prescribed by conventional CS theory to acquire and
recover such time-varying signals as videos. The problem ofrecovering signals with time-varying
sparsity has been referred to in the literature as dynamic CS. A number ofempirically-motivated
algorithms to solve the dynamic CS problem have been proposed, e.g. [5, 6]. To our knowledge,
no recovery guarantees have been proved for these algorithms, which typically assume that the
support of the signal and/or the amplitudes of the coefficients change smoothly with time. In [5],
for instance, the authors propose message-passing algorithms for tracking and smoothing of signals
with time-varying sparsity. Simulation results show the superiority of the algorithms compared to
one based on applying conventional CS principles at each time instant. Dynamic CS algorithms
have potential applications to video processing [7], estimation of sources of brain activity from
MEG time-series [8], medical imaging [7], and estimation oftime-varying networks [9].

To the best of our knowledge, the dynamic CS problem has not received rigorous, theoretical
scrutiny. In this paper, we develop rigorous results for dynamic CS both in the absence and in
the presence of noise. More specifically, in the absence of noise, we show that one canexactlyre-
cover a sequence(xk)

K
k=0 of vectors, for which the incrementsxk − xk−1 areSk-sparse, based on

linear measurementsyk = Akxk and under certain regularity conditions on(Ak)
K
k=1, by solving a

convex program which minimizes the weighted sum of theℓ1-norms of successive differences. In
the presence of noise, we derive error bounds for a quadratically-constrained convex program for
recovery of the sequence(xk)

K
k=0.

In the following section, we formulate the problem of interest and introduce our notation. In Sec-
tion 3, we present our main theoretical results, which we supplement with simulated experiments
and an application to real video data in Section 4. In this latter section, we introduce probability-of-
recovery surfaces for the dynamic CS problem, which generalize the traditional recovery curves of
CS. We give concluding remarks in Section 5.

2 Problem Formulation and Notation

We denote the support of a vectorx ∈ R
p by supp(x) = {j : xj 6= 0}. We say that a vector

x ∈ R
p is S-sparse if||x||0 ≤ S, where||x||0 := |supp(x)|. We consider the problem of recovering

a sequence(xk)
K
k=0 of Rp vectors such thatxk − xk−1 is Sk-sparse based on linear measurements

of the formyk = Akxk + ek. Here,Ak ∈ R
nk×p, ek ∈ R

nk andyk ∈ R
nk denote the measurement

matrix, measurement noise, and the observation vector, respectively. Typically,Sk < nk ≪ p,
which accounts for the compressive nature of the measurements. For convenience, we letx0 be the
R

p vector of all zeros.

For the rest of our treatment, it will be useful to introduce some notation. We will be dealing with
sequences (of sets, matrices, vectors), as such we let the indexk denote thekth element of any such
sequence. LetJ be the set of indices{1, 2, · · · , p}. For eachk, we denote by{akj : j ∈ J}, the
columns of the matrixAk and byHk the Hilbert space spanned by these vectors.

For two matricesA1 ∈ R
n1×p andA2 ∈ R

n2×p, n2 ≤ n1, we say thatA2 ⊂ A1 if the rows ofA2

are distinct and each row ofA2 coincides with a row ofA1.

We say that the matrixA ∈ R
n×p satisfies the restricted isometry property (RIP) or orderS if, for

all S-sparsex ∈ R
p, we have

(1− δS) ||x||22 ≤ ||Ax||22 ≤ (1 + δS) ||x||22 , (1)

whereδS ∈ (0, 1) is the smallest constant for which Equation 1 is satisfied [2].

Consider the following convex optimization programs

min
x1,x2,··· ,xK

K∑

k=1

||xk − xk−1||1√
Sk

s.t. yk = Akxk, k = 1, 2, · · · ,K. (P1)

min
x1,x2,··· ,xK

K∑

k=1

‖xk − xk−1‖1√
Sk

s.t. ‖yk −Akxk‖2 ≤ ǫk, k = 1, 2, · · · ,K. (P2)
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What theoretical guarantees can we provide on the performance of the above programs for recovery
of sequences of signals with sparse increments, respectively in the absence (P1) and in the presence
(P2) of noise?

3 Theoretical Results

We first present a lemma giving sufficient conditions for the uniqueness of sequences of vectors with
sparse increments given linear measurements in the absenceof noise. Then, we prove a theorem
which shows that, by strengthening the conditions of this lemma, program (P1) canexactlyrecover
every sequence of vectors with sparse increments. Finally,we derive error bounds for program (P2)
in the context of recovery of sequences of vectors with sparse increments in the presence of noise.

Lemma 1 (Uniqueness of Sequences of Vectors with Sparse Increments).

Suppose(Sk)
K
k=0 is such thatS0 = 0, and for eachk, Sk ≥ 1. LetAk satisfy the RIP of order2Sk.

Letxk ∈ R
p supported onTk ⊆ J be such that||xk − xk−1||0 ≤ Sk, for k = 1, 2, · · · ,K. Suppose

T0 = ∅ without loss of generality (w.l.o.g.). Then, givenAk andyk = Akxk, the sequence of sets
(Tk)

K
k=1, and consequently the sequence of coefficients(xk)

K
k=1, can be reconstructed uniquely.

Proof. For brevity, and w.l.o.g., we prove the lemma forK = 2. We prove that there is a unique
choice ofx1 andx2 such that||x1 − x0||0 ≤ S1, ||x2 − x1||0 ≤ S2 and obeyingy1 = A1x1, y2 =
A2x2. We proceed by contradiction , and assume that there existx′

1 6= x1 andx′
2 6= x2 supported

onT ′
1 andT ′

2, respectively, such thaty1 = A1x1 = A1x
′
1, y2 = A2x2 = A2x

′
2, ||x′

1 − x0||0 ≤ S1,
and||x′

2 − x′
1||0 ≤ S2. Then||A1(x1 − x′

1)||2 = 0. Using the lower bound in the RIP ofA1 and the
fact thatδ2S1

< 1, this leads to||x1 − x′
1||22 = 0, i.e. x1 = x′

1, thus contradicting our assumption
thatx1 6= x′

1. Now consider the case ofx2 andx′
2. We have

0 = A2(x2 − x′
2) = A2(x2 − x1 + x1 − x′

2) = A2(x2 − x1 + x′
1 − x′

2). (2)

Using the lower bound in the RIP ofA2 and the fact thatδ2S2
< 1, this leads to

||x2 − x1 + x′
1 − x′

2||22 = 0, i.e. x2 − x1 = x′
2 − x′

1, which impliesx′
2 = x2, thus contradict-

ing our assumption thatx2 6= x′
2.

As in Candès and Tao’s work [2], this lemma only suggests what may be possible in terms of
recovery of(xk)

K
k=1 through a combinatorial, brute-force approach. By imposing stricter conditions

on (δ2Sk
)Kk=1, we can recover(xk)

K
k=1 by solving a convex program. This is summarized in the

following theorem.

Theorem 2 (Exact Recovery in the Absence of Noise).

Let (x̄k)
K
k=1 ∈ R

p be a sequence ofRp vectors such that, for eachk, ||x̄k − x̄k−1||0 ≤ Sk for some
Sk < p/2. Suppose that the measurementsyk = Akx̄k ∈ R

nk are given, such thatnk < p, A1 ⊃
A2, Ak = A2 for k = 3, · · · ,K and(Ak)

K
k=1 satisfiesδSk

+ δ2Sk
+ δ3Sk

< 1 for k = 1, 2 · · · ,K.
Then, the sequence(x̄k)

K
k=1 is the unique minimizer to the program (P1).

Proof. As before, we consider the caseK = 2. The proof easily generalizes to the case of arbitrary
K. We can re-write the program as follows:

min
x1,x2

||x1||1√
S1

+
||x2 − x1||1√

S2

s.t. A1x1 = A1x̄1, A2(x2 − x1) = A2(x̄2 − x̄1), (3)

where we have used the fact thatA1 ⊃ A2: A2x2 −A1x1 = A2x̄2 −A1x̄1, which impliesA2(x2 −
x1) = A2(x̄2 − x̄1).

Letx∗
1 andx∗

2 be the solutions to the above program. LetT1 = supp(x̄1) and∆T2 = supp(x̄2− x̄1).
Assume|T1| ≤ S1 and|∆T2| ≤ S2.

Key element of the proof: The key element of the proof is the existence of vectorsu1, u2 sat-
isfying the exact reconstruction property (ERP) [10, 11]. It has been shown in [10] that given
δSk

+ δ2Sk
+ δ3Sk

< 1 for k = 1, 2:
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1. 〈u1, a1j〉 = sgn(x1,j), for all j ∈ T1, and〈u2, a2j〉 = sgn(x2,j), for all j ∈ ∆T2.

2. |〈u1, a1j〉| < 1, for all j ∈ T c
1 , and|〈u2, a2j〉| < 1, for all j ∈ ∆T c

2 .

Sincex̄1 andx̄2 − x̄1 are feasible, we have

||x∗
1||1√
S1

+
||x∗

2 − x∗
1||1√

S2

≤ ||x̄1||1√
S1

+
||x̄2 − x̄1||1√

S2

. (4)

||x∗
1||1√
S1

+
||x∗

2 − x∗
1||1√

S2

=
1√
S1

∑

j∈T1

|x̄1,j + (x∗
1,j − x̄1,j)|+

1√
S1

∑

j∈T c
1

|x∗
1,j |

+
1√
S2

∑

j∈∆T2

|x̄2,j − x̄1,j +
(
x∗
2,j − x∗

1,j − (x̄2,j − x̄1,j)
)
|+ 1√

S2

∑

j∈∆T c
2

|x∗
2,j − x∗

1,j |

≥ 1√
S1

∑

j∈T1

sgn(x̄1,j)
︸ ︷︷ ︸

〈u1,a1j〉

(x̄1,j + (x∗
1,j − x̄1,j)) +

1√
S1

∑

j∈T c
1

x∗
1,j〈u1, a1j〉

+
1√
S2

∑

j∈∆T2

sgn(x̄2,j − x̄1,j)
︸ ︷︷ ︸

〈u2,a2j〉

(x̄2,j − x̄1,j + (x∗
2,j − x∗

1,j − (x̄2,j − x̄1,j)))

+
1√
S2

∑

j∈∆T c
2

(x∗
2,j − x∗

1,j)〈u2, a2j〉

=
1√
S1

∑

j∈T1

|x̄1,j |+
1√
S1

〈u1,
∑

j∈J

x∗
1,ja1j

︸ ︷︷ ︸

A1x∗

1

−
∑

j∈T1

x̄1,ja1j

︸ ︷︷ ︸

A1x̄1

〉

+
1√
S2

∑

j∈∆T2

|x̄2,j − x̄1,j |+
1√
S2

〈u2,
∑

j∈J

(x∗
2,j − x∗

1,j)a2j

︸ ︷︷ ︸

A2(x∗

2
−x∗

1
)

−
∑

j∈∆T2

(x̄2,j − x̄1,j)a2j

︸ ︷︷ ︸

A2(x̄2−x̄1)

〉

=
||x̄1||1√

S1

+
||x̄2 − x̄1||1√

S2

. (5)

This implies that all of the inequalities in the derivation above must in fact be equalities. In particular,
1√
S1

∑

j∈T c
1

|x∗
1,j | +

1√
S2

∑

j∈∆T c
2

|x∗
2,j − x∗

1,j |

=
1√
S1

∑

j∈T c
1

x∗
1,j〈u1, a1j〉+

1√
S2

∑

j∈∆T c
2

(x∗
2,j − x∗

1,j)〈u2, a2j〉

≤ 1√
S1

∑

j∈T c
1

|x∗
1,j | |〈u1, a1j〉|

︸ ︷︷ ︸

<1

+
1√
S2

∑

j∈∆T c
2

|x∗
2,j − x∗

1,j | |〈u2, a2j〉|
︸ ︷︷ ︸

<1

.

Therefore,x∗
1,j = 0 ∀j ∈ T c

1 , andx∗
2,j − x∗

1,j = 0 ∀j ∈ ∆T c
2 . Using the lower bounds in the RIP of

A1 andA2 leads to

0 = ||A1(x
∗
1 − x̄1)||2 ≥ (1− δ2S1

) ||x∗
1 − x̄1||2 (6)

0 = ||A2(x
∗
2 − x∗

1 − (x̄2 − x̄1))||2 ≥ (1− δ2S2
) ||x∗

2 − x∗
1 − (x̄2 − x̄1)||2 , (7)

so thatx∗
1 = x̄1, andx∗

2 = x̄2. Uniqueness follows from simple convexity arguments.

A few remarks are in order. First, Theorem 2 effectively asserts that the program (P1) is equivalent
to sequentially solving (i.e. fork = 1, 2, · · · ,K) the following program, starting withx∗

0 the vector
of all zeros inRp:

min
xk

∣
∣
∣
∣xk − x∗

k−1

∣
∣
∣
∣
1

s.t. yk −Akx
∗
k−1 = Ak(xk − x∗

k−1), k = 1, 2, · · · ,K. (8)
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Second, it is interesting and surprising that Theorem 2 would hold, if one naively applies standard
CS principles to our problem. To see this, if we letwk = xk − xk−1, then program (P1) becomes

min
w1,··· ,wK

K∑

k=1

||wk||1√
Sk

s.t. y = Aw, (9)

wherew = (w′
1, · · · , w′

K)′ ∈ R
K×p, y = (y′1, · · · , y′K)′ ∈ R

∑K
k=1

nk andA is given by

A =







A1 0 · · · 0
A2 A2 · · · 0
...

...
. . .

...
AK AK · · · AK






.

As K grows large, the columns ofA become increasingly correlated or coherent, which intuitively
means thatA would be far from satisfying RIP of any order. Yet, we get exact recovery. This is an
important reminder that the RIP is a sufficient, but not necessary condition for recovery.

Third, the assumption thatA1 ⊃ A2, Ak = A2 for k = 3, · · · ,K makes practical sense as it
allows one to avoid the prohibitive storage and computational cost of generating several distinct
measurement matrices. Note that if a randomA1 satisfies the RIP of some order andA1 ⊃ A2, then
A2 also satisfies the RIP (of lower order).

Lastly, the key advantage of dynamic CS recovery (P1) is the smaller number of measurements
required compared to the classical approach [2] which wouldsolveK separateℓ1-minimization
problems. For eachk = 1, · · · ,K, one would requirenk ≥ CSk log(p/Sk) measurements for
dynamic recovery, compared tonk ≥ CS1 log(p/S1) for classical recovery. Due to the hypothesis
of Sk ≤ S1 ≪ p, i.e., the sparse increments are small, we conclude that there are less number of
measurements required for dynamic CS.

We now move to the case where the measurements are perturbed by bounded noise. More specif-
ically, we derive error bounds for a quadratically-constrained convex program for recovery of se-
quences of vectors with sparse increments in the presence ofnoise.

Theorem 3 (Conditionally Stable Recovery in Presence of Noise).

Let (x̄k)
K
k=1 ∈ R

p be as stated in Theorem 2, andx0 be the vector of all zeros inRp. Suppose that
the measurementsyk = Akxk + ek ∈ R

nk are given such that||ek||2 ≤ ǫk and (Ak)
K
k=1 satisfy

δ3Sk
+ 3δ4Sk

< 2, for eachk. Let (x∗
k)

K
k=1 be the solution to the program (P2). Finally, lethk :=

(x∗
k − x∗

k−1) − (x̄k − x̄k−1), for k = 1, 2, · · · ,K, with the convention that̄x0 := x∗
0 := 0 ∈ R

p.
Then, we have:

K∑

k=1

‖hk‖2 ≤
K∑

k=1

2CSk
ǫk +

K∑

k=2

CSk

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
Ak

∑

ℓ<k

hℓ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
2

(10)

where, for eachk = 1, 2, · · · ,K, CSk
is only a function ofδ3Sk

andδ4Sk
.

Proof sketch.Candès et al.’s proof for stable recovery in the presence ofbounded noise relies on
the so-called tube and cone constraints [3]. Our proof for Theorem 3 relies on generalization of
these two constraints. We omit some of the algebraic detailsof the proof as they can be filled in by
following the proof of [3] for the time-invariant case.

Generalized tube constraint: Let w̄k = x̄k − x̄k−1, w∗
k = x∗

k − x∗
k−1, for k = 1, · · · ,K. The

generalized tube constraints are obtained using a simple application of the triangle inequality:

||A1(w̄1 − w∗
1)||2 ≤ 2ǫ1 (11)

||A2(w̄2 − w∗
2)||2 ≤ 2ǫ2 + ||A2h1||2 and more generally, (12)

||Ak(w̄k − w∗
k)||2 ≤ 2ǫk +

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
Ak

∑

ℓ<k

hℓ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
2

, for k = 2, · · · ,K. (13)
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Generalized cone constraint: To obtain a generalization of the cone constraint in [3], we need
to account for the fact that the increments(xk − xk−1)

K
k=1 (may) have different support sizes. The

resulting generalized cone constraint is as follows:
K∑

k=1

∣
∣
∣
∣hk∆T c

k

∣
∣
∣
∣
1√

Sk

≤
K∑

k=1

||hk∆Tk
||1√

Sk

, (14)

where∆Tk = supp(x̄k − x̄k−1). The proof proceeds along the lines of that presented in [3],with

CSk
=

1+
√

1/3
√

1−δ4Sk
−

√

1+δ3Sk
3

.

Equation (10) is an implicit bound: the second term in the inequality reflects the fact that, for a
givenk, the errorx∗

k − x̄k depends on previous errors. Our bound proves a form of stability that
is conditionalon the stability of previous estimates.The appeal of dynamic CS comes from the fact
that one may pick the constantsCSk

in the bound above to be much smaller that those from the
corresponding conventional CS bound [3] (Equation (10) without the second term). This ensures
that the errors do not propagate in an unbounded manner. One may obtain sharper bounds using
techniques as in [12]. In the next section, we use simulations to compare explicitly the average
mean-squared error (MSE) of conventional CS and our algorithm.

4 Experiments/Simulations

We ran a series of numerical experiments to assess the ability of the convex programs introduced
to recover signals with time-varying sparsity. In the absence of noise, the experiments result in
probability-of-recovery surfaces for the dynamic CS problem, which generalize the traditional re-
covery curves of CS. In the presence of noise, we compare dynamic CS to conventional CS in terms
of their reconstruction error as a function of signal-to-noise-ratio (SNR). We also show an applica-
tion to real video data. All optimization problems were solved usingCVX, a package for specifying
and solving convex programs [13, 14].

4.1 Simulated noiseless data

Experimental set-up:

1. Selectnk, for k = 1, · · · ,K, andp, so that theAk ’s arenk × p matrices; sampleAk with
independent Gaussian entries, fork = 1, 2, · · · ,K.

2. SelectS1 = ⌈s1 · p⌉, s1 ∈ (0, 1), andSk = ⌈s2 · p⌉, s2 ∈ (0, 1), for k = 2, · · · ,K.

3. SelectT1 of sizeS1 uniformly at random and set̄x1,j = 1 for all j ∈ T1, and0 otherwise;
for k = 2, · · · ,K, select∆Tk = supp(x̄k − x̄k−1) of sizeSk uniformly at random and set
x̄k,j − x̄k−1,j = 1 for all j ∈ ∆Tk, and0 otherwise.

4. Makeyk = Akx̄k, for k = 1, 2, · · · ,K; solve the program (P1) to obtain(x∗
k)

K
k=1.

5. Compare(x̄k)
K
k=1 to (x∗

k)
K
k=1.

6. Repeat100 times for each(s1, s2).

We compare dynamic CS to conventional CS applied independently at eachk. Figure 1 shows
results fornk = 100, p = 200, andK = 2. We can infer the expected behavior for larger values of
K from the caseK = 2 and from the theory developed above (see remarks below).

The probability of recovery for conventional CS is1 on the set{(s1, s2) : s1 + (K − 1)s2 ≤
s∗}, and0 on its complement, wheres∗ is the sparsity level at which a phase transition occurs in
the conventional CS problem [2]. The figure shows that, when the measurement matricesAk, for
k = 2, · · · ,K are derived fromA1 as assumed in Theorem 1, dynamic CS (DCS 1) outperforms
conventional CS (CCS). However, when we used different measurement matrices (DCS 2), we see
that there is an asymmetry betweens1 ands2, which is not predicted by our Theorem 1. Intuitively,
this is because for smalls2, the program (P1) operates in a regime where we have not only one
but multiple measurements to recover a given sparse vector [15]. Program (P1) is equivalent to
sequential CS. Therefore, we expect the behavior of conventional CS to persist for largerK.
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Figure 1: Probability of recovery maps as a function ofs1 ands2.

4.2 Simulated noisy data

The experimental set-up differs slightly from the one of thenoiseless case. In Step 2, we fix constant
values forS1 andSk, k = 2, · · · ,K. Moreover, in Step 4, we formyk = Akxk + ek, where theek ’s
are drawn uniformly in(−α, α). In Step 6, we repeat the experiment100 times for eachα. In our
experiments, we usedn1 = 100, S1 = 5, n2 = 20, Sk = 1, for k = 2, · · · ,K, andp = 200. We
report results forK = 2 andK = 10, and choose values ofα resulting in SNRs in the range[5, 30]
dB, in increments of5 dB.

Figure 2 displays the average MSE given by10 · log10(
1
K

∑K
k=1 ||x̄k − x∗

k||
2
2) of conventional CS

and dynamic CS as a function of SNR. The Figure shows that the proposed algorithm outperforms
conventional CS, and is robust to noise.
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Figure 2: Average MSE as a function of SNR.

4.3 Real video data

We consider the problem of recovering the first10 frames of a real video using our dynamic CS
algorithm, and conventional CS applied to each frame separately. In both cases, we assume the
absence of noise. We use a video portraying a close-up of a woman engaged in a telephonic conver-
sation [16]. The video has a frame rate of12Hz and a total of150 frames, each of size176× 144.
Due to computational constraints, we downsampled each frame by a factor of3 in each dimension.
We obtained measurements in the wavelet domain by performing a two-level decomposition of each
frame using Daubechies-1 wavelet.

In Table 1, we report the negative of the normalized MSE givenby−10 · log10(
1
10

∑10
k=1

||x̄k−x∗

k||
2

2

||x̄k||
2
2

)

in dB for various(n1, n2) measurement pairs (nk = n2, for k = 3, · · · , 10). Larger numbers indi-
cate better reconstruction accuracy. The table shows that,for all (n1, n2) considered, dynamic CS
outperforms conventional CS. The average performance gap across(n1, n2) pairs is approximately
7 dB. Interestingly, for sufficient number of measurements, dynamic CS improves as the video pro-
gresses. We observed this phenomenon in the small-s2 regime of the simulations. Figure 3 shows
the reconstructed frames highlighted in Table 1. The framesreconstructed using dynamic CS are
more appealing visually than their conventional CS counterparts.
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Table 1: Normalized negated MSE indB for frames 1, 5, 10, and average over all 10 frames. Each
frame consist of≈ 3000 pixels. Each row of the table corresponds to a different(n1, n2) pair (refer
to text). Larger numbers indicate better reconstruction accuracy.

Frame 1 Frame 5 Frame 10 Avg. (10 frames)
CCS DCS CCS DCS CCS DCS CCS DCS

(2400,2400) 27.8 27.8 28.5 38 28 41.1 28.2 35
(2000,2000) 22.4 22.4 22.3 31.3 22.9 35.6 22.8 28.9
(2400,1200) 27.8 27.8 15.2 24.2 14.8 25.4 15.9 25.5
(1600,1600) 19.1 19.1 18.9 25 19.8 29.7 19.1 24.1
(1600,800) 19.2 19.2 8.4 17.6 9.3 16.7 8.4 17.8

Frame 1

O
rig

in
al

C
C

S
D

C
S

Frame 5 Frame 10

Figure 3: Comparison of frames reconstructed using dynamicCS and conventional CS,(n1, n2) =
(2000, 2000).

5 Discussion

In this paper, we proved rigorous guarantees for convex programs for recovery of sequences of vec-
tors with sparse increments, both in the absence and in the presence of noise. Our formulation of
the dynamic CS problem is more general than the empirically-motivated solutions proposed in the
literature, e.g. [5, 6]. Indeed, we only require thatx1 is sparse, as well as theincrements. Therefore,
there may exist values ofk such thatxk is not a sparse vector. We supplemented our theoretical
analysis with simulation experiments and an application toreal video data. In the noiseless case, we
introduced probability-of-recovery surfaces which generalize traditional CS recovery curves. The
recovery surface showed that dynamic CS significantly outperforms conventional CS, especially for
large sequences (largeK). In the noisy case, simulations showed that dynamic CS alsooutperforms
conventional CS for SNR values ranging from5 to 30 dB. Our results on real video data demon-
strated that dynamic CS outperforms conventional CS in terms of visual appeal of the reconstructed
frames, and by an average MSE gap of7dB.
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