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Abstract

We propose a simple and novel framework for MCMC inference in continuous-
time discrete-state systems with pure jump trajectories. We construct an exact
MCMC sampler for such systems by alternately sampling a random discretiza-
tion of time given a trajectory of the system, and then a new trajectory given the
discretization. The first step can be performed efficiently using properties of the
Poisson process, while the second step can avail of discrete-time MCMC tech-
niques based on the forward-backward algorithm. We show the advantage of our
approach compared to particle MCMC and a uniformization-based sampler.

1 Introduction

There has been growing interest in the machine learning community to model dynamical systems in
continuous time. Examples include point processes [1], Markov processes [2], structured Markov
processes [3], infinite state Markov processes [4], semi-Markov processes [5] etc. However, a major
impediment towards the more widespread use of these models is the problem of inference. A simple
approach is to discretize time, and then run inference on the resulting approximation. This however
has a number of drawbacks, not least of which is that we lose the advantages that motivated the use
of continuous time in the first place. Time-discretization introduces a bias into our inferences, and
to control this, one has to work at a time resolution that results in a very large number of discrete
time steps. This can be computationally expensive.

Our focus in this paper is on posterior sampling via Markov chain Monte Carlo (MCMC), and there
is a huge literature on such techniques for discrete-time models [6]. Here, we construct an exact
MCMC sampler for pure jump processes in continuous time, using a workhorse of the discrete-time
domain, the forward-filtering backward-sampling algorithm [7, 8], to make efficient updates.

The core of our approach is an auxiliary variable Gibbs sampler that repeats two steps. The first
step runs the forward-backward algorithm on a random discretization of time to sample a new tra-
jectory. The second step then resamples a new time-discretization given this trajectory. A random
discretization allows a relatively coarse grid, while still keeping inferences unbiased. Such a coarse
discretization allows us to apply the forward-backward algorithm to a Markov chain with relatively
few time steps, resulting in computational savings. Even though the marginal distribution of the
random time-discretization can be quite complicated, we show that conditioned on the system tra-
jectory, it is just distributed as a Poisson process.

While the forward-backward algorithm was developed originally for finite state hidden Markov mod-
els and linear Gaussian systems, it also forms the core of samplers for more complicated systems
like nonlinear/non-Gaussian [9], infinite state [10], and non-Markovian [11] time series. Our ideas
thus apply to essentially any pure jump process, so long as it makes only finite transitions over finite
intervals. For concreteness, we focus on semi-Markov processes. We compare our sampler with
two other continuous-time MCMC samplers, a particle MCMC sampler [12], and a uniformization-
based sampler [13]. The latter turns out to be a special case of ours, corresponding to a random
time-discretization that is marginally distributed as a homogeneous Poisson process.
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2 Semi-Markov processes
A semi-Markov (jump) process (sMJP) is a right-continuous, piecewise-constant stochastic process
on the nonnegative real-line taking values in some state space S [14, 15]. For simplicity, we assume
S is finite, labelling its elements from 1 to N . We also assume the process is stationary. Then, the
sMJP is parametrized by π0, an (arbitrary) initial distribution over states, as well as anN×N matrix
of hazard functions, Ass′(·) ∀s, s′ ∈ S. For any τ , Ass′(τ) gives the rate of transitioning to state s′,
τ time units after entering state s (we allow self-transitions, so s′ can equal s). Let this transition
occur after a waiting time τs′ . Then τs′ is distributed according to the density rss′(·), related to
Ass′(·) as shown below (see eg. [16]):

rss′(τs′) = Ass′(τs′)e
(−
∫ τ
s′

0 Ass′ (u)du), Ass′(τs′) = rss′(τs′)/
(
1−

∫ τs′

0

rss′(u)du
)

(1)

Sampling an sMJP trajectory proceeds as follows: on entering state s, sample waiting times τs′ ∼
Ass′(·) ∀s′ ∈ S. The sMJP enters a new state, snew, corresponding to the smallest of these waiting
times. Let this waiting time be τhold (so that τhold = τsnew = mins′ τs′ ). Then, advance the current
time by τhold, and set the sMJP state to snew. Repeat this procedure, now with the rate functions
Asnews′(·) ∀s′ ∈ S.

Define As(·) =
∑
s′∈S Ass′(·). From the independence of the times τss′ , equation 1 tells us that

P (τhold > τ) =
∏
s′∈S

P (τs′ > τ) = e(−
∫ τ
0
As(u)du), τhold ∼ rs(τ) ≡ As(τ)e(−

∫ τ
0
As(u)du) (2)

Comparing with equation 1, we see that As(·) gives the rate of any transition out of state s. An
equivalent characterization of many continuous-time processes is to first sample the waiting time
τhold, and then draw a new state s′. For the sMJP, the latter probability is proportional toAss′(τhold).

A special sMJP is the Markov jump process (MJP) where the hazard functions are constant (giving
exponential waiting times). For an MJP, future behaviour is independent of the current waiting time.
By allowing general waiting-time distributions, an sMJP can model memory effects like burstiness
or refractoriness in the system dynamics.

We represent an sMJP trajectory on an interval [tstart, tend] as (S, T ), where T = (t0, · · · , t|T |) is
the sequence of jump times (including the endpoints) and S = (s0, · · · , s|S|) is the corresponding
sequence of state values. Here |S| = |T |, and si+1 = si implies a self-transition at time ti+1 (except
at the end time t|T | = tend which does not correspond to a jump). The filled circles in figure 1(c)
represent (S, T ); since the process is right-continuous, si gives the state after the jump at ti.

2.1 Sampling by dependent thinning

We now describe an alternate thinning-based approach to sampling an sMJP trajectory. Our ap-
proach will produce candidate event times at a rate higher that the actual event rates in the system.
To correct for this, we probabilistically reject (or thin) these events. Define W as the sequence
of actual event times T , together with the thinned event times (which we call U , these are the
empty circles in figure 1(c)). W = (w0, · · · , w|W |) forms a random discretization of time (with
|W | = |T |+ |U |); define V = (v0, · · · , v|W |) as a sequence of state assignments to the times W .
At any wi, let li represent the time since the last sMJP transition (so that, li = wi−maxt∈T,t≤wi t),
and let L =

(
l1, · · · , l|W |

)
. Figures 1(b) and (c) show these quantities, as well as continuous-time

processes S(t) and L(t) such that li = L(wi) and si = S(wi). (V,L,W ) forms an equivalent
representation of (S, T ) that includes a redundant set of thinned events U . Note that if the ith event
is thinned, vi = vi−1, however this is not a self-transition. L helps distinguish self-transitions (hav-
ing associated l’s equal to 0) from thinned events. We explain the generative process of (V,L,W )
below; a proof of its correctness is included in the supplementary material.

For each hazard function As(τ), define another dominating hazard function Bs(τ), so that Bs(τ) ≥
As(τ) ∀s, τ . Suppose we have instantiated the system trajectory until time wi, with the sMJP
having just entered state vi ∈ S (so that li = 0). We sample the next candidate event time wi+1,
with ∆wi = (wi+1−wi) drawn from the hazard functionBvi(·). A larger rate implies faster events,
so that ∆wi will on average be smaller than a waiting time τhold drawn from Avi(·). We correct
for this by treating wi+1 as an actual event with probability Avi (∆wi+li)

Bvi (∆wi+li)
. If this is the case, we

sample a new state vi+1 with probability proportional to Avivi+1 (∆wi + li), and set li+1 = 0. On
the other hand, if the event is rejected, we set vi+1 to vi, and li+1 = (∆wi + li). We now sample
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Figure 1: a) Instantaneous hazard rates given a trajectory b) State holding times, L(t) c) sMJP state values
S(t) d) Graphical model for the randomized time-discretization e) Resampling the sMJP trajectory. In b) and
c), the filled and empty circles represent actual and thinned events respectively.

∆wi+1 (and thus wi+2), such that (∆wi+1 + li+1) ∼ Bvi+1
(·). More simply, we sample a new

waiting time from Bvi+1
(·), conditioned on it being greater than li+1. Again, accept this point with

probability
Avi+1

(∆wi+1+li+1)

Bvi+1
(∆wi+1li+1) , and repeat this process. Proposition 1 confirms that this generative

process (summarized by the graphical model in figure 1(d), and algorithm 1) yields a trajectory from
the sMJP. Figure 1(d) also depicts observations X of the sMJP trajectory; we elaborate on this later.
Proposition 1. The path (V,L,W ) returned by the thinning procedure described above is equivalent
to a sample (S, T ) from the sMJP (π0, A).

Algorithm 1 State-dependent thinning for sMJPs
Input: Hazard functions Ass′(·) ∀s, s′ ∈ S, and an initial distribution over states π0.

Dominating hazard functions Bs(τ) ≥ As(τ) ∀τ, s, where As(τ) =
∑
s′ Ass′(τ).

Output: A piecewise constant path (V,L,W ) ≡ ((vi, li, wi)) on the interval [tstart, tend].
1: Draw v0 ∼ π0 and set w0 = tstart. Set l0 = 0 and i = 0.
2: while wi < tend do
3: Sample τhold ∼ Bvi(·), with τhold > li. Let ∆wi = τhold − li, and wi+1 = wi + ∆wi.
4: with probability Avi (τhold)

Bvi (τhold)

5: Set li+1 = 0, and sample vi+1, with P (vi+1 = s′|vi) ∝ Avis′(τhold), s′ ∈ S.
6: else
7: Set li+1 = li + ∆wi, and vi+1 = vi.
8: end
9: Increment i.

10: end while
11: Set w|W | = tend, v|W | = v|W |−1, l|W | = l|W | + w|W | − w|W |−1.
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2.2 Posterior inference via MCMC

We now define an auxiliary variable Gibbs sampler, setting up a Markov chain that converges to
the posterior distribution over the thinned representation (V,L,W ) given observations X of the
sMJP trajectory. The observations can lie in any space X , and for any time-discretization W , let xi
represent all observations in the interval (wi,wi+1). By construction, the sMJP stays in a single state
vi over this interval; let P (xi|vi) be the corresponding likelihood vector. Given a time discretization
W ≡ (U ∪T ) and the observations X , we discard the old state labels (V,L), and sample a new path
(Ṽ , L̃,W ) ≡ (S̃, T̃ ) using the forward-backward algorithm. We then discard the thinned events Ũ ,
and given the path (S̃, T̃ ), resample new thinned events Unew, resulting in a new time discretization
Wnew ≡ (T̃ ∪ Unew). We describe both operations below.

Resampling the sMJP trajectory given the set of times W :
Given W (and thus all ∆wi), this involves assigning each element wi ∈ W , a label (vi, li) (see
figure 1(d)). Note that the system is Markov in the pair (vi, li), so that this step is a straightforward
application of the forward-backward algorithm to the graphical model shown in figure 1(d). Observe
from this figure that the joint distribution factorizes as:

P (V,L,W,X) = P (v0, l0)

|W |−1∏
i=0

P (xi|vi)P (∆wi|vi, li)P (vi+1, li+1|vi, li,∆wi) (3)

From equation 2, (with B instead of A), P (∆wi|vi, li) = Bvi(li + ∆wi)e

(
−
∫ (li+∆wi)

li
Bvi (t)dt

)
.

The term P (vi+1, li+1|vi, li,∆wi) is the thinning/state-transition probability from steps 4 and 5 of
algorithm 1. The forward-filtering stage then moves sequentially through the times in W , succes-
sively calculating the probabilities P (vi, li, w1:i+1, x1:i) using the recursion:

P (vi, li, w1:i+1, x1:i)=P (xi|vi)P (wi+1|vi, li)
∑

vi−1,li−1

P (vi, li|vi−1, li−1,∆wi)P (vi−1, li−1, w1:i, x1:i−1)

The backward sampling stage then returns a new trajectory (Ṽ , L̃,W ) ≡ (S̃, T̃ ). See figure 1(e).

Observe that li can take (i + 1) values (in the set {0, wi − wi−1, · · · , wi − w0}), with the value of
li affecting P (vi+1, li+1|vi, li,∆wi+1).Thus, the forward-backward algorithm for a general sMJP
scales quadratically with |W |. We can however use ideas from discrete-time MCMC to reduce this
cost (eg. [11] use a slice sampler to limit the maximum holding time of a state, and thus limit li).

Resampling the thinned events given the sMJP trajectory:
Having obtained a new sMJP trajectory (V,L,W ), we discard all thinned events U , so that the
current state of the sampler is now (S, T ). We then resample the thinned events Ũ , recovering a new
thinned representation (Ṽ , L̃, W̃ ), and with it, a new discretization of time. To simplify notation,
we define the instantaneous hazard functions A(t) and B(t) (see figure 1(a)):

A(t) = AS(t)(L(t)), and B(t) = BS(t)(L(t)) (4)

These were the event rates relevant at any time t during the generative process. Note that the
sMJP trajectory completely determines these quantities. The events W (whether thinned or not)
were generated from a rate B(·) process, while the probability that an event wi was thinned is
1 − A(wi)/B(wi). The Poisson thinning theorem [17] then suggests that the thinned events U are
distributed as a Poisson process with intensity (B(t) − A(t)). The following proposition (see the
supplementary material for a proof) shows that this is indeed the case.
Proposition 2. Conditioned on a trajectory (S, T ) of the sMJP, the thinned events U are distributed
as a Poisson process with intensity (B(t)−A(t)).
Observe that this is independent of the observations X . We show in section 2.4 how sampling from
such a Poisson process is straightforward for appropriately chosen bounding rates Bs.

2.3 Related work
An increasingly popular approach to inference in continuous-time systems is particle MCMC (pM-
CMC) [12]. At a high level, this uses particle filtering to generate a continuous-time trajectory,
which then serves as a proposal for a Metropolis-Hastings (MH) algorithm. Particle filtering how-
ever cannot propogate back information from future observations, and pMCMC methods can have
difficulty in situations where strong observations cause the posterior to deviate from the prior.
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Recently, [13] proposed a sampler for MJPs that is a special case of ours. This was derived via a
classical idea called uniformization, and constructed the time discretizationW from a homogeneous
Poisson process. Our sampler reduces to this when a constant dominating rate B > maxs,τ As(τ)
is used to bound all event rates. However, such a ‘uniformizing’ rate does not always exist (we
will discuss two such systems with unbounded rates). Moreover, with a single rate B, the average
number of candidate events |W |, (and thus the computational cost of the algorithm), scales with the
leaving rate of the most unstable state. Since this state is often the one that the system will spend the
least amount of time in, such a strategy can be wasteful. Under our sampler, the distribution of W is
not a Poisson process. Instead, events rates are coupled via the sMJP state. This allows our sampler
to adapt the granularity of time-discretization to that required by the posterior trajectories, moreover
this granularity can vary over the time interval.

There exists other work on continuous-time models based on the idea of a random discretization
of time [18, 1]. Like uniformization, these all are limited to specific continuous-time models with
specific thinning constructions, and are not formulated in as general a manner as we have done.
Moreover, none of these exploit the ability to efficiently resample the time-discretization from a
Poisson process, or a new trajectory using the forward-backward algorithm.

2.4 Experiments
In this section, we evaluate our sampler on a 3-state sMJP with Weibull hazard rates. Here

rss′(τ |αss′ , λss′) = e(−(τ/λss′ )
α
ss′ )αss′

λss′

(
τ

λss′

)αss′−1

, Ass′(τ |αss′ , λss′) =
αss′

λss′

(
τ

λss′

)αss′−1

where λss′ is the scale parameter, and the shape parameter αss′ controls the stability of a state s.
When αss′ < 1, on entering state s, the system is likely to quickly jump to state s′. By contrast,
αss′ > 1 gives a ‘recovery’ period before transitions to s′. Note that for αss′ < 1, the hazard
function tends to infinity as τ → 0. Now, choose an Ω > 1. We use the following simple upper
bound Bss′(τ):

Bss′(τ) = ΩAss′(τ |αss′ , λss′) =
Ωαss′

λss′

(
τ

λss′

)αss′−1

=
αss′

λ̃ss′

(
τ

λ̃ss′

)αss′−1

(5)

Here, λ̃ = λ/ α
√

Ω for any λ and α. Thus, sampling from the dominating hazard function Bss′(·)
reduces to straightforward sampling from a Weibull with a smaller scale parameter λ̃ss′ . Note from
algorithm 1 that with this construction of the dominating rates, each candidate event is rejected with
probability

(
1− 1

Ω

)
; this can be a guide to choosing Ω. In our experiments, we set Ω equal to 2.

Sampling thinned events on an interval (ti, ti+1) (where the sMJP is in state si) involves sampling
from a Poisson process with intensity (B(t)− A(t)) = (Ω− 1)A(t) = (Ω− 1)

∑
s′ Asis′(t− ti).

This is just the superposition of N independent and shifted Poisson processes on (0, ti+1 − ti),
the nth having intensity (Ω − 1)Asin(·) ≡ Âsin(·). As before, Â(·) is a Weibull hazard function
obtained by correcting the scale parameter λ of A(·) by α

√
Ω− 1. A simple way to sample such

a Poisson process is by first drawing the number of events from a Poisson distribution with mean∫ (ti+1−ti)
0

Âsin(u)du, and then drawing that many events i.i.d. from Âsin truncated at (ti+1 − ti).
Solving the integral for the Poisson mean is straightforward for the Weibull. Call the resulting
Poisson sequence T̃n, and define T̃ = ∪n∈S T̃n. Then Wi ≡ T̃ + ti is the set of resampled thinned
events on the interval (ti, ti+1). We repeat this over each segment (ti, ti+1) of the sMJP path.

In the following experiments, the shape parameters for each Weibull hazard (αss′ ) was randomly
drawn from the interval [0.6, 3], while the scale parameter was always set to 1. π0 was set to
the discrete uniform distribution. The unbounded hazards associated with αss′ < 1 meant that
uniformization is not applicable to this problem, and we only compared our sampler with pMCMC.
We implemented both samplers in Matlab. Our MCMC sampler was set up with Ω = 2, so that the
dominating hazard rate at any instant equalled twice the true hazard rate (i.e. Bss′(τ) = 2Ass′(τ)),
giving a probability of thinning equal to 0.5. For pMCMC, we implemented the particle independent
Metropolis-Hastings sampler from [12]. We tried different values for the number of particles; for
our problems, we found 10 gave best results.

All MCMC runs consisted of 5000 iterations following a burn-in period of 1000. After any MCMC
run, given a sequence of piecewise constant trajectories, we calculated the empirical distribution of
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Figure 2: ESS per
unit time vs the
inverse-temperature
of the likelihood,
when the trajec-
tories are over an
interval of length
20 (left) and 2
(right).
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Figure 3: ESS per second for increasing interval lengths. Temperature decreases from the left to right subplots.

the time spent in each state as well as the number of state transitions. We then used R-coda [19] to
estimate effective sample sizes (ESS) for these quantities. The ESS of the simulation was set to the
median ESS of all these statistics.

Effect of the observations For our first experiment, we distributed 10 observations over an interval
of length 20. Each observation favoured a particular, random state over the other two states by a
factor of 100, giving random likelihood vectors like (1, 100, 1)>. We then raised the likelihood
vector P (xi|·) to an ‘inverse-temperature’ ν, so that the effective likelihood at the ith observation
was (P (xi|si))ν . As this parameter varied from 0 to 1, the problem moved from sampling from the
prior to a situation where the trajectory was observed (almost) perfectly at 10 random times.

The left plot in figure 2 shows the ESS produced per unit time by both samplers as the inverse-
temperature increased, averaging results from 10 random parametrizations of the sMJP. We see (as
one might expect), that when the effect of the observations is weak, particle MCMC (which uses
the prior distribution to make local proposals), outperforms our thinning-based sampler. pMCMC
also has the benefit of being simpler implementation-wise, and is about 2-3 times faster (in terms
of raw computation time) for a Weibull sMJP, than our sampler. As the effect of the likelihood
increases, pMCMC starts to have more and more difficulty tracking the observations. By contrast,
our sampler is fairly insensitive to the effect of the likelihood, eventually outperforming the particle
MCMC sampler. While there exist techniques to generate more data-driven proposals for the particle
MCMC [12, 20], these compromise the appealing simplicity of the original particle MCMC sampler.
Moreover, none of these really have the ability to propagate information back from the future (like
the forward-backward algorithm), rather they make more and more local moves (for instance, by
updating the sMJP trajectory on smaller and smaller subsets of the observation interval).

The right plot in figure 2 shows the ESS per unit time for both samplers, now with the observation
interval set to a smaller length of 2. Here, our sampler comprehensively outperforms pMCMC. There
are two reasons for this. First, more observations per unit time requires rapid switching between
states, a deviation from the prior that particle filtering is unlikely to propose. Additionally, over
short intervals, the quadratic cost of the forward-backward step of our algorithm is less pronounced.

Effect of the observation interval length In the next experiment, we more carefully compare the
two samplers as the interval length varies. For three setting of the inverse temperature parameter
(0.1, 0.5 and 0.9), we calculated the number of effective samples produced per unit time as the
length of the observation interval increased from 2 to 50. Once again, we averaged results from 10
random settings of the sMJP parameters. Figure 3 show the results for the low, medium and high
settings of the the inverse temperature. Again, we clearly see the benefit of the forward-backward
algorithm, especially in the low temperature and short interval regimes where the posterior deviates
from the prior. Of course, the performance of our sampler can be improved further using ideas from
the discrete-time domain; these can help ameliorate effect of the quadratic cost for long intervals.
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Figure 4: Effect of increasing the leaving rate of a state. Temperature decreases from the left to right plots.

3 Markov jump processes
In this section, we look at the Markov jump process (MJP), which we saw has constant hazard
functions Ass′ . MJPs are also defined to disallow self-transitions, so that Ass = 0 ∀s ∈ S . If we
use constant dominating hazard rates Bs, we see from algorithm 1 that all probabilities at time wi
depend only on the current state si, and are independent of the holding time li. Thus, we no longer
need to represent the holding times L. The forward message at time wi needs only to represent the
probability of vi taking different values in S; this completely specifies the state of the MJP. As a
result, the cost of a forward-backward iteration is now linear in |W |.
In the next experiment, we compare Matlab implementations of our thinning-based sampler and the
particle MCMC sampler with the uniformization-based sampler described in section 2.3. Recall
that the latter samples candidate event times W from a homogeneous Poisson process with a state-
independent rate B > maxsAs. Following [13], we set B = 2 maxsAs. As in section 2.4, we set
Ω = 2 for our sampler, so that Bs = 2As ∀s. pMCMC was run with 20 particles.

Observe that for uniformization, the rate B is determined by the leaving rate of the most unstable
state; often this is the state the system spends the least time in. To study this, we applied all three
samplers to a 3-state MJP, two of whose states had leaving rates equal to 1. The leaving rate of
the third state, was varied from 1 to 20 (call this rate γ). On leaving any state, the probability of
transitioning to either of the other two was uniformly distributed between 0 and 1. This way, we
constructed 10 random MJPs for each γ. We distributed 5 observation times (again, favouring a
random state by a factor of 100) over the interval [0, 10]. Like section 2.4, we looked at the ESS per
unit time for 3 settings of the inverse temperature parameter ν, now as we varied γ.

Figure 4 shows the results. The pMCMC sampler clearly performs worse than the other two. The
Markov structure of the MJP makes the forward-backward algorithm very natural and efficient, by
contrast, running a particle filter with 20 particles took about twice as long as our sampler. Further,
we see that while both the uniformization and our sampler perform comparably for low values of γ,
our sampler starts to outperform uniformization for γ’s greater than 2. In fact, for weak observations
and large γs, even particle MCMC outperforms uniformization. As we mentioned earlier, this is
because for uniformization, the granularity of time-discretization is determined by the least stable
state, resulting in very long Markov chains for large values of γ.

3.1 The M/M/∞ queue
We finally apply our ideas to an infinite state MJP from queuing theory, the M/M/∞ queue (also
called an immigration-death process [21]). Here, individuals (customers, messages, jobs etc.) enter
a population according to a homogeneous Poisson process with rate α independent of the population
size. The lifespan of each individual (or the job ‘service time’) is exponentially distributed with rate
β, so that the rate at which a ‘death’ occurs in the population is proportional to the population size.

Let S(t) represent the population size (or the number of ‘busy servers’) at time t. Then, under the
M/M/∞ queue, the stochastic process S(t) evolves according to a simple birth-death Markov jump
process on the space S = {1, · · · ,∞}, with rates As,s+1 = α and As,s−1 = sβ. All other rates
are 0. Observe that since the population size of the M/M/∞ queue is unbounded, we cannot upper
bound the event rates in the system. Thus, uniformization is not directly applicable to this system.
Instead, we have to truncate the maximum value of S(t) to some constant, say c. This is the so-called
M/M/c/c queue; now, when all c servers are busy, any incoming jobs are rejected.

In the following, we considered an M/M/∞ queue with α and β set to 10 and 1 respectively. For
some tend, the state of the system was observed perfectly at three times 0, tend/10 and tend, with
values 10, 2 and 15 respectively. Conditioned on these, we sought the posterior distribution over the
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Figure 5: The M/M/∞
queue: a) ESS per unit time
b) ESS per unit time scaled
by interval length.
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system trajectory on the interval [0, tend]. Since the state of the system at time 0 is perfectly observed
to be 10, given any time-discretization, the maximum value of si at step i of the Markov chain is
(10 + i). Thus, message dimensions are always finite, and we can directly apply the forward-
backward algorithm. For noisy observations, we can use a slice sampler [22]. We compared our
sampler with uniformization; for this, we approximated the M/M/∞ system with an M/M/50/50
system. We also applied our sampler to this truncated approximation, labelling it as ‘Thinning
(trunc)’. For both these samplers, the message dimensions were 50. The large state spaces involved
makes pMCMC very inefficient, and we did not include it in our results.

Figure 5(a) shows the ESS per unit time for all three samplers as we varied the interval length tend
from 1 to 20. Sampling a trajectory over a long interval will take more time than over a short one,
and to more clearly distinguish performance for large values of tend, we scale each ESS from the
left plot with tend, the length of the interval, in the right subplot of figure 5.

We see our sampler always outperforms uniformization, with the difference particularly significant
for short intervals. Interestingly, running our thinning-based sampler on the truncated system offers
no significant computational benefit over running it on the full model. As the observation interval be-
comes longer and longer, the MJP trajectory can make larger and larger excursions (especially over
the interval [tend/10, tend]). Thus as tend increases, event rates witnessed in posterior trajectories
starts to increase. As our sampler adapts to this, the number of thinned events in all three samplers
start to become comparable, causing the uniformization-based sampler to approach the performance
of the other two samplers. At the same time, we see that the difference between our truncated and
our untruncated sampler starts to widen. Of course, we should remember that over long intervals,
truncating the system size to 50 becomes more likely to introduce biases into our inferences.

4 Discussion
We described a general framework for MCMC inference in continuous-time discrete-state systems.
Each MCMC iteration first samples a random discretization of time given the trajectory of the sys-
tem. Given this, we then resample the sMJP trajectory using the forward-backward algorithm. While
we looked only at semi-Markov and Markov jump processes, it is easy to extend our approach to
piecewise-constant stochastic processes with more complicated dependency structures.

For our sampler, a bottleneck in the rate of mixing is that the new and old trajectories share an inter-
mediate discretization W (see figure 1(e)). Recall that an sMJP trajectory defines an instantaneous
hazard function B(t); our scheme requires the discretization sampled from the old hazard function
be compatible with the new hazard function. Thus, the forward-backward algorithm is unlikely to
return a trajectory associated with a hazard function that differ significantly from the old one. By
contrast, for uniformization, the hazard function is a constant B, independent of the system state.
However, this comes at the cost of a conservatively high discretization of time. An interesting di-
rection for future work is too see how different choices of the dominating hazard function can help
trade-off these factors. For instance, we proposed, using a single Ω, with Bs(·) = ΩAs(·). It is
possible to use a different Ωs for each state s, or even an Ωs(·) that varies with time. Similarly, one
can consider additive (rather than multiplicative) constructions of Bs(·).

For general sMJPs, the forward-backward algorithm scales quadratically with |W |, the number of
candidate jump times. Such scaling is characteristic of sMJPs, though we can avail of discrete-time
MCMC techniques to ameliorate this. For sMJPs whose hazard functions are constant beyond a
‘window of memory’, inference scales quadratically with the memory length, and only linearly with
|W |. One can use such approximations to devise efficient MH proposals for sMJPs trajectories.
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