
Augment-and-Conquer Negative Binomial Processes

Mingyuan Zhou
Dept. of Electrical and Computer Engineering

Duke University, Durham, NC 27708
mz1@ee.duke.edu

Lawrence Carin
Dept. of Electrical and Computer Engineering

Duke University, Durham, NC 27708
lcarin@ee.duke.edu

Abstract

By developing data augmentation methods unique to the negative binomial (NB)
distribution, we unite seemingly disjoint count and mixture models under the NB
process framework. We develop fundamental properties of the models and derive
efficient Gibbs sampling inference. We show that the gamma-NB process can
be reduced to the hierarchical Dirichlet process with normalization, highlighting
its unique theoretical, structural and computational advantages. A variety of NB
processes with distinct sharing mechanisms are constructed and applied to topic
modeling, with connections to existing algorithms, showing the importance of
inferring both the NB dispersion and probability parameters.

1 Introduction

There has been increasing interest in count modeling using the Poisson process, geometric process
[1, 2, 3, 4] and recently the negative binomial (NB) process [5, 6]. Notably, it has been independently
shown in [5] and [6] that the NB process, originally constructed for count analysis, can be naturally
applied for mixture modeling of grouped data x1, · · · ,xJ , where each group xj = {xji}i=1,Nj

.
For a territory long occupied by the hierarchical Dirichlet process (HDP) [7] and related models,
the inference of which may require substantial bookkeeping and suffer from slow convergence [7],
the discovery of the NB process for mixture modeling can be significant. As the seemingly distinct
problems of count and mixture modeling are united under the NB process framework, new opportu-
nities emerge for better data fitting, more efficient inference and more flexible model constructions.
However, neither [5] nor [6] explore the properties of the NB distribution deep enough to achieve
fully tractable closed-form inference. Of particular concern is the NB dispersion parameter, which
was simply fixed or empirically set [6], or inferred with a Metropolis-Hastings algorithm [5]. Under
these limitations, both papers fail to reveal the connections of the NB process to the HDP, and thus
may lead to false assessments on comparing their modeling abilities.

We perform joint count and mixture modeling under the NB process framework, using completely
random measures [1, 8, 9] that are simple to construct and amenable for posterior computation.
We propose to augment-and-conquer the NB process: by “augmenting” a NB process into both
the gamma-Poisson and compound Poisson representations, we “conquer” the unification of count
and mixture modeling, the analysis of fundamental model properties, and the derivation of efficient
Gibbs sampling inference. We make two additional contributions: 1) we construct a gamma-NB
process, analyze its properties and show how its normalization leads to the HDP, highlighting its
unique theoretical, structural and computational advantages relative to the HDP. 2) We show that
a variety of NB processes can be constructed with distinct model properties, for which the shared
random measure can be selected from completely random measures such as the gamma, beta, and
beta-Bernoulli processes; we compare their performance on topic modeling, a typical example for
mixture modeling of grouped data, and show the importance of inferring both the NB dispersion and
probability parameters, which respectively govern the overdispersion level and the variance-to-mean
ratio in count modeling.
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1.1 Poisson process for count and mixture modeling
Before introducing the NB process, we first illustrate how the seemingly distinct problems of count
and mixture modeling can be united under the Poisson process. Denote Ω as a measure space and
for each Borel setA ⊂ Ω, denoteXj(A) as a count random variable describing the number of obser-
vations in xj that reside within A. Given grouped data x1, · · · ,xJ , for any measurable disjoint par-
tition A1, · · · , AQ of Ω, we aim to jointly model the count random variables {Xj(Aq)}. A natural
choice would be to define a Poisson process Xj ∼ PP(G), with a shared completely random mea-
sure G on Ω, such that Xj(A) ∼ Pois

(
G(A)

)
for each A ⊂ Ω. Denote G(Ω) =

∑Q
q=1G(Aq) and

G̃ = G/G(Ω). Following Lemma 4.1 of [5], the joint distributions ofXj(Ω), Xj(A1), · · · , Xj(AQ)
are equivalent under the following two expressions:

Xj(Ω) =
∑Q
q=1Xj(Aq), Xj(Aq) ∼ Pois

(
G(Aq)

)
; (1)

Xj(Ω) ∼ Poisson(G(Ω)), [Xj(A1), · · · , Xj(Aq)] ∼ Mult
(
Xj(Ω); G̃(A1), · · · , G̃(AQ)

)
. (2)

Thus the Poisson process provides not only a way to generate independent counts from each Aq ,
but also a mechanism for mixture modeling, which allocates the observations into any measurable
disjoint partition {Aq}1,Q of Ω, conditioning on Xj(Ω) and the normalized mean measure G̃.

To complete the model, we may place a gamma process [9] prior on the shared measure as
G ∼ GaP(c,G0), with concentration parameter c and base measure G0, such that G(A) ∼
Gamma(G0(A), 1/c) for each A⊂Ω, where G0 can be continuous, discrete or a combination of
both. Note that G̃ = G/G(Ω) now becomes a Dirichlet process (DP) as G̃∼DP(γ0, G̃0), where
γ0 = G0(Ω) and G̃0 = G0/γ0. The normalized gamma representation of the DP is discussed in
[10, 11, 9] and has been used to construct the group-level DPs for an HDP [12]. The Poisson process
has an equal-dispersion assumption for count modeling. As shown in (2), the construction of Poisson
processes with a shared gamma process mean measure implies the same mixture proportions across
groups, which is essentially the same as the DP when used for mixture modeling when the total
counts {Xj(Ω)}j are not treated as random variables. This motivates us to consider adding an ad-
ditional layer or using a different distribution other than the Poisson to model the counts. As shown
below, the NB distribution is an ideal candidate, not only because it allows overdispersion, but also
because it can be augmented into both a gamma-Poisson and a compound Poisson representations.

2 Augment-and-Conquer the Negative Binomial Distribution
The NB distribution m ∼ NB(r, p) has the probability mass function (PMF) fM (m) = Γ(r+m)

m!Γ(r) (1−
p)rpm. It has a mean µ = rp/(1−p) smaller than the variance σ2 = rp/(1− p)2 = µ+r−1µ2, with
the variance-to-mean ratio (VMR) as (1−p)−1 and the overdispersion level (ODL, the coefficient of
the quadratic term in σ2) as r−1. It has been widely investigated and applied to numerous scientific
studies [13, 14, 15]. The NB distribution can be augmented into a gamma-Poisson construction as
m ∼ Pois(λ), λ ∼ Gamma (r, p/(1− p)), where the gamma distribution is parameterized by its
shape r and scale p/(1 − p). It can also be augmented under a compound Poisson representation
[16] as m =

∑l
t=1 ut, ut ∼ Log(p), l ∼ Pois(−r ln(1− p)), where u ∼ Log(p) is the logarithmic

distribution [17] with probability-generating function (PGF)CU (z) = ln(1− pz)/ln(1− p), |z| <
p−1. In a slight abuse of notation, but for added conciseness, in the following discussion we use
m ∼

∑l
t=1 Log(p) to denote m =

∑l
t=1 ut, ut ∼ Log(p).

The inference of the NB dispersion parameter r has long been a challenge [13, 18, 19]. In this paper,
we first place a gamma prior on it as r ∼ Gamma(r1, 1/c1). We then use Lemma 2.1 (below) to
infer a latent count l for each m ∼ NB(r, p) conditioning on m and r. Since l ∼ Pois(−r ln(1− p))
by construction, we can use the gamma Poisson conjugacy to update r. Using Lemma 2.2 (below),
we can further infer an augmented latent count l′ for each l, and then use these latent counts to
update r1, assuming r1 ∼ Gamma(r2, 1/c2). Using Lemmas 2.1 and 2.2, we can continue this
process repeatedly, suggesting that we may build a NB process to model data that have subgroups
within groups. The conditional posterior of the latent count l was first derived by us but was not
given an analytical form [20]. Below we explicitly derive the PMF of l, shown in (3), and find that
it exactly represents the distribution of the random number of tables occupied by m customers in a
Chinese restaurant process with concentration parameter r [21, 22, 7]. We denote l ∼ CRT(m, r)
as a Chinese restaurant table (CRT) count random variable with such a PMF and as proved in the
supplementary material, we can sample it as l =

∑m
n=1 bn, bn ∼ Bernoulli (r/(n− 1 + r)).
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Both the gamma-Poisson and compound-Poisson augmentations of the NB distribution and Lemmas
2.1 and 2.2 are key ingredients of this paper. We will show that these augment-and-concur methods
not only unite count and mixture modeling and provide efficient inference, but also, as shown in
Section 3, let us examine the posteriors to understand fundamental properties of the NB processes,
clearly revealing connections to previous nonparametric Bayesian mixture models.
Lemma 2.1. Denote s(m, j) as Stirling numbers of the first kind [17]. Augment m ∼ NB(r, p)

under the compound Poisson representation as m ∼
∑l
t=1 Log(p), l ∼ Pois(−r ln(1 − p)), then

the conditional posterior of l has PMF

Pr(l = j|m, r) = Γ(r)
Γ(m+r) |s(m, j)|r

j , j = 0, 1, · · · ,m. (3)

Proof. Denote wj ∼
∑j
t=1 Log(p), j = 1, · · · ,m. Since wj is the summation of j iid Log(p)

random variables, the PGF of wj becomes CWj (z) = CjU (z) = [ln(1− pz)/ln(1− p)]j , |z| <
p−1. Using the property that [ln(1 + x)]j = j!

∑∞
n=j

s(n,j)xn

n! [17], we have Pr(wj = m) =

C
(m)
Wj

(0)/m! = (−1)mpjj!s(m, j)/(m![ln(1 − p)]j). Thus for 0 ≤ j ≤ m, we have Pr(L =

j|m, r) ∝ Pr(wj = m)Pois(j;−r ln(1−p)) ∝ |s(m, j)|rj .Denote Sr(m) =
∑m
j=0 |s(m, j)|rj , we

have Sr(m) = (m−1+r)Sr(m−1) = · · · =
∏m−1
n=1 (r+n)Sr(1) =

∏m−1
n=0 (r+n) = Γ(m+r)

Γ(r) .

Lemma 2.2. Let m ∼ NB(r, p), r ∼ Gamma(r1, 1/c1), denote p′ = − ln(1−p)
c1−ln(1−p) , then m can also

be generated from a compound distribution as
m ∼

∑l
t=1 Log(p), l ∼

∑l′

t′=1 Log(p′), l′ ∼ Pois(−r1 ln(1− p′)). (4)
Proof. Augmenting m leads to m ∼

∑l
t=1 Log(p), l ∼ Pois(−r ln(1 − p)). Marginalizing out r

leads to l ∼ NB (r1, p
′). Augmenting l using its compound Poisson representation leads to (4).

3 Gamma-Negative Binomial Process
We explore sharing the NB dispersion across groups while the probability parameters are group
dependent. We define a NB process X ∼ NBP(G, p) as X(A) ∼ NB(G(A), p) for each A ⊂ Ω and
construct a gamma-NB process for joint count and mixture modeling as Xj ∼ NBP(G, pj), G ∼
GaP(c,G0), which can be augmented as a gamma-gamma-Poisson process as

Xj ∼ PP(Λj), Λj ∼ GaP((1− pj)/pj , G), G ∼ GaP(c,G0). (5)
In the above PP(·) and GaP(·) represent the Poisson and gamma processes, respectively, as defined
in Section 1.1. Using Lemma 2.2, the gamma-NB process can also be augmented as

Xj ∼
∑Lj

t=1 Log(pj), Lj ∼ PP(−G ln(1− pj)), G ∼ GaP(c,G0); (6)

L =
∑
j Lj ∼

∑L′

t=1 Log(p′), L′ ∼ PP(−G0 ln(1− p′)), p′ =
−

∑
j ln(1−pj)

c−
∑

j ln(1−pj) . (7)

These three augmentations allow us to derive a sequence of closed-form update equations for infer-
ence with the gamma-NB process. Using the gamma Poisson conjugacy on (5), for each A ⊂ Ω, we
have Λj(A)|G,Xj , pj ∼ Gamma (G(A) +Xj(A), pj), thus the conditional posterior of Λj is

Λj |G,Xj , pj ∼ GaP
(
1/pj , G+Xj

)
. (8)

Define T ∼ CRTP(X,G) as a CRT process that T (A) =
∑
ω∈A T (ω), T (ω) ∼ CRT(X(ω), G(ω))

for each A ⊂ Ω. Applying Lemma 2.1 on (6) and (7), we have
Lj |Xj , G ∼ CRTP(Xj , G), L′|L,G0 ∼ CRTP(L,G0). (9)

If G0 is a continuous base measure and γ0 = G0(Ω) is finite, we have G0(ω)→0 ∀ ω ∈ Ω and thus
L′(Ω)|L,G0 =

∑
ω∈Ω δ(L(ω) > 0) =

∑
ω∈Ω δ(

∑
j Xj(ω) > 0) (10)

which is equal to K+, the total number of used discrete atoms; if G0 is discrete as G0 =∑K
k=1

γ0
K δωk

, then L′(ωk) = CRT(L(ωk), γ0K ) ≥ 1 if
∑
j Xj(ωk) > 0, thus L′(Ω) ≥ K+. In

either case, let γ0 ∼ Gamma(e0, 1/f0), with the gamma Poisson conjugacy on (6) and (7), we have
γ0|{L′(Ω), p′} ∼ Gamma

(
e0 + L′(Ω), 1

f0−ln(1−p′)
)
; (11)

G|G0, {Lj , pj} ∼ GaP
(
c−

∑
j ln(1− pj), G0 +

∑
j Lj

)
. (12)

Since the data {xji}i are exchangeable within group j, the predictive distribution of a point Xji,
conditioning on X−ij = {Xjn}n:n6=i and G, with Λj marginalized out, can be expressed as

Xji|G,X−ij ∼
E[Λj |G,X−i

j ]

E[Λj(Ω)|G,X−i
j ]

= G
G(Ω)+Xj(Ω)−1 +

X−i
j

G(Ω)+Xj(Ω)−1 . (13)
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3.1 Relationship with the hierarchical Dirichlet process
Using the equivalence between (1) and (2) and normalizing all the gamma processes in (5), denoting
Λ̃j = Λj/Λj(Ω), α = G(Ω), G̃ = G/α, γ0 = G0(Ω) and G̃0 = G0/γ0, we can re-express (5) as

Xji ∼ Λ̃j , Λ̃j ∼ DP(α, G̃), α ∼ Gamma(γ0, 1/c), G̃ ∼ DP(γ0, G̃0) (14)

which is an HDP [7]. Thus the normalized gamma-NB process leads to an HDP, yet we can-
not return from the HDP to the gamma-NB process without modeling Xj(Ω) and Λj(Ω) as ran-
dom variables. Theoretically, they are distinct in that the gamma-NB process is a completely
random measure, assigning independent random variables into any disjoint Borel sets {Aq}1,Q
of Ω; whereas the HDP is not. Practically, the gamma-NB process can exploit conjugacy to
achieve analytical conditional posteriors for all latent parameters. The inference of the HDP is
a major challenge and it is usually solved through alternative constructions such as the Chinese
restaurant franchise (CRF) and stick-breaking representations [7, 23]. In particular, without an-
alytical conditional posteriors, the inference of concentration parameters α and γ0 is nontrivial
[7, 24] and they are often simply fixed [23]. Under the CRF metaphor α governs the random
number of tables occupied by customers in each restaurant independently; further, if the base
probability measure G̃0 is continuous, γ0 governs the random number of dishes selected by ta-
bles of all restaurants. One may apply the data augmentation method of [22] to sample α and γ0.
However, if G̃0 is discrete as G̃0 =

∑K
k=1

1
K δωk

, which is of practical value and becomes a con-
tinuous base measure as K → ∞ [11, 7, 24], then using the method of [22] to sample γ0 is only
approximately correct, which may result in a biased estimate in practice, especially if K is not large
enough. By contrast, in the gamma-NB process, the shared gamma process G can be analytically
updated with (12) and G(Ω) plays the role of α in the HDP, which is readily available as

G(Ω)|G0, {Lj , pj}j=1,N ∼ Gamma
(
γ0 +

∑
j Lj(Ω), 1

c−
∑

j ln(1−pj)

)
(15)

and as in (11), regardless of whether the base measure is continuous, the total mass γ0 has an analyt-
ical gamma posterior whose shape parameter is governed by L′(Ω), with L′(Ω) = K+ if G0 is con-
tinuous and finite and L′(Ω) ≥ K+ ifG0 =

∑K
k=1

γ0
K δωk

. Equation (15) also intuitively shows how
the NB probability parameters {pj} govern the variations among {Λ̃j} in the gamma-NB process.
In the HDP, pj is not explicitly modeled, and since its value becomes irrelevant when taking the nor-
malized constructions in (14), it is usually treated as a nuisance parameter and perceived as pj = 0.5
when needed for interpretation purpose. Fixing pj = 0.5 is also considered in [12] to construct an
HDP, whose group-level DPs are normalized from gamma processes with the scale parameters as
pj

1−pj = 1; it is also shown in [12] that improved performance can be obtained for topic modeling by
learning the scale parameters with a log Gaussian process prior. However, no analytical conditional
posteriors are provided and Gibbs sampling is not considered as a viable option [12].

3.2 Augment-and-conquer inference for joint count and mixture modeling
For a finite continuous base measure, the gamma process G ∼ GaP(c,G0) can also be defined
with its Lévy measure on a product space R+×Ω, expressed as ν(drdω) = r−1e−crdrG0(dω) [9].
Since the Poisson intensity ν+ = ν(R+×Ω) =∞ and

∫ ∫
R+×Ω

rν(drdω) is finite, a draw from this
process can be expressed as G =

∑∞
k=1 rkδωk

, (rk, ωk) ∼ π(drdω), π(drdω)ν+ ≡ ν(drdω) [9].
Here we consider a discrete base measure as G0 =

∑K
k=1

γ0
K δωk

, ωk ∼ g0(ωk), then we have G =∑K
k=1 rkδωk

, rk ∼ Gamma(γ0/K, 1/c), ωk ∼ g0(ωk), which becomes a draw from the gamma
process with a continuous base measure as K →∞. Let xji ∼ F (ωzji) be observation i in group j,
linked to a mixture component ωzji ∈ Ω through a distribution F . Denote njk =

∑Nj

i=1 δ(zji = k),
we can express the gamma-NB process with the discrete base measure as

ωk ∼ g0(ωk), Nj =
∑K
k=1 njk, njk ∼ Pois(λjk), λjk ∼ Gamma(rk, pj/(1− pj))

rk ∼ Gamma(γ0/K, 1/c), pj ∼ Beta(a0, b0), γ0 ∼ Gamma(e0, 1/f0) (16)

where marginally we have njk ∼ NB(rk, pj). Using the equivalence between (1) and (2), we
can equivalently express Nj and njk in the above model as Nj ∼ Pois (λj) , [nj1, · · · , njK ] ∼
Mult (Nj ;λj1/λj , · · · , λjK/λj), where λj =

∑K
k=1 λjk. Since the data {xji}i=1,Nj

are fully
exchangeable, rather than drawing [nj1, · · · , njK ] once, we may equivalently draw the index

zji ∼ Discrete (λj1/λj , · · · , λjK/λj) (17)
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for each xji and then let njk =
∑Nj

i=1 δ(zji = k). This provides further insights on how the seem-
ingly disjoint problems of count and mixture modeling are united under the NB process framework.
Following (8)-(12), the block Gibbs sampling is straightforward to write as

p(ωk|−) ∝
∏
zji=k

F (xji;ωk)g0(ωk), Pr(zji = k|−) ∝ F (xji;ωk)λjk

(pj |−) ∼ Beta
(
a0 +Nj , b0 +

∑
k rk

)
, p′ =

−
∑

j ln(1−pj)

c−
∑

j ln(1−pj) , (ljk|−) ∼ CRT(njk, rk)

(l′k|−) ∼ CRT(
∑
j ljk, γ0/K), (γ0|−) ∼ Gamma

(
e0 +

∑
k l
′
k,

1
f0−ln(1−p′)

)
(rk|−) ∼ Gamma

(
γ0/K +

∑
j ljk,

1
c−

∑
j ln(1−pj)

)
, (λjk|−) ∼ Gamma(rk + njk, pj). (18)

which has similar computational complexity as that of the direct assignment block Gibbs sampling
of the CRF-HDP [7, 24]. If g0(ω) is conjugate to the likelihood F (x;ω), then the posterior p(ω|−)
would be analytical. Note that when K →∞, we have (l′k|−) = δ(

∑
j ljk > 0) = δ(

∑
j njk > 0).

Using (1) and (2) and normalizing the gamma distributions, (16) can be re-expressed as

zji ∼ Discrete(λ̃j), λ̃j ∼ Dir(αr̃), α ∼ Gamma(γ0, 1/c), r̃ ∼ Dir(γ0/K, · · · , γ0/K) (19)

which loses the count modeling ability and becomes a finite representation of the HDP, the inference
of which is not conjugate and has to be solved under alternative representations [7, 24]. This also
implies that by using the Dirichlet process as the foundation, traditional mixture modeling may
discard useful count information from the beginning.

4 The Negative Binomial Process Family and Related Algorithms
The gamma-NB process shares the NB dispersion across groups. Since the NB distribution has two
adjustable parameters, we may explore alternative ideas, with the NB probability measure shared
across groups as in [6], or with both the dispersion and probability measures shared as in [5]. These
constructions are distinct from both the gamma-NB process and HDP in that Λj has space dependent
scales, and thus its normalization Λ̃j = Λj/Λj(Ω) no longer follows a Dirichlet process.

It is natural to let the probability measure be drawn from a beta process [25, 26], which can be
defined by its Lévy measure on a product space [0, 1]×Ω as ν(dpdω) = cp−1(1−p)c−1dpB0(dω).
A draw from the beta process B ∼ BP(c,B0) with concentration parameter c and base measure B0

can be expressed asB =
∑∞
k=1 pkδωk

. A beta-NB process [5, 6] can be constructed by lettingXj ∼
NBP(rj , B), with a random draw expressed as Xj =

∑∞
k=1 njkδωk

, njk ∼ NB(rj , pk). Under
this construction, the NB probability measure is shared and the NB dispersion parameters are group
dependent. As in [5], we may also consider a marked-beta-NB1 process that both the NB probability
and dispersion measures are shared, in which each point of the beta process is marked with an
independent gamma random variable. Thus a draw from the marked-beta process becomes (R,B) =∑∞
k=1(rk, pk)δωk

, and the NB process Xj ∼ NBP(R,B) becomes Xj =
∑∞
k=1 njkδωk

, njk ∼
NB(rk, pk). Since the beta and NB processes are conjugate, the posterior ofB is tractable, as shown
in [5, 6]. If it is believed that there are excessive number of zeros, governed by a process other
than the NB process, we may introduce a zero inflated NB process as Xj ∼ NBP(RZj , pj), where
Zj ∼ BeP(B) is drawn from the Bernoulli process [26] and (R,B) =

∑∞
k=1(rk, πk)δωk

is drawn
from a marked-beta process, thus njk ∼ NB(rkbjk, pj), bjk = Bernoulli(πk). This construction
can be linked to the model in [27] with appropriate normalization, with advantages that there is no
need to fix pj = 0.5 and the inference is fully tractable. The zero inflated construction can also be
linked to models for real valued data using the Indian buffet process (IBP) or beta-Bernoulli process
spike-and-slab prior [28, 29, 30, 31].

4.1 Related Algorithms
To show how the NB processes can be diversely constructed and to make connections to previous
parametric and nonparametric mixture models, we show in Table 1 a variety of NB processes, which
differ on how the dispersion and probability measures are shared. For a deeper understanding on
how the counts are modeled, we also show in Table 1 both the VMR and ODL implied by these

1We may also consider a beta marked-gamma-NB process, whose performance is found to be very similar.
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Table 1: A variety of negative binomial processes are constructed with distinct sharing mechanisms, reflected
with which parameters from rk, rj , pk, pj and πk (bjk) are inferred (indicated by a check-mark X), and the
implied VMR and ODL for counts {njk}j,k. They are applied for topic modeling of a document corpus, a
typical example of mixture modeling of grouped data. Related algorithms are shown in the last column.

Algorithms rk rj pk pj πk VMR ODL Related Algorithms
NB-LDA X X (1− pj)−1 r−1

j LDA [32], Dir-PFA [5]
NB-HDP X 0.5 2 r−1

k HDP[7], DILN-HDP [12]
NB-FTM X 0.5 X 2 (rk)−1bjk FTM [27], SγΓ-PFA [5]
Beta-NB X X (1− pk)−1 r−1

j BNBP [5], BNBP [6]
Gamma-NB X X (1− pj)−1 r−1

k CRF-HDP [7, 24]
Marked-Beta-NB X X (1− pk)−1 r−1

k BNBP [5]

settings. We consider topic modeling of a document corpus, a typical example of mixture mod-
eling of grouped data, where each a-bag-of-words document constitutes a group, each word is an
exchangeable group member, and F (xji;ωk) is simply the probability of word xji in topic ωk.

We consider six differently constructed NB processes in Table 1: (i) Related to latent Dirichlet
allocation (LDA) [32] and Dirichlet Poisson factor analysis (Dir-PFA) [5], the NB-LDA is also a
parametric topic model that requires tuning the number of topics. However, it uses a document de-
pendent rj and pj to automatically learn the smoothing of the gamma distributed topic weights, and
it lets rj ∼ Gamma(γ0, 1/c), γ0 ∼ Gamma(e0, 1/f0) to share statistical strength between docu-
ments, with closed-form Gibbs sampling inference. Thus even the most basic parametric LDA topic
model can be improved under the NB count modeling framework. (ii) The NB-HDP model is re-
lated to the HDP [7], and since pj is an irrelevant parameter in the HDP due to normalization, we set
it in the NB-HDP as 0.5, the usually perceived value before normalization. The NB-HDP model is
comparable to the DILN-HDP [12] that constructs the group-level DPs with normalized gamma pro-
cesses, whose scale parameters are also set as one. (iii) The NB-FTM model introduces an additional
beta-Bernoulli process under the NB process framework to explicitly model zero counts. It is the
same as the sparse-gamma-gamma-PFA (SγΓ-PFA) in [5] and is comparable to the focused topic
model (FTM) [27], which is constructed from the IBP compound DP. Nevertheless, they apply about
the same likelihoods and priors for inference. The Zero-Inflated-NB process improves over them by
allowing pj to be inferred, which generally yields better data fitting. (iv) The Gamma-NB process
explores the idea that the dispersion measure is shared across groups, and it improves over the NB-
HDP by allowing the learning of pj . It reduces to the HDP [7] by normalizing both the group-level
and the shared gamma processes. (v) The Beta-NB process explores sharing the probability measure
across groups, and it improves over the beta negative binomial process (BNBP) proposed in [6],
allowing inference of rj . (vi) The Marked-Beta-NB process is comparable to the BNBP proposed
in [5], with the distinction that it allows analytical update of rk. The constructions and inference
of various NB processes and related algorithms in Table 1 all follow the formulas in (16) and (18),
respectively, with additional details presented in the supplementary material.

Note that as shown in [5], NB process topic models can also be considered as factor analysis of
the term-document count matrix under the Poisson likelihood, with ωk as the kth factor loading
that sums to one and λjk as the factor score, which can be further linked to nonnegative matrix
factorization [33] and a gamma Poisson factor model [34]. If except for proportions λ̃j and r̃, the
absolute values, e.g., λjk, rk and pk, are also of interest, then the NB process based joint count and
mixture models would apparently be more appropriate than the HDP based mixture models.

5 Example Results
Motivated by Table 1, we consider topic modeling using a variety of NB processes, which differ on
which parameters are learned and consequently how the VMR and ODL of the latent counts {njk}j,k
are modeled. We compare them with LDA [32, 35] and CRF-HDP [7, 24]. For fair comparison, they
are all implemented with block Gibbs sampling using a discrete base measure with K atoms, and
for the first fifty iterations, the Gamma-NB process with rk ≡ 50/K and pj ≡ 0.5 is used for
initialization. For LDA and NB-LDA, we search K for optimal performance and for the other
models, we set K = 400 as an upper-bound. We set the parameters as c = 1, η = 0.05 and
a0 = b0 = e0 = f0 = 0.01. For LDA, we set the topic proportion Dirichlet smoothing parameter
as 50/K, following the topic model toolbox2 provided for [35]. We consider 2500 Gibbs sampling
iterations, with the last 1500 samples collected. Under the NB processes, each word xji would
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Figure 1: Comparison of per-word perplexities on the held-out words between various algorithms. (a) With
60% of the words in each document used for training, the performance varies as a function of K in both LDA
and NB-LDA, which are parametric models, whereas the NB-HDP, NB-FTM, Beta-NB, CRF-HDP, Gamma-
NB and Marked-Beta-NB all infer the number of active topics, which are 127, 201, 107, 161, 177 and 130,
respectively, according to the last Gibbs sampling iteration. (b) Per-word perplexities of various models as a
function of the percentage of words in each document used for training. The results of the LDA and NB-LDA
are shown with the best settings of K under each training/testing partition.

be assigned to a topic k based on both F (xji;ωk) and the topic weights {λjk}k=1,K ; each topic is
drawn from a Dirichlet base measure as ωk ∼ Dir(η, · · · , η) ∈ RV , where V is the number of unique
terms in the vocabulary and η is a smoothing parameter. Let vji denote the location of word xji in the
vocabulary, then we have (ωk|−) ∼ Dir

(
η +

∑
j

∑
i δ(zji = k, vji = 1), · · · , η +

∑
j

∑
i δ(zji =

k, vji = V )
)
. We consider the Psychological Review2 corpus, restricting the vocabulary to terms

that occur in five or more documents. The corpus includes 1281 abstracts from 1967 to 2003, with
2,566 unique terms and 71,279 total word counts. We randomly select 20%, 40%, 60% or 80%
of the words from each document to learn a document dependent probability for each term v as
fjv =

∑S
s=1

∑K
k=1 ω

(s)
vk λ

(s)
jk

/∑S
s=1

∑V
v=1

∑K
k=1 ω

(s)
vk λ

(s)
jk , where ωvk is the probability of term v

in topic k and S is the total number of collected samples. We use {fjv}j,v to calculate the per-
word perplexity on the held-out words as in [5]. The final results are averaged from five random
training/testing partitions. Note that the perplexity per test word is the fair metric to compare topic
models. However, when the actual Poisson rates or distribution parameters for counts instead of the
mixture proportions are of interest, it is obvious that a NB process based joint count and mixture
model would be more appropriate than an HDP based mixture model.

Figure 1 compares the performance of various algorithms. The Marked-Beta-NB process has the
best performance, closely followed by the Gamma-NB process, CRF-HDP and Beta-NB process.
With an appropriate K, the parametric NB-LDA may outperform the nonparametric NB-HDP and
NB-FTM as the training data percentage increases, somewhat unexpected but very intuitive results,
showing that even by learning both the NB dispersion and probability parameters rj and pj in a
document dependent manner, we may get better data fitting than using nonparametric models that
share the NB dispersion parameters rk across documents, but fix the NB probability parameters.

Figure 2 shows the learned model parameters by various algorithms under the NB process frame-
work, revealing distinct sharing mechanisms and model properties. When (rj , pj) is used, as in the
NB-LDA, different documents are weakly coupled with rj ∼ Gamma(γ0, 1/c), and the modeling
results show that a typical document in this corpus usually has a small rj and a large pj , thus a large
ODL and a large VMR, indicating highly overdispersed counts on its topic usage. When (rj , pk) is
used to model the latent counts {njk}j,k, as in the Beta-NB process, the transition between active
and non-active topics is very sharp that pk is either close to one or close to zero. That is because pk
controls the mean as E[

∑
j njk] = pk/(1− pk)

∑
j rj and the VMR as (1− pk)−1 on topic k, thus

a popular topic must also have large pk and thus large overdispersion measured by the VMR; since
the counts {njk}j are usually overdispersed, particularly true in this corpus, a middle range pk indi-
cating an appreciable mean and small overdispersion is not favored by the model and thus is rarely
observed. When (rk, pj) is used, as in the Gamma-NB process, the transition is much smoother that
rk gradually decreases. The reason is that rk controls the mean as E[

∑
j njk] = rk

∑
j pj/(1− pj)

and the ODL r−1
k on topic k, thus popular topics must also have large rk and thus small overdisper-

sion measured by the ODL, and unpopular topics are modeled with small rk and thus large overdis-
persion, allowing rarely and lightly used topics. Therefore, we can expect that (rk, pj) would allow

2http://psiexp.ss.uci.edu/research/programs data/toolbox.htm
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Figure 2: Distinct sharing mechanisms and model properties are evident between various NB processes, by
comparing their inferred parameters. Note that the transition between active and non-active topics is very sharp
when pk is used and much smoother when rk is used. Both the documents and topics are ordered in a decreasing
order based on the number of words associated with each of them. These results are based on the last Gibbs
sampling iteration. The values are shown in either linear or log scales for convenient visualization.

more topics than (rj , pk), as confirmed in Figure 1 (a) that the Gamma-NB process learns 177 active
topics, significantly more than the 107 ones of the Beta-NB process. With these analysis, we can
conclude that the mean and the amount of overdispersion (measure by the VMR or ODL) for the
usage of topic k is positively correlated under (rj , pk) and negatively correlated under (rk, pj).

When (rk, pk) is used, as in the Marked-Beta-NB process, more diverse combinations of mean and
overdispersion would be allowed as both rk and pk are now responsible for the mean E[

∑
j njk] =

Jrkpk/(1−pk). For example, there could be not only large mean and small overdispersion (large rk
and small pk), but also large mean and large overdispersion (small rk and large pk). Thus (rk, pk)
may combine the advantages of using only rk or pk to model topic k, as confirmed by the superior
performance of the Marked-Beta-NB over the Beta-NB and Gamma-NB processes. When (rk, πk)
is used, as in the NB-FTM model, our results show that we usually have a small πk and a large rk,
indicating topic k is sparsely used across the documents but once it is used, the amount of variation
on usage is small. This modeling properties might be helpful when there are excessive number of
zeros which might not be well modeled by the NB process alone. In our experiments, we find the
more direct approaches of using pk or pj generally yield better results, but this might not be the
case when excessive number of zeros are better explained with the underlying beta-Bernoulli or IBP
processes, e.g., when the training words are scarce.

It is also interesting to compare the Gamma-NB and NB-HDP. From a mixture-modeling viewpoint,
fixing pj = 0.5 is natural as pj becomes irrelevant after normalization. However, from a count mod-
eling viewpoint, this would make a restrictive assumption that each count vector {njk}k=1,K has
the same VMR of 2, and the experimental results in Figure 1 confirm the importance of learning pj
together with rk. It is also interesting to examine (15), which can be viewed as the concentration pa-
rameter α in the HDP, allowing the adjustment of pj would allow a more flexible model assumption
on the amount of variations between the topic proportions, and thus potentially better data fitting.

6 Conclusions
We propose a variety of negative binomial (NB) processes to jointly model counts across groups,
which can be naturally applied for mixture modeling of grouped data. The proposed NB processes
are completely random measures that they assign independent random variables to disjoint Borel sets
of the measure space, as opposed to the hierarchical Dirichlet process (HDP) whose measures on
disjoint Borel sets are negatively correlated. We discover augment-and-conquer inference methods
that by “augmenting” a NB process into both the gamma-Poisson and compound Poisson repre-
sentations, we are able to “conquer” the unification of count and mixture modeling, the analysis of
fundamental model properties and the derivation of efficient Gibbs sampling inference. We demon-
strate that the gamma-NB process, which shares the NB dispersion measure across groups, can be
normalized to produce the HDP and we show in detail its theoretical, structural and computational
advantages over the HDP. We examine the distinct sharing mechanisms and model properties of
various NB processes, with connections to existing algorithms, with experimental results on topic
modeling showing the importance of modeling both the NB dispersion and probability parameters.
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