
Regularized Off-Policy TD-Learning

Bo Liu, Sridhar Mahadevan
Computer Science Department

University of Massachusetts
Amherst, MA 01003

{boliu, mahadeva}@cs.umass.edu

Ji Liu
Computer Science Department

University of Wisconsin
Madison, WI 53706

ji-liu@cs.wisc.edu

Abstract

We present a novel l1 regularized off-policy convergent TD-learning method
(termed RO-TD), which is able to learn sparse representations of value functions
with low computational complexity. The algorithmic framework underlying RO-
TD integrates two key ideas: off-policy convergent gradient TD methods, such
as TDC, and a convex-concave saddle-point formulation of non-smooth convex
optimization, which enables first-order solvers and feature selection using online
convex regularization. A detailed theoretical and experimental analysis of RO-TD
is presented. A variety of experiments are presented to illustrate the off-policy
convergence, sparse feature selection capability and low computational cost of the
RO-TD algorithm.

1 Introduction

Temporal-difference (TD) learning is a widely used method in reinforcement learning (RL). Al-
though TD converges when samples are drawn “on-policy” by sampling from the Markov chain
underlying a policy in a Markov decision process (MDP), it can be shown to be divergent when
samples are drawn “off-policy”. Off-policy methods are of wider applications since they are able to
learn while executing an exploratory policy, learn from demonstrations, and learn multiple tasks in
parallel [2]. Sutton et al. [20] introduced convergent off-policy temporal difference learning algo-
rithms, such as TDC, whose computation time scales linearly with the number of samples and the
number of features. Recently, a linear off-policy actor-critic algorithm based on the same framework
was proposed in [2].

Regularizing reinforcement learning algorithms leads to more robust methods that can scale up to
large problems with many potentially irrelevant features. LARS-TD [7] introduced a popular ap-
proach of combining l1 regularization using Least Angle Regression (LARS) with the least-squares
TD (LSTD) framework. Another approach was introduced in [5] (LCP-TD) based on the Linear
Complementary Problem (LCP) formulation, an optimization approach between linear program-
ming and quadratic programming. LCP-TD uses “warm-starts”, which helps significantly reduce
the burden of l1 regularization. A theoretical analysis of l1 regularization was given in [4], including
error bound analysis with finite samples in the on-policy setting. Another approach integrating the
Dantzig Selector with LSTD was proposed in [3], overcoming some of the drawbacks of LARS-TD.
An approximate linear programming approach for finding l1 regularized solutions of the Bellman
equation was presented in [17]. All of these approaches are second-order methods, requiring com-
plexity approximately cubic in the number of (active) features. Another approach to feature selec-
tion is to greedily add new features, proposed recently in [15]. Regularized first-order reinforcement
learning approaches have recently been investigated in the on-policy setting as well, wherein con-
vergence of l1 regularized temporal difference learning is discussed in [16] and mirror descent [6] is
used in [11].
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In this paper, the off-policy TD learning problem is formulated from the stochastic optimization
perspective. A novel objective function is proposed based on the linear equation formulation of
the TDC algorithm. The optimization problem underlying off-policy TD methods, such as TDC,
is reformulated as a convex-concave saddle-point stochastic approximation problem, which is both
convex and incrementally solvable. A detailed theoretical and experimental study of the RO-TD
algorithm is presented.

Here is a brief roadmap to the rest of the paper. Section 2 reviews the basics of MDPs, RL and recent
work on off-policy convergent TD methods, such as the TDC algorithm. Section 3 introduces the
proximal gradient method and the convex-concave saddle-point formulation of non-smooth convex
optimization. Section 4 presents the new RO-TD algorithm. Convergence analysis of RO-TD is
presented in Section 5. Finally, in Section 6, experimental results are presented to demonstrate the
effectiveness of RO-TD.

2 Reinforcement Learning and the TDC Algorithm

A Markov Decision Process (MDP) is defined by the tuple (S, A, P a
ss′ , R, γ), comprised of a set of

states S, a set of (possibly state-dependent) actions A (As), a dynamical system model comprised of
the transition kernel P a

ss′ specifying the probability of transition to state s′ from state s under action
a, a reward model R, and 0 ≤ γ < 1 is a discount factor. A policy π : S → A is a deterministic
mapping from states to actions. Associated with each policy π is a value function V π , which is the
fixed point of the Bellman equation:

V π(s) = TπV π(s) = Rπ(s) + γPπV π(s)

where Rπ is the expected immediate reward function (treated here as a column vector) and Pπ is
the state transition function under fixed policy π, and Tπ is known as the Bellman operator. In what
follows, we often drop the dependence of V π, Tπ, Rπ on π, for notational simplicity. In linear value
function approximation, a value function is assumed to lie in the linear span of a basis function
matrix Φ of dimension |S| × d, where d is the number of linear independent features. Hence,
V ≈ V̂ = Φθ. The vector space of all value functions is a normed inner product space, where the
“length” of any value function f is measured as ||f ||2Ξ =

∑
s ξ(s)f2(s) = f ′Ξf weighted by Ξ,

where Ξ is defined in Figure 1. For the t-th sample, φt,φ′t, θt and δt are defined in Figure 1. TD
learning uses the following update rule θt+1 = θt + αtδtφt, where αt is the stepsize. However,
TD is only guaranteed to converge in the on-policy setting, although in many off-policy situations,
it still has satisfactory performance [21]. TD with gradient correction (TDC) [20] aims to minimize
the mean-square projected Bellman error (MSPBE) in order to guarantee off-policy convergence.
MSPBE is defined as

MSPBE(θ) = ‖Φθ −ΠT (Φθ)‖2Ξ = (ΦT Ξ(TΦθ − Φθ))T (ΦT ΞΦ)−1ΦT Ξ(TΦθ − Φθ) (1)

To avoid computing the inverse matrix (ΦT ΞΦ)−1 and to avoid the double sampling problem [19]
in (1), an auxiliary variable w is defined

w = (ΦT ΞΦ)−1ΦT Ξ(TΦθ − Φθ) (2)

The two time-scale gradient descent learning method TDC [20] is defined below

θt+1 = θt + αtδtφt − αtγφt
′(φT

t wt), wt+1 = wt + βt(δt − φT
t wt)φt (3)

where−αtγφt
′(φT

t wt) is the term for correction of gradient descent direction, and βt = ηαt, η > 1.

3 Proximal Gradient and Saddle-Point First-Order Algorithms

We now introduce some background material from convex optimization. The proximal mapping
associated with a convex function h is defined as:1

proxh(x) = arg min
u

(h(u) +
1
2
‖u− x‖2) (4)

1The proximal mapping can be shown to be the resolvent of the subdifferential of the function h.
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• Ξ is a diagonal matrix whose entries ξ(s) are given by a positive probability distribution
over states. Π = Φ(ΦT ΞΦ)−1ΦT Ξ is the weighted least-squares projection operator.

• A square root of A is a matrix B satisfying B2 = A and B is denoted as A
1
2 . Note that

A
1
2 may not be unique.

• [·, ·] is a row vector, and [·; ·] is a column vector.
• For the t-th sample, φt (the t-th row of Φ), φ′t (the t-th row of Φ′) are the feature vectors

corresponding to st, s
′
t, respectively. θt is the coefficient vector for t-th sample in first-

order TD learning methods, and δt = (rt + γφ
′T
t θt)− φT

t θt is the temporal difference
error. Also, xt = [wt; θt], αt is a stepsize, βt = ηαt, η > 0.

• m,n are conjugate numbers if 1
m + 1

n = 1,m ≥ 1, n ≥ 1. ||x||m = (
∑

j |xj |m)
1
m is

the m-norm of vector x.
• ρ is l1 regularization parameter, λ is the eligibility trace factor, N is the sample size, d

is the number of basis functions, p is the number of active basis functions.

Figure 1: Notation used in this paper.

In the case of h(x) = ρ‖x‖1(ρ > 0), which is particularly important for sparse feature selection,
the proximal operator turns out to be the soft-thresholding operator Sρ(·), which is an entry-wise
shrinkage operator:

proxh(x)i = Sρ(xi) = max(xi − ρ, 0)−max(−xi − ρ, 0) (5)
where i is the index, and ρ is a threshold. With this background, we now introduce the proximal
gradient method. If the optimization problem is

x∗ = arg min
x∈X

(f(x) + h(x)) (6)

wherein f(x) is a convex and differentiable loss function and the regularization term h(x) is convex,
possibly non-differentiable and computing proxh is not expensive, then computation of (6) can be
carried out using the proximal gradient method:

xt+1 = proxαth (xt − αt∇f(xt)) (7)
where αt > 0 is a (decaying) stepsize, a constant or it can be determined by line search.

3.1 Convex-concave Saddle-Point First Order Algorithms

The key novel contribution of our paper is a convex-concave saddle-point formulation for regular-
ized off-policy TD learning. A convex-concave saddle-point problem is formulated as follows. Let
x ∈ X, y ∈ Y , where X, Y are both nonempty bounded closed convex sets, and f(x) : X → R
be a convex function. If there exists a function ϕ(·, ·) such that f(x) can be represented as
f(x) := supy∈Y ϕ(x, y), then the pair (ϕ, Y ) is referred as the saddle-point representation of f .
The optimization problem of minimizing f over X is converted into an equivalent convex-concave
saddle-point problem SadV al = infx∈Xsupy∈Y ϕ(x, y) of ϕ on X×Y . If f is non-smooth yet con-
vex and well structured, which is not suitable for many existing optimization approaches requiring
smoothness, its saddle-point representation ϕ is often smooth and convex. Thus, convex-concave
saddle-point problems are, therefore, usually better suited for first-order methods [6]. A compre-
hensive overview on extending convex minimization to convex-concave saddle-point problems with
unified variational inequalities is presented in [1]. As an example, consider f(x) = ||Ax − b||m
which admits a bilinear minimax representation

f(x) := ‖Ax− b‖m = max
‖y‖n≤1

yT (Ax− b) (8)

where m,n are conjugate numbers. Using the approach in [13], Equation (8) can be solved as
xt+1 = xt − αtA

T yt, yt+1 = Πn(yt + αt(Axt − b)) (9)
where Πn is the projection operator of y onto the unit ln-ball ‖y‖n ≤ 1,which is defined as

Πn(y) = min(1, 1/‖y‖n)y, n = 2, 3, · · · ,Π∞(yi) = min(1, 1/|yi|)yi (10)
and Π∞ is an entrywise operator.
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4 Regularized Off-policy Convergent TD-Learning

We now describe a novel algorithm, regularized off-policy convergent TD-learning (RO-TD), which
combines off-policy convergence and scalability to large feature spaces. The objective function
is proposed based on the linear equation formulation of the TDC algorithm. Then the objective
function is represented via its dual minimax problem. The RO-TD algorithm is proposed based on
the primal-dual subgradient saddle-point algorithm, and inspired by related methods in [12],[13].

4.1 Objective Function of Off-policy TD Learning

In this subsection, we describe the objective function of the regularized off-policy RL problem. We
now first formulate the two updates of θt, wt into a single iteration by rearranging the two equations
in (3) as xt+1 = xt − αt(Atxt − bt), where xt = [wt; θt],

At =
[

ηφtφt
T ηφt(φt − γφ′t)

T

γφ′tφt
T φt(φt − γφ′t)

T

]
, bt =

[
ηrtφt

rtφt

]
(11)

Following [20], the TDC algorithm solution follows from the linear equation Ax = b, where
A = E[At], b = E[bt], x = [w; θ] (12)

There are some issues regarding the objective function, which arise from the online convex opti-
mization and reinforcement learning perspectives, respectively. The first concern is that the objective
function should be convex and stochastically solvable. Note that A,At are neither PSD nor symmet-
ric, and it is not straightforward to formulate a convex objective function based on them. The second
concern is that since we do not have knowledge of A, the objective function should be separable so
that it is stochastically solvable based on At, bt. The other concern regards the sampling condition
in temporal difference learning: double-sampling. As pointed out in [19], double-sampling is a
necessary condition to obtain an unbiased estimator if the objective function is the Bellman resid-
ual or its derivatives (such as projected Bellman residual), wherein the product of Bellman error or
projected Bellman error metrics are involved. To overcome this sampling condition constraint, the
product of TD errors should be avoided in the computation of gradients. Consequently, based on the
linear equation formulation in (12) and the requirement on the objective function discussed above,
we propose the regularized loss function as

L(x) = ‖Ax− b‖m + h(x) (13)

Here we also enumerate some intuitive objective functions and give a brief analysis on the reasons
why they are not suitable for regularized off-policy first-order TD learning. One intuitive idea is
to add a sparsity penalty on MSPBE, i.e., L(θ) = MSPBE(θ)+ρ‖θ‖1. Because of the l1 penalty
term, the solution to ∇L = 0 does not have an analytical form and is thus difficult to compute.
The second intuition is to use the online least squares formulation of the linear equation Ax = b.
However, since A is not symmetric and positive semi-definite (PSD), A

1
2 does not exist and thus

Ax = b cannot be reformulated as minx∈X ||A
1
2 x−A− 1

2 b||22. Another possible idea is to attempt
to find an objective function whose gradient is exactly Atxt − bt and thus the regularized gradient
is proxαth(xt)(Atxt − bt). However, since At is not symmetric, this gradient does not explicitly
correspond to any kind of optimization problem, not to mention a convex one2.

4.2 RO-TD Algorithm Design

In this section, the problem of (13) is formulated as a convex-concave saddle-point problem, and the
RO-TD algorithm is proposed. Analogous to (8), the regularized loss function can be formulated as

‖Ax− b‖m + h(x) = max
‖y‖n≤1

yT (Ax− b) + h(x) (14)

Similar to (9), Equation (14) can be solved via an iteration procedure as follows, where xt = [wt; θt].

xt+ 1
2

= xt − αtA
T
t yt , yt+ 1

2
= yt + αt(Atxt − bt)

xt+1 = proxαth(xt+ 1
2
) , yt+1 = Πn(yt+ 1

2
) (15)

2Note that the A matrix in GTD2’s linear equation representation is symmetric, yet is not PSD, so it cannot
be formulated as a convex problem.
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The averaging step, which plays a crucial role in stochastic optimization convergence, generates the
approximate saddle-points [6, 12]

x̄t =
(∑t

i=0
αi

)−1 ∑t

i=0
αixi, ȳt =

(∑t

i=0
αi

)−1 ∑t

i=0
αiyi (16)

Due to the computation of At in (15) at each iteration, the computation cost appears to be O(Nd2),
where N, d are defined in Figure 1. However, the computation cost is actually O(Nd) with a linear
algebraic trick by computing not At but yT

t At, Atxt− bt. Denoting yt = [y1,t; y2,t], where y1,t; y2,t

are column vectors of equal length, we have

yT
t At =

[
ηφT

t (yT
1,tφt) + γφT

t (yT
2,tφ

′
t) (φt − γφ′t)

T (ηyT
1,t + yT

2,t)φt

]
(17)

Atxt − bt can be computed according to Equation (3) as follows:
Atxt − bt =

[
−η(δt − φT

t wt)φt; γ(φT
t wt)φt

′ − δtφt

]
(18)

Both (17) and (18) are of linear computation complexity. Now we are ready to present the RO-TD
algorithm:

Algorithm 1 RO-TD
Let π be some fixed policy of an MDP M , and let the sample set S = {si, ri, si

′}Ni=1. Let Φ be
some fixed basis.

1: repeat
2: Compute φt, φt

′ and TD error δt = (rt + γφ
′T
t θt)− φT

t θt

3: Compute yT
t
At, Atxt − bt in Equation (17) and (18).

4: Compute xt+1, yt+1 as in Equation (15)
5: Set t← t + 1;
6: until t = N ;
7: Compute x̄N , ȳN as in Equation (16) with t = N

There are some design details of the algorithm to be elaborated. First, the regularization term h(x)
can be any kind of convex regularization, such as ridge regression or sparsity penalty ρ||x||1. In case
of h(x) = ρ||x||1, proxαth(·) = Sαtρ(·). In real applications the sparsification requirement on θ
and auxiliary variable w may be different, i.e., h(x) = ρ1‖θ‖1 + ρ2‖w‖1, ρ1 6= ρ2, one can simply
replace the uniform soft thresholding Sαtρ by two separate soft thresholding operations Sαtρ1 , Sαtρ2

and thus the third equation in (15) is replaced by the following,

xt+ 1
2

=
[
wt+ 1

2
; θt+ 1

2

]
, θt+1 = Sαtρ1(θt+ 1

2
), wt+1 = Sαtρ2(wt+ 1

2
) (19)

Another concern is the choice of conjugate numbers (m,n). For ease of computing Πn, we use
(2, 2)(l2 fit), (+∞, 1)(uniform fit) or (1,+∞). m = n = 2 is used in the experiments below.

4.3 RO-GQ(λ) Design

GQ(λ)[10] is a generalization of the TDC algorithm with eligibility traces and off-policy learning
of temporally abstract predictions, where the gradient update changes from Equation (3) to

θt+1 = θt + αt[δtet − γ(1− λ)wt
T etφ̄t+1], wt+1 = wt + βt(δtet − wT

t φtφt) (20)
The central element is to extend the MSPBE function to the case where it incorporates eligibility
traces. The objective function and corresponding linear equation component At, bt can be written
as follows:

L(θ) = ||Φθ −ΠTπλΦθ||2Ξ (21)

At =

[
ηφtφt

T ηet(φt − γφ̄t+1)
T

γ(1− λ)φ̄t+1e
T
t et(φt − γφ̄t+1)

T

]
, bt =

[
ηrtet

rtet

]
(22)

Similar to Equation (17) and (18), the computation of yT
t
At, Atxt − bt is

yT
t
At =

[
ηφT

t (yT
1,tφt) + γ(1− λ)eT

t (yT
2,tφ̄t+1) (φt − γφ̄t+1)T (ηyT

1,t + yT
2,t)et

]
Atxt − bt =

[
−η(δtet − φT

t wtφt); γ(1− λ)(eT
t wt)φ̄t+1 − δtet

]
(23)

where eligibility traces et, and φ̄t, T
πλ are defined in [10]. Algorithm 2, RO-GQ(λ), extends the

RO-TD algorithm to include eligibility traces.

5



Algorithm 2 RO-GQ(λ)
Let π and Φ be as defined in Algorithm 1. Starting from s0.

1: repeat
2: Compute φt, φ̄t+1 and TD error δt = (rt + γφ̄T

t+1θt)− φT
t θt

3: Compute yT
t
At, Atxt − bt in Equation (23).

4: Compute xt+1, yt+1 as in Equation (15)
5: Choose action at, and get st+1

6: Set t← t + 1;
7: until st is an absorbing state;
8: Compute x̄t, ȳt as in Equation (16)

4.4 Extension

It is also worth noting that there exists another formulation of the loss function different from Equa-
tion (13) with the following convex-concave formulation as in [14, 6],

min
x

1
2
‖Ax− b‖22 + ρ‖x‖1 = max

‖AT y‖∞≤1
(bT y − ρ

2
yT y)

= min
x

max
‖u‖∞≤1,y

(
xT u + yT (Ax− b)− ρ

2
yT y

)
(24)

which can be solved iteratively without the proximal gradient step as follows, which serves as a
counterpart of Equation (15),

xt+1 = xt − αtρ(ut + At
T yt) , yt+1 = yt +

αt

ρ
(Atxt − bt − ρyt)

ut+ 1
2

= ut +
αt

ρ
xt , ut+1 = Π∞(ut+ 1

2
) (25)

5 Convergence Analysis of RO-TD

Assumption 1 (MDP)[20]: The underlying Markov Reward Process (MRP) M = (S, P, R, γ) is fi-
nite and mixing, with stationary distribution π. Assume that ∃ a scalar Rmax such that V ar[rt|st] ≤
Rmax holds w.p.1.
Assumption 2 (Basis Function)[20]: Φ is a full column rank matrix, namely, Φ comprises a linear
independent set of basis functions w.r.t all sample states in sample set S. Also, assume the fea-
tures (φt, φ

′

t) have uniformly bounded second moments. Finally, if (st, at, s
′

t) is an i.i.d sequence,
∀t, ‖φt‖∞ < +∞, ‖φ′t‖∞ < +∞.
Assumption 3 (Subgradient Boundedness)[12]: Assume for the bilinear convex-concave loss
function defined in (14), the sets X, Y are closed compact sets. Then the subgradient yT

t
At and

Atxt − bt in RO-TD algorithm are uniformly bounded, i.e., there exists a constant L such that
‖Atxt − bt‖ ≤ L,

∥∥yT
t
At

∥∥ ≤ L.

Proposition 1: The approximate saddle-point x̄t of RO-TD converges w.p.1 to the global minimizer
of the following,

x∗ = arg min
x∈X
‖Ax− b‖m + ρ‖x‖1 (26)

Proof Sketch: See the supplementary material for details.

6 Empirical Results

We now demonstrate the effectiveness of the RO-TD algorithm against other algorithms across a
number of benchmark domains. LARS-TD [7], which is a popular second-order sparse reinforce-
ment learning algorithm, is used as the baseline algorithm for feature selection and TDC is used as
the off-policy convergent RL baseline algorithm, respectively.
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Figure 2: Illustrative examples of the convergence of RO-TD using the Star and Random-walk
MDPs.

6.1 MSPBE Minimization and Off-Policy Convergence

This experiment aims to show the minimization of MSPBE and off-policy convergence of the RO-
TD algorithm. The 7 state star MDP is a well known counterexample where TD diverges monoton-
ically and TDC converges. It consists of 7 states and the reward w.r.t any transition is zero. Because
of this, the star MDP is unsuitable for LSTD-based algorithms, including LARS-TD since ΦT R = 0
always holds. The random-walk problem is a standard Markov chain with 5 states and two absorb-
ing state at two ends. Three sets of different bases Φ are used in [20], which are tabular features,
inverted features and dependent features respectively. An identical experiment setting to [20] is used
for these two domains. The regularization term h(x) is set to 0 to make a fair comparison with TD
and TDC. α = 0.01, η = 10 for TD, TDC and RO-TD. The comparison with TD, TDC and RO-TD
is shown in the left subfigure of Figure 2, where TDC and RO-TD have almost identical MSPBE
over iterations. The middle subfigure shows the value of yT

t
(Axt − b) and ‖Axt − b‖2, wherein

‖Axt − b‖2 is always greater than the value of yT
t
(Axt − b). Note that for this problem, the Slater

condition is satisfied so there is no duality gap between the two curves. As the result shows, TDC
and RO-TD perform equally well, which illustrates the off-policy convergence of the RO-TD algo-
rithm. The result of random-walk chain is averaged over 50 runs. The rightmost subfigure of Figure
2 shows that RO-TD is able to reduce MSPBE over successive iterations w.r.t three different basis
functions.

6.2 Feature Selection

In this section, we use the mountain car example with a variety of bases to show the feature selection
capability of RO-TD. The Mountain car MDPis an optimal control problem with a continuous two-
dimensional state space. The steep discontinuity in the value function makes learning difficult for
bases with global support. To make a fair comparison, we use the same basis function setting as in
[7], where two dimensional grids of 2, 4, 8, 16, 32 RBFs are used so that there are totally 1365 basis
functions. For LARS-TD, 500 samples are used. For RO-TD and TDC, 3000 samples are used by
executing 15 episodes with 200 steps for each episode, stepsize αt = 0.001, and ρ1 = 0.01, ρ2 =
0.2. We use the result of LARS-TD and l2 LSTD reported in [7]. As the result shows in Table 1,
RO-TD is able to perform feature selection successfully, whereas TDC and TD failed. It is worth
noting that comparing the performance of RO-TD and LARS-TD is not the focus of this paper since
LARS-TD is not convergent off-policy and RO-TD’s performance can be further optimized using
the mirror-descent approach with the Mirror-Prox algorithm [6] which incorporates mirror descent
with an extragradient [9], as discussed below.

Algorithm LARS-TD RO-TD l2 LSTD TDC TD
Success(20/20) 100% 100% 0% 0% 0%

Steps 142.25± 9.74 147.40± 13.31 - - -

Table 1: Comparison of TD, LARS-TD, RO-TD, l2 LSTD, TDC and TD
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Experiment\Method RO-GQ(λ) GQ(λ) LARS-TD
Experiment 1 6.9± 4.82 11.3± 9.58 -
Experiment 2 14.7± 10.70 27.2± 6.52 -

Table 2: Comparison of RO-GQ(λ), GQ(λ), and LARS-TD on Triple-Link Inverted Pendulum Task
showing minimum number of learning episodes.

6.3 High-dimensional Under-actuated Systems

The triple-link inverted pendulum [18] is a highly nonlinear under-actuated system with 8-
dimensional state space and discrete action space. The state space consists of the angles and angular
velocity of each arm as well as the position and velocity of the car. The discrete action space is
{0, 5Newton,−5Newton}. The goal is to learn a policy that can balance the arms for Nx steps
within some minimum number of learning episodes. The allowed maximum number of episodes
is 300. The pendulum initiates from zero equilibrium state and the first action is randomly chosen
to push the pendulum away from initial state. We test the performance of RO-GQ(λ), GQ(λ) and
LARS-TD. Two experiments are conducted with Nx = 10, 000 and 100, 000, respectively. Fourier
basis [8] with order 2 is used, resulting in 6561 basis functions. Table 2 shows the results of this
experiment, where RO-GQ(λ) performs better than other approaches, especially in Experiment 2,
which is a harder task. LARS-TD failed in this domain, which is mainly not due to LARS-TD itself
but the quality of samples collected via random walk.

To sum up, RO-GQ(λ) tends to outperform GQ(λ) in all aspects, and is able to outperform LARS-
TD based policy iteration in high dimensional domains, as well as in selected smaller MDPs where
LARS-TD diverges (e.g., the star MDP). It is worth noting that the computation cost of LARS-TD
is O(Ndp3), where that for RO-TD is O(Nd). If p is linear or sublinear w.r.t d, RO-TD has a
significant advantage over LARS-TD. However, compared with LARS-TD, RO-TD requires fine
tuning the parameters of αt, ρ1, ρ2 and is usually not as sample efficient as LARS-TD. We also find
that tuning the sparsity parameter ρ2 generates an interpolation between GQ(λ) and TD learning,
where a large ρ2 helps eliminate the correction term of TDC update and make the update direction
more similar to the TD update.

7 Conclusions

This paper presents a novel unified framework for designing regularized off-policy convergent RL
algorithms combining a convex-concave saddle-point problem formulation for RL with stochastic
first-order methods. A detailed experimental analysis reveals that the proposed RO-TD algorithm
is both off-policy convergent and is robust to noisy features. There are many interesting future
directions for this research. One direction for future work is to extend the subgradient saddle-
point solver to a more generalized mirror descent framework. Mirror descent is a generalization of
subgradient descent with non-Euclidean distance [1], and has many advantages over gradient descent
in high-dimensional spaces. In [6], two algorithms to solve the bilinear saddle-point formulation are
proposed based on mirror descent and the extragradient [9], such as the Mirror-Prox algorithm. [6]
also points out that the Mirror-Prox algorithm may be further optimized via randomization. To scale
to larger MDPs, it is possible to design SMDP-based mirror-descent methods as well.
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