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Abstract

We develop convergent minimization algorithms for Bethe variational approxima-
tions which explicitly constrain marginal estimates to families of valid distribu-
tions. While existing message passing algorithms define fixed point iterations cor-
responding to stationary points of the Bethe free energy, their greedy dynamics do
not distinguish between local minima and maxima, and can fail to converge. For
continuous estimation problems, this instability is linked to the creation of invalid
marginal estimates, such as Gaussians with negative variance. Conversely, our
approach leverages multiplier methods with well-understood convergence proper-
ties, and uses bound projection methods to ensure that marginal approximations
are valid at all iterations. We derive general algorithms for discrete and Gaussian
pairwise Markov random fields, showing improvements over standard loopy be-
lief propagation. We also apply our method to a hybrid model with both discrete
and continuous variables, showing improvements over expectation propagation.

1 Introduction

Variational inference algorithms pose probabilistic inference as an optimization over distributions.
Typically the optimization is formulated by minimizing an objective known as the Gibbs free en-
ergy [1]. Variational methods relax an otherwise intractable optimal inference problem by approx-
imating the entropy-based objective, and considering appropriately simplified families of approxi-
mating distributions [2]. Local message passing algorithms offer a computationally efficient method
for extremizing variational free energies. Loopy belief propagation (LBP), for example, optimizes
a relaxed objective known as the Bethe free energy [1, 2], which we review in Sec. 2. Expectation
propagation (EP) [3] is a generalization of LBP which shares the same objective, but optimizes over
a relaxed set of constraints [4] applicable to a broader family of continuous inference problems.

In general, neither LBP nor EP are guaranteed to converge. Even in simple continuous models, both
methods may improperly estimate invalid or degenerate marginal distributions, such as Gaussians
with negative variance. Such degeneracy typically occurs in classes of models for which conver-
gence properties are poor, and there is evidence that these problems are related [5, 6],

Extensive work has gone into developing algorithms which improve on LBP for models with discrete
variables, for example by bounding [7, 8] or convexifying [9] the free energy objective. Gradient
optimization methods have been applied successfully to binary Ising models [10], but when applied
to Gaussian models this approach suffers similar non-convergence and degeneracy issues as LBP.
Work on optimization of continuous variational free energies has primarily focused on addressing
convergence problems [11]. None of these approaches directly address degeneracy in the continuous
case, and computation may be prohibitively expensive for these direct minimization schemes.

By leveraging gradient projection methods from the extensive literature on constrained nonlinear
optimization, we develop an algorithm which ensures that marginal estimates remain valid and nor-
malizable at all iterations. In doing so, we account for important constraints which have been ignored
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by previous variational derivations of the expectation propagation algorithm [12, 6, 11]. Moreover,
by adapting the method of multipliers [13], we guarantee that our inference algorithm converges for
most models of practical interest.

We begin by introducing the Bethe variational problem (Sec. 2). We briefly review the correspon-
dence between the Lagrangian formalism and message passing and discuss implicit normalizability
assumptions which, when violated, lead to degeneracy in message passing algorithms. We discuss
the method of multipliers, gradient projection, and convergence properties (Sec. 3). We then pro-
vide derivations (Sec. 4) for discrete MRFs, Gaussian MRFs, and hybrid models with potentials
defined by discrete mixtures of Gaussian distributions. Experimental results in Sec. 5 demonstrate
substantial improvements over baseline message passing algorithms.

2 Bethe Variational Problems

For simplicity, we restrict our attention to pairwise Markov random fields (MRF) [2], with graphs
G(V, E) defined by nodes V and undirected edges E . The joint distribution then factorizes as

p(x) =
1

Zp

∏
s∈V

ϕs(xs)
∏

(s,t)∈E

ϕst(xs, xt) (1)

for some non-negative potential functions ϕ(·). Often this distribution is a posterior given fixed
observations y, but we suppress this dependence for notational simplicity. We are interested in
computing the log partition function logZp, and/or the marginal distributions p(xs), s ∈ V .

Let q(x;µ) denote an exponential family of densities with sufficient statistics φ(x) ∈ Rd:

q(x;µ) ∝ exp{θTφ(x)}, µ = Eq[φ(x)]. (2)
To simplify subsequent algorithm development, we index distributions via their mean parameters µ.
We associate each node s ∈ V with an exponential family qs(xs;µs), φs(x) ∈ Rds , and each edge
(s, t) ∈ E with a family qst(xs, xt;µst), φst(x) ∈ Rdst . Because qs(xs;µs) is a valid probability
distribution, µs must lie in a set of realizable mean parameters, µs ∈ Ms. Similarly, µst ∈ Mst.
For example,Ms andMst might require Gaussians to have positive semidefinite covariances.

We can express the log partition as the solution to an optimization problem,
− logZp = min

µ∈M(G)
Eµ[− log p(x)]−H[µ] = min

µ∈M(G)
F(µ), (3)

whereH[µ] is the entropy of q(x;µ), Eµ[·] denotes expectation with respect to q(x;µ), and F(µ) is
known as the variational free energy. Mean parameters µ lie in the marginal polytope M(G) if and
only if there exists some valid, joint probability distribution with those moments.

Exactly characterizing M(G) may require exponentially many constraints, so we relax the optimiza-
tion to be over a set of locally consistent marginal distributions L(G), which are properly normalized
and satisfy expectation constraints associated with each edge of the graph:

Cs(µ) = 1−
∫
qs(xs;µs) dxs, Cts(µ) = µs − Eqst [φs(xs)]. (4)

This is a relaxation in the sense that M(G) ⊂ L(G) with strict equality if G does not contain cycles.
We approximate the entropyH[µ] with the entropy of a tree-structured distribution q(x;µ). Such an
approximation is tractable and consistent with L(G), and yields the Bethe free energy:

FB(µ) =
∑

(s,t)∈E

Eqst [log qst(xs, xt;µst)−ψst(xs, xt)]−
∑
s∈V

(ns−1)Eqs [log qs(xs;µs)−ϕs(xs)]

(5)
Here, ψst(·) = ϕst(·)ϕs(·)ϕt(·), and the mean parameters µ are valid within the constraint set
M =

⋃
sMs

⋃
stMst. The resulting objective is the Bethe variational problem (BVP):

minimize
µ

FB(µ)

subject to Cts(µ) = 0,∀s ∈ V, t ∈ N(s)

Cs(µ) = 0,∀s ∈ V,
{µs : s ∈ V} ∪ {µst : (s, t) ∈ E} ∈ M.

(6)

Here, N(s) denotes the set of neighbors of node s ∈ V .
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2.1 Correspondence to Message Passing

We can optimize the BVP (6) by relaxing the normalization and local consistency constraints with
Lagrange multipliers. Constrained minima are characterized by stationary points of the Lagrangian,

L(x, λ) = FB(q) +
∑
s

λsCs +
∑
s

∑
t∈N(s)

λtsCts. (7)

Equivalence between LBP fixed points and stationary points of the Lagrangian for the discrete case
have been discussed extensively [1, 2]. Similar correspondence has been shown more generally for
EP fixed points [2, 4]. Since our focus is on the continuous case we briefly review the correspon-
dence between Gaussian LBP fixed points and the Gaussian Bethe free energy. For simplicity we
focus on zero-mean p(x) = N(x | 0, J−1), where diagonal precision entries Jss = As and

ϕs(xs) = exp

{
−1

2
x2
sAs

}
, ϕst(xs, xt) = exp

{
−1

2
(xs xt)

(
0 Jst
Jst 0

)(
xs
xt

)}
.

Let q(xs) = N(xs | 0, Vs), q(xs, xt) = N(( xs
xt

) | 0,Σst), Σst =
(
Vts Pst

Pts Vst

)
, and B̃st =

(
As Jst
Jst At

)
.

The Gaussian Bethe free energy then equals

FGB(V,Σ) =
1

2

∑
(s,t)∈E

(
tr(ΣstB̃st)− log |Σst|

)
−
∑
s∈V

(
ns − 1

2

)
(VsAs − log Vs) . (8)

The locally consistent marginal polytope L(G) consists of the constraints Cts(V ) = Vs − Vts for
all nodes s ∈ V and edges (s, t) ∈ E . The Lagrangian is given by,

L(V,Σ, λ) = FGB(V,Σ) +
∑
s

∑
t∈N(s)

λts [Vs − Vts] . (9)

Taking the derivative with respect to the node marginal variance ∂ L
∂Vs

= 0 yields the stationary point
V −1
s = As + 1

ns−1

∑
t∈N(s) λts. For a Gaussian LBP algorithm with messages parametrized as

mt→s(xs) = exp
{
− 1

2x
2
sΛt→s

}
, fixed points of the node marginal precision are given by

Λs = As +
∑

t∈N(s)

Λt→s

Let λts = − 1
2

∑
a∈N(s)\t Λa→s. Substituting back into the stationary point conditions yields

V −1
s ⇒ Λs. A similar construction holds for the pairwise marginals. Inverting the correspondence

between multipliers and message parameters yields the converse V −1
s ⇐ Λs (c.f. [4]).

2.2 Message Passing Non-Convergence and Degeneracy

While local message passing algorithms are convenient for many applications, their convergence
is not guaranteed in general. In particular, LBP often fails to converge for networks with tight
loops [1] such as the 3×3 lattice of Figure 1(a). For non-Gaussian models with continuous variables,
convergence of the EP algorithm can be even more problematic [11].

For continuous models message updates may yield degenerate, unnormalizable marginal distribu-
tions which do not correspond to stationary points of the Lagrangian. For example, for Gaussian
MRFs the Bethe free energy FB(·) in (5) is derived from expectations with respect to variational
distributions qs(xs;µs), qst(xs, xt;µst). If a set of hypothesized marginals are not normalizable
(positive variance), the Gaussian Bethe free energy FGB(·) is invalid and undefined.

Degenerate marginals arise because the constraint setM is not represented in the Lagrangian (7);
this issue is mentioned briefly in [2] but is not dealt with computationally. Figure 1(b) demonstrates
this issue for a simple, three-node Gaussian MRF. Here LBP produces marginal variances which
oscillate between impossibly large positive, and non-sensical negative, values. Such degeneracies
are arguably more problematic for EP since its moment matching steps require expected values with
respect to an augmented distribution [3], which may involve an unbounded integral.
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Figure 1: (a) Bethe free energy versus iteration for 3x3 toroidal binary MRF. (b) Node marginal variance
estimates per iteration for a symmetric, single-cycle Gaussian MRF with three nodes (plot is of x1, other nodes
are similar). (c) For the model from (b), the Gaussian Bethe free energy is unbounded on the constraint set.

2.3 Unboundedness of the Gaussian Bethe Free Energy

Conditions under which the simple LBP and EP updates are guaranteed to be accurate are of great
practical interest. For Gaussian MRFs, the class of pairwise normalizable models are sufficient to
guarantee LBP stability and convergence [5]. For non-pairwise normalizable models the Gaussian
Bethe free energy is unbounded below [6] on the set of local consistency constraints L(G).

We offer a small example consisting of a non-pairwise normalizable symmetric single cycle with 3
nodes. Diagonal precision elements are Jss = 1.0, and off-diagonal elements Jst = 0.6. We embed
marginalization constraints into a symmetric parametrization Vs = V and Σst =

(
V ρV
ρV V

)
. Feasi-

ble solutions within the constraint set are characterized by V > 0 and −1 < ρ < 1. Substituting
this parametrization into the Gaussian free energy (8), and performing some simple algebra, yields

FGB(V, ρ) = −3

2
log V +

3

2
V (1 + 1.2ρ)− 3

2
log(1− ρ2).

For ρ < − 1
1.2 the free energy is unbounded below at rate O(−V ). Figure 1(c) illustrates the Bethe

free energy for this model as a function of V , and for several values of ρ.

More generally, it has been shown that Gaussian EP messages are always normalizable (positive
variance) for models with log-concave potentials [14]. It has been conjectured, but not proven,
that EP is also guaranteed to converge for such models [15]. For Gaussian MRFs, we note that
the family of log-concave models coincides with the pairwise normalizability condition. Our work
seeks to improve inference for non-log-concave models with bounded Bethe free energies.

3 Method of Multipliers

Given our complete constrained formulation of the Bethe variational problem, we avoid convergence
and degeneracy problems via direct minimization using the method of multipliers (MoM) [13]. In
general terms, given some convex feasible regionM, consider the equality constrained problem

minimize
x∈M

f(x) subject to h(x) = 0

With penalty parameter c > 0, we form the augmented Lagrangian function,

Lc(x, λ) = f(x) + λTh(x) +
1

2
c||h(x)||2 (10)

Given a multiplier vector λk and penalty parameter ck we update the primal and dual variables as,
xk = arg min

x∈M
Lck(x, λk), λk+1 = λk + ckh(xk).

The penalty multiplier can be updated as ck+1 ≥ ck according to some fixed update schedule, or
based on the results of the optimization step. An update rule that we find useful [13] is to increase
the penalty parameter by β > 1 if the constraint violation is not improved by a factor 0 < γ < 1
over the previous iteration,

ck+1 =

{
βck if ‖h(xk)‖ > γ‖h(xk−1)‖,
ck if ‖h(xk)‖ ≤ γ‖h(xk−1)‖.
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3.1 Gradient Projection Methods

The augmented Lagrangian Lc(x, λ) is a partial one, where feasibility of mean parameters (x ∈M)
is enforced explicitly by projection. A simple gradient projection method [13] defines a sequence

xk+1 = xk + αk(x̄k − xk), x̄k = [xk − sk∇f(xk)]
+
.

The notation [·]+ denotes a projection onto the constraint setM. After taking a step sk > 0 in the
direction of the negative gradient, we project the result onto the constraint set to obtain a feasible
direction x̄k. We then compute xk+1 by taking a step αk ∈ (0, 1] in the direction of (x̄k − xk). If
xk − sk∇f(xk) is feasible, gradient projection reduces to unconstrained steepest descent.

There are multiple such projection steps in each inner-loop iteration of MoM (e.g. each xk update).
For our experiments we use a projected quasi-Newton method [16] and step-sizes αk and sk are
chosen using an Armijo rule [13, Prop. 2.3.1].

3.2 Convergence of Multiplier Methods

Convergence and rate of convergence results have been proven [17, Proposition 2.4] for the Method
of Multipliers with a quadratic penalty and multiplier iteration λk+1 = λk + ckh(xk). The main
regularity assumptions are that the sequence {λk} is bounded, and there is a local minimum for
which a Lagrange multiplier pair (x∗, λ∗) exists satisfying second-order sufficiency conditions, so
that ∇x L0(x∗, λ∗) = 0 and zT∇2

xx L0(x∗, λ∗)z > 0 for all z 6= 0. It then follows that there exists
some c̄ such that for all c ≥ c̄, the augmented Lagrangian also contains a strict local minimum
zT∇2

xx Lc(x∗, λ∗)z > 0.

For convergence, the initialization of the Lagrange multiplier λ0 and penalty parameter c0 must be
such that ‖λ0−λ∗‖ < δc0 for some δ > 0 and c ≥ c̄ which depend on the objective and constraints.
In practice, a poor initialization of the multiplier λ0 can often be offset by a sufficiently high c0. A
final technical note is that convergence proofs assume the sequence of unconstrained optimizations
which yield xk stays in the neighborhood of x∗ after some k. This does not hold in general, but can
be encouraged by warm-starting the unconstrained optimization with the previous xk−1.

To invoke existing convergence results we must show that a local minimum x∗ exists for each of
the free energies we consider; a sufficient condition is then that the Bethe free energy is bounded
from below. This property has been previously established for general discrete MRFs [18], for pair-
wise normalizable Gaussian MRFs [6], and for the clutter model [3]. For non-pairwise normalizable
Gaussian MRFs, the example of Section 2.3 shows that the Bethe variational objective is unbounded
below, and further may not contain any local optima. While the method of multipliers does not con-
verge in this situation, its non-convergence is due to fundamental flaws in the Bethe approximation.

4 MoM Algorithms for Probabilistic Inference

We derive MoM algorithms which minimize the Bethe free energy for three different families of
graphical models. For each model we define the form of the joint distribution, Bethe free energy (5),
local consistency constraints, augmented Lagrangian, and the gradient projection step. Gradients,
which can be notationally cumbersome, are given in the supplemental material.

4.1 Gaussian Markov Random Fields

We have already introduced the Lagrangian (9) for the Gaussian MRF. The Gaussian Bethe free
energy (8) is always unbounded below off of the constraint set in node marginal variances Vs. We
correct this by adding an additional fixed penalty in the augmented Lagrangian,

Lc(V,Σ, λ) = FGB(V ) +
∑
s

∑
t∈N(s)

λts [Vs − Vts]

+
κ

2

∑
s

∑
t∈N(s)

[log Vs − log Vts]
2

+
c

2

∑
s

∑
t∈N(s)

[Vs − Vts]2 .

We keep κ ≥ 1 fixed so that existing convergence theory remains applicable. The set of realizeable
mean parameters M is the set of symmetric positive semidefinite matrices Vs,Σst. We therefore
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must solve a series of constrained optimizations of the form, minV,Σ Lck(V,Σ, λk), subject to Vs ≥
0,Σst � 0. The gradient projection step is easily expressed in terms of correlation coefficients ρst,

Σst =

[
Vst ρst

√
VstVts

ρst
√
VstVts Vts

]
.

Then, Σst � 0 if and only if Vst ≥ 0, Vts ≥ 0, and −1 ≤ ρst ≤ 1. The projection step is then,

Vst = max(0, Vst), Vts = max(0, Vts), ρst = max(−1,min(1, ρst)).

The full MoM algorithm then follows from gradient derivations in the supplemental material.

Recall that in Section 2.3, we showed that the Gaussian Bethe free energy is unbounded on the
constraint set for non-pairwise normalizable models. We run MoM on the symmetric three-node
cycle from this discussion and find that MoM, correctly, identifies an unbounded direction, and
Figure 1(b) shows that the node marginal variances indeed diverge to infinity.

4.2 Discrete Markov Random Fields

Consider a discrete MRF where all variables xs ∈ Xs = {1, . . . ,Ks}. The variational marginal
distributions are then qs(xs; τ) =

∏Ks

k=1 τ(xs)
I(xs,k), and have mean parameters τ ∈ RKs . Let

τ(xs) denote element xs of vector τ . Pairwise marginals have mean parameters τst ∈ RKs×Kt

similarly indexed as τst(xs, xt). The discrete Bethe free energy is then

FB(τ ;ϕ) =
∑

(s,t)∈E

∑
xs

∑
xt

τst(xs, xt)[log τst(xs, xt)− log φst(xs, xt)]

−
∑
s∈V

∑
xs

(ns − 1)τs(xs)[log τs(xs)− logϕs(xs)].

For this discrete model, our expectation constraints reduce to the following normalization and
marginalization constraints:

Cs(τ) = 1−
∑
xs

τs(xs), Cts(xs; τ) = τs(xs)−
∑
xt

τst(xs, xt).

The augmented Lagrangian is then,

Lc(τ, λ, ξ;ϕ) = FB(τ ;ϕ) +
∑

(s,t)∈E

[∑
xs

λts(xs)Cts(xs; τ) +
∑
xt

λst(xt)Cst(xt; τ)

]
(11)

+
∑
s∈V

ξssCs(τ) +
c

2

∑
s∈V

Cs(τ)2 +
c

2

∑
(s,t)∈E

[∑
xs

Cts(xs; τ)2 +
∑
xt

Cst(xt; τ)2

]
.

Mean parameters must be non-negative to be valid, so M = {τs, τst : τs ≥ 0, τst ≥ 0}. This
constraint is enforced by a bound projection τs(xs) = max(0, τs(xs)), and similarly for the pair-
wise marginals. While these constraints are never active in BP fixed point iterations, they must be
enforced in gradient optimization. With these pieces and the gradient computations presented in the
supplement, implementation of MoM optimization for the discrete MRF is straightforward.

4.3 Discrete Mixtures of Gaussian Potentials

We are particularly interested in tractable inference in hybrid models with discrete and conditionally
Gaussian random variables. A simple example of such a model is the clutter problem [3], whose
joint distribution models N conditionally independent Gaussian observations {yi}Ni=1. These obser-
vations may either be centered on a target scalar x ∈ R (zi = 1) or drawn from a background clutter
distribution (zi = 0). If target observations occur with frequency β0, we then have

x ∼ N(µ0, P0), zi ∼ Ber(β0), yi | x, zi ∼ N(0, σ2
0)(1−zi)N(x, σ2

1)zi

The corresponding variational posterior distributions are,

q0(x) = N(m0, V0), qi(x, zi) = ((1− βi)N(x | mi0, Vi0))
(1−zi) (βiN(x | mi1, Vi1))

zi .
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Assuming normalizable marginals with V0 ≥ 0, Vi0 ≥ 0, Vi1 ≥ 0, as always ensured by our
multiplier method, we define the Bethe free energyFCGB(m,V, β) in terms of the mean parameters
in the supplemental material. Expectation constraints are given by,

Cmean
i = E0[x]− Ei[x], Cvar

i = Var0[x]− Vari[x],

where Ei[·] and Var i[·] denote the mean and variance of the Gaussian mixture qi(x, zi). Com-
bining the free energy, constraints, and additional positive semidefinite constraints on the marginal
variances we have the BVP for the clutter model,

minimize
m,V,β

FCGB(m,V, β;ϕ)

subject to Cmean
i = 0, Cvar

i = 0, for all i = 1, 2, . . . , N

V0 ≥ 0, Vi0 ≥ 0, Vi1 ≥ 0

(12)

Derivation of the free energy and augmented Lagrangian is somewhat lengthy, and so is deferred to
the supplement. Projection of the variances onto the constraint set is a simple thresholding operation.

5 Experimental Results

5.1 Discrete Markov Random Fields

We consider binary Ising models, with variables arranged in NxN lattices with toroidal boundary
conditions. Potentials are parametrized as in [19], so that

ψs =

[
exp(hs)

exp(−hs)

]
, ψst =

[
exp(Jst) exp(−Jst)

exp(−Jst) exp(Jst)

]
.

We sample 500 instances at random from a 10x10 toroidal lattice with each Jst ∼ N(0, 1) and
hs ∼ N(0, 0.01). LBP is run for a maximum of 1000 iterations, and MoM is initialized with a
single iteration of LBP. We report average L1 error of the approximate marginals as compared to
the true marginals computed with the junction tree algorithm [20]. Marginal errors are reported in
Figure 2(a,top), and there is a clear improvement over LBP in the majority of cases.

Direct evaluation of the Bethe free energy does not take into account constraint violations for non-
convergent LBP runs. The augmented Lagrangian penalizes constraint violation, but requires a
penalty parameter which LBP does not provide. For an objective comparison, we construct a pe-
nalized Bethe free energy by evaluating the augmented Lagrangian with fixed penalty c = 1 and
multipliers λ = 0. We evaluate this objective at the final iteration of both algorithms. As we see in
Figure 2(a,bottom), MoM finds a lower free energy for most trials.

Our implementations of LBP and MoM are in Matlab, and emphasize correctness over efficiency.
Nevertheless, computation time for LBP exceeds that of MoM. Wall clock time is measured in
seconds across various trials, and the percentiles for LBP are 25%: 1040.46, 50%: 1042.57, and
75%: 1044.85. For MoM they are 25%: 290.25, 50%: 381.62, and 75%: 454.52.

5.2 Gaussian Markov Random Fields

For the Gaussian case we again sample 500 random instances from a 10x10 lattice with toroidal
boundary conditions. We randomly sample only pairwise normalizable instances and initialization
is provided with a single iteration of Gaussian LBP. We find that MoM is generally insensitive to
initialization in this model. True marginals are computed by explicitly inverting the model precision
matrix and average symmetric L1 error with respect to truth is reported in Figure 2(b,top).

For pairwise normalizable models, Gaussian LBP is guaranteed to converge to the unique fixed point
of the Bethe free energy, so it is reassuring that MoM optimization matches LBP performance. The
value of the augmented Lagrangian at the final iteration is shown in Figure 2(b,bottom) and again
shows that MoM matches Gaussian LBP on pairwise normalizable models. Computation time for
MoM is slightly faster with median wall clock time of 58.76 seconds as compared to 103.17 seconds
for LBP. The 25% and 75% percentiles are 37.81 and 92.10 seconds for MoM compared to 88.40
and 125.59 seconds for LBP.
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Figure 2: Performance of MoM and LBP on randomly generated (a) discrete 10 × 10 toroidal Ising MRFs,
(b) 10×10 toroidal Gaussian MRfs, and (c) clutter models withN = 30 observations. Each point corresponds
to a single model instance. Top: L1 error between estimated and true marginal distributions, averaged over all
nodes. Bottom: Penalized Bethe free energy constructed by setting λ = 0, c = 1 in the augmented Lagrangian.

5.3 Discrete Mixtures of Gaussian Potentials

To test the benefits of avoiding degenerate marginals, we consider the clutter model of Sec. 4.3 with
µ0 = 0, P0 = 100 and β0 = 0.25. The variance of the clutter distribution is σ2

0 = 10, and of the
target distribution σ2

1 = 1. We sample N = 30 observations for each trial instance.

A good initialization of the multipliers is critical to performance of MoM. We generate 10 initializa-
tions by running 5 iterations of EP, each with a different random message update schedule, compute
the corresponding Lagrange multipliers for each, and use the one with the lowest value of the aug-
mented Lagrangian. Similarly, we measure EP’s performance by the best performing of 10 longer
runs. Both methods are run for a maximum of 1000 iterations, and true marginals are computed
numerically by finely discretizing the scalar target x.

We sample 500 random instances and report average L1 error with respect to true marginals in
Figure 2(c,top). We see a significant improvement in the majority of runs. Similarly, the augmented
Lagrangian comparison is shown in Figure 2(c,bottom) and MoM often finds a better penalized free
energy. While MoM and EP can both suffer from local optima, MoM avoids non-convergence and
the output of invalid (negative variance) marginal distributions. Median wall clock time for EP is
0.59 seconds, and 9.80 seconds for MoM. The 25% and 75% percentiles are 0.42 and 0.84 seconds
for EP and 0.51 and 49.19 seconds for MoM.

6 Discussion

We have proposed an approach for directly minimizing the Bethe variational problem motivated by
successful methods in nonlinear programming. Our approach is unique in that we do not relax the
constraint on normalizability of the marginals, rather we explicitly enforce it at all points in the op-
timization. This method directly avoids the creation of degenerate distributions — for example with
negative variance — which frequently occur in more greedy approaches for minimizing the Bethe
free energy. In addition we obtain convergence guarantees under broadly applicable assumptions.
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