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Abstract

The variational Bayesian (VB) approach is one of the best tractable approxima-
tions to the Bayesian estimation, and it was demonstrated to perform well in many
applications. However, its good performance was not fully understood theoreti-
cally. For example, VB sometimes produces a sparse solution, which is regarded
as a practical advantage of VB, but such sparsity is hardly observed in the rigorous
Bayesian estimation. In this paper, we focus on probabilistic PCA and give more
theoretical insight into the empirical success of VB. More specifically, for the sit-
uation where the noise variance is unknown, we derive a sufficient condition for
perfect recovery of the true PCA dimensionality in the large-scale limit when the
size of an observed matrix goes to infinity. In our analysis, we obtain bounds for
a noise variance estimator and simple closed-form solutions for other parameters,
which themselves are actually very useful for better implementation of VB-PCA.

1 Introduction

Variational Bayesian (VB) approximation [1] was proposed as a computationally efficient alternative
to rigorous Bayesian estimation. The key idea is to force the posterior to be factorized, so that the
integration—a typical intractable operation in Bayesian methods—can be analytically performed
over each parameter with the other parameters fixed. VB has been successfully applied to many
applications [4, 7, 20, 11].

Typically, VB solves a non-convex optimization problem with an iterative algorithm [3], which
makes theoretical analysis difficult. An important exceptional case is the matrix factorization (MF)
model [11, 6, 19] with no missing entry in the observed matrix. Recently, the global analytic solution
of VBMF has been derived and theoretical properties such as the mechanism of sparsity induction
have been revealed [15, 16]. These works also posed thought-provoking relations between VB
and rigorous Bayesian estimation: The VB posterior is actually quite different from the true Bayes
posterior (compare the left and the middle graphs in Fig. 1), and VB induces sparsity in its solution
but such sparsity is hardly observed in rigorous Bayesian estimation (see the right graph in Fig. 1).1
These facts might deprive the justification of VB based solely on the fact that it is one of the best
tractable approximations to the Bayesian estimation.

1Also in mixture models, inappropriate model pruning by VB approximation was discussed [12].
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Figure 1: Dissimilarities between VB and the rigorous Bayesian estimation. (Left and Center) the
Bayes posterior and the VB posterior of a 1× 1 MF model, V = BA+ E , when V = 1 is observed
(E is a Gaussian noise). VB approximates the Bayes posterior having two modes by an origin-
centered Gaussian, which induces sparsity. (Right) Behavior of estimators of U = BA!, given the
observation V . The VB estimator (the magenta solid curve) is zero when V ≤ 1, which means exact
sparsity. On the other hand, FB (fully-Bayesian or rigorous Bayes; blue crosses) shows no sign of
sparsity. Further discussion will be provided in Section 5.2. All graphs are quoted from [15].

Since the probabilistic PCA [21, 18, 3] is an instance of MF, the global analytic solution derived
in [16] for MF can be utilized for analyzing the probabilistic PCA. Indeed, automatic dimensional-
ity selection of VB-PCA, which is an important practical advantage of VB-PCA, was theoretically
investigated in [17]. However, the noise variance, which is usually unknown in many realistic appli-
cations of PCA, was treated as a given constant in that analysis.2 In this paper, we consider a more
practical and challenging situation where the noise variance is unknown, and theoretically analyze
VB-PCA.

It was reported that noise variance estimation fails in some Bayesian approximation methods, if the
formal rank is set to be full [17]. With such methods, an additional model selection procedure is
required for dimensionality selection [14, 5]. On the other hand, we theoretically show in this paper
that VB-PCA can estimate the noise variance accurately, and therefore automatic dimensionality se-
lection works well. More specifically, we establish a sufficient condition that VB-PCA can perfectly
recover the true dimensionality in the large-scale limit when the size of an observed matrix goes to
infinity. An interesting finding is that, although the objective function minimized for noise variance
estimation is multimodal in general, only a local search algorithm is required for perfect recovery.
Our results are based on the random matrix theory [2, 5, 13, 22], which elucidates the distribution
of singular values in the large-scale limit.

In the development of the above theoretical analysis, we obtain bounds for the noise variance esti-
mator and simple closed-form solutions for other parameters. We also show that they can be nicely
utilized for better implementation of VB-PCA.

2 Formulation

In this section, we introduce the variational Bayesian matrix factorization (VBMF).

2.1 Bayesian Matrix Factorization

Assume that we have an observation matrix V ∈ RL×M , which is the sum of a target matrix U ∈
RL×M and a noise matrix E ∈ RL×M :

V = U + E .
In the matrix factorization model, the target matrix is assumed to be low rank, which can be ex-
pressed as the following factorizability:

U = BA!,
2If the noise variance is known, we can actually show that dimensionality selection by VB-PCA is outper-

formed by a naive strategy (see Section 3.3). This means that VB-PCA is not very useful in this setting.
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where A ∈ RM×H and B ∈ RL×H . $ denotes the transpose of a matrix or vector. Thus, the rank
of U is upper-bounded by H ≤ min(L,M).

In this paper, we consider the probabilistic matrix factorization (MF) model [19], where the obser-
vation noise E and the priors of A and B are assumed to be Gaussian:

p(V |A,B) ∝ exp
(
− 1

2σ2 ‖V −BA!‖2Fro
)
, (1)

p(A) ∝ exp
(
− 1

2 tr
(
AC−1

A A!)) , p(B) ∝ exp
(
− 1

2 tr
(
BC−1

B B!)) . (2)
Here, we denote by ‖ · ‖Fro the Frobenius norm, and by tr(·) the trace of a matrix. We assume that
L ≤ M . If L > M , we may simply re-define the transpose V ! as V so that L ≤ M holds.3 Thus,
this does not impose any restriction. We assume that the prior covariance matrices CA and CB are
diagonal and positive definite, i.e.,

CA = diag(c2a1
, . . . , c2aH

), CB = diag(c2b1 , . . . , c
2
bH )

for cah , cbh > 0, h = 1, . . . , H . Without loss of generality, we assume that the diagonal entries of
the product CACB are arranged in non-increasing order, i.e., cahcbh ≥ cah′ cbh′ for any pair h < h′.

Throughout the paper, we denote a column vector of a matrix by a bold lowercase letter, and a row
vector by a bold lowercase letter with a tilde, namely,

A = (a1, . . . ,aH) = (ã1, . . . , ãM )! ∈ RM×H , B = (b1, . . . , bH) =
(
b̃1, . . . , b̃L

)!
∈ RL×H .

2.2 Variational Bayesian Approximation

The Bayes posterior is given by

p(A,B|V ) = p(V |A,B)p(A)p(B)
p(V ) , (3)

where p(Y ) = 〈p(V |A,B)〉p(A)p(B). Here, 〈·〉p denotes the expectation over the distribution p.
Since this expectation is intractable, we need to approximate the Bayes posterior.

Let r(A,B), or r for short, be a trial distribution. The following functional with respect to r is called
the free energy:

F (r) =
〈
log r(A,B)

p(V |A,B)p(A)p(B)

〉

r(A,B)
=
〈
log r(A,B)

p(A,B|V )

〉

r(A,B)
− log p(V ). (4)

In the last equation, the first term is the Kullback-Leibler (KL) divergence from the trial distribution
to the Bayes posterior, and the second term is a constant. Therefore, minimizing the free energy (4)
amounts to finding a distribution closest to the Bayes posterior in the sense of the KL divergence. A
general approach to Bayesian approximate inference is to find the minimizer of the free energy (4)
with respect to r in some restricted function space.

In the VB approximation, the independence between the entangled parameter matrices A and B is
assumed:

r = r(A)r(B). (5)
Under this constraint, an iterative algorithm for minimizing the free energy (4) was derived [3, 11].
Let r̂ be such a minimizer, and we define the MF solution by the mean of the target matrix U :

Û =
〈
BA!〉

r̂(A,B)
. (6)

In the context of PCA where V is a data matrix, the solution is given as the subspace spanned by Û .

The MF model has hyperparameters (CA, CB) in the priors (2). By manually choosing them, we
can control regularization and sparsity of the solution (e.g., the PCA dimensions). A popular way
to set the hyperparameter in the Bayesian framework is again based on the minimization of the free
energy (4):

(ĈA, ĈB) = argminCA,CB
(minr F (r;CA, CB |V )) .

We refer to this method as an empirical VB (EVB) method. When the noise variance σ2 is unknown,
it can also be estimated as

σ̂2 = argminσ2

(
minr,CA,CB F (r;CA, CB ,σ2|V )

)
.

3When the number of samples is larger (smaller) than the data dimensionality in the PCA setting, the
observation matrix V should consist of the columns (rows), each of which corresponds to each sample.
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3 Simple Closed-Form Solutions of VBMF

Recently, the global analytic solution of VBMF has been derived [16]. However, it is given as a
solution of a quartic equation (Corollary 1 in [16]), and it is not easy to use for further analysis due
to its complicated expression. In this section, we derive much simpler forms, which will be used for
analyzing VB-PCA in the next section.

3.1 VB Solution

Our new analytic-form solution only involves linear and quadratic equations, which is summarized
in the following theorem (the proof is omitted due to the space limitation):

Theorem 1 Let

V =
∑H

h=1 γhωbhω
!
ah

(7)

be the singular value decomposition (SVD) of V with its singular values {γh} arranged in non-
increasing order, and the associated right and left singular vectors {ωah ,ωbh}. Then, the VB solu-
tion can be written as a truncated shrinkage SVD as follows:

ÛVB =
H∑

h=1

γ̂VB
h ωbhω

!
ah
, where γ̂VB

h =

{
γ̆VB
h if γh ≥ γVB

h
,

0 otherwise.
(8)

Here, the truncation threshold and the shrinkage estimator are, respectively, given by

γVB
h

= σ

√√√√ (L+M)
2 + σ2

2c2ah
c2bh

+

√(
(L+M)

2 + σ2

2c2ah
c2bh

)2

− LM, (9)

γ̆VB
h = γh

(
1− σ2

2γ2
h

(
M + L+

√
(M − L)2 +

4γ2
h

c2ah
c2bh

))
. (10)

We can also derive a simple closed-form expression of the VB posterior (omitted).

3.2 EVB Solution

Combining Theorem 1 with the global EVB solution (Corollary 2 in [16]), we have the following
theorem (the proof is omitted):

Theorem 2 Let

α = L
M , (11)

and let κ = κ(α) (> 1) be the zero-cross point of the following decreasing function:

Ξ (κ;α) = Φ (
√
ακ) + Φ

(
κ√
α

)
, where Φ(x) = log(x+1)

x − 1
2 . (12)

Then, the EVB solution can be written as a truncated shrinkage SVD as follows:

ÛEVB =
H∑

h=1

γ̂EVB
h ωbhω

!
ah
, where γ̂EVB

h =

{
γ̆EVB
h if γh ≥ γEVB,

0 otherwise.
(13)

Here, the truncation threshold and the shrinkage estimator are, respectively, given by

γEVB = σ

√
M + L+

√
LM

(
κ+ 1

κ

)
, (14)

γ̆EVB
h = γh

2

(
1− (M+L)σ2

γ2
h

+

√(
1− (M+L)σ2

γ2
h

)2
− 4LMσ4

γ4
h

)
. (15)

The EVB threshold (14) involves κ, which needs to be numerically computed. We can easily prepare
a table of the values for 0 < α ≤ 1 beforehand, like the cumulative Gaussian probability used in
statistical tests. Fig. 2 shows the EVB threshold (14) by a red solid curve labeled as ‘EVB’.
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3.3 Large-Scale Limiting Behavior of EVB When Noise Variance Is Known

Here, we first introduce a result from random matrix theory [13, 22], and then discuss the behavior
of EVB when the noise variance is known.

Assume that E ∈ RL×M is a random matrix such that each element is independently drawn from a
distribution with mean zero and variance σ2∗ (not necessarily Gaussian). Let u1, u2, . . . , uL be the
eigenvalues of 1

Mσ2∗ EE!, and define the empirical distribution of the eigenvalues by

p(u) = 1
L (δ(u1) + δ(u2) + · · ·+ δ(uL)) ,

where δ(u) denotes the Dirac measure at u. Then the following proposition holds:

Proposition 1 (Marčenko-Pastur law) [13, 22] In the large-scale limit when L and M go to in-
finity with its ratio α = L/M fixed, the probability measure of the empirical distribution of the
eigenvalue u of 1

σ2∗M EE! converges almost surely to

p(u)du =
√

(u−u)(u−u)

2παu θ(u < u < u)du, (16)

where u = (1 −
√
α)2, u = (1 +

√
α)2, and θ(·) denotes an indicator function such that

θ(condition) = 1 if the condition is true and θ(condition) = 0 otherwise.

Fig. 3 shows the Marčenko-Pastur (MP) distributions for α = 0.1, 1. The mean 〈u〉p(u) = 1 (which
is constant for any 0 < α ≤ 1) and the upper-limit u = u(α) for α = 0.1, 1 are indicated by
arrows. Note that the MP distribution appears for a single sample matrix; different from standard
“large-sample” theories, we do not need many sample matrices (this property is sometimes called
self-averaging). This single-sample property of the MP distribution is highly useful in our analysis
because we are working with a single observation matrix in the MF scenario.

Proposition 1 states that all singular values of the random matrix E are almost surely upper-bounded
by

γMPUL =
√
Mσ2∗u = (

√
L+

√
M)σ∗, (17)

which we call the Marčenko-Pastur upper-limit (MPUL). This property can be used for designing
estimators robust against noise [10, 9]. Although EVB-PCA was proposed independently from the
random matrix theory [3], its good performance can be proven with a related property to Proposi-
tion 1, as shown in Section 4.

When the noise variance is known, we can set the parameter to σ = σ∗ in Eq.(1). We depicted
MPUL (17) for this case in Fig. 2. We can see that MPUL lower-bounds the EVB threshold (14)
(actually this is true regardless of the value of κ > 0). This implies a nice behavior of EVB, i.e.,
EVB eliminates all noise components in the large-scale limit. However, a simple optimal strategy—
discarding the components with singular values smaller than γMPUL—outperforms EVB, because
signals lying between the gap [γMPUL, γEVB) are discarded by EVB. Therefore, EVB is not very
useful when σ2∗ is known. In Section 4, we investigate the behavior of EVB in a more practical and
challenging situation where σ2∗ is unknown and is also estimated from observation.

In Fig. 2, we also depicted the VB threshold (9) with almost flat prior cah , cbh → ∞ (labeled
as ‘VBFL’) for comparison. Actually, this coincides with the mean of the MP distribution, i.e.,
limcah

,cah
→∞(γVB

h
)2/(Mσ2) = 〈u〉p(u) = 1. This implies that VBFL retains a lot of noise com-

ponents, and does not perform well even when σ2∗ is known.
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4 Analysis of EVB When Noise Variance Is Unknown

In this section, we derive bounds of the VB-based noise variance estimator, and obtain a sufficient
condition for perfect dimensionality recovery in the large-scale limit.

4.1 Bounds of Noise Variance Estimator

The simple closed-form solution obtained in Section 3 is the global minimizer of the free energy
(4), given σ2. Using the solution, we can explicitly describe the free energy as a function of σ2. We
obtain the following theorem (the proof is omitted):

Theorem 3 The noise variance estimator σ̂2 EVB is the global minimizer of

Ω(σ−2) =
∑H

h=1 ψ
(

γ2
h

Mσ2

)
+
∑L

h=H+1 ψ0

(
γ2
h

Mσ2

)
, (18)

where ψ (x) = ψ0 (x) + θ (x > x)ψ1 (x) , x = 1 + α+
√
α
(
κ+ κ−1

)
, (19)

ψ0 (x) = x− log x, ψ1 (x) = log (
√
ακ(x) + 1) + α log

(
κ(x)√

α
+ 1
)
−
√
ακ(x), (20)

κ is a constant defined in Theorem 2, and κ(x) is a function of x (> x) defined by

κ(x) = 1
2
√
α

(
(x− (1 + α)) +

√
(x− (1 + α))2 − 4α

)
. (21)

Note that x and κ(γ2h/(σ
2M)) are rescaled versions of the squared EVB threshold (14) and the

EVB shrinkage estimator (15), respectively, i.e., x = (γEVB)2/(σ2M) and κ(γ2h/(σ
2M)) =

γhγ̆EVB
h /(σ2

√
ML).

The functions ψ0 (x) and ψ (x) are depicted in Fig. 4. We can prove the convexity of ψ0 (x) and
quasi-convexity of ψ (x), which are useful properties in our theoretical analysis.

Let ĤEVB be the rank estimated by VB, which satisfies γ̂EVB
h > 0 for h = 1, . . . , ĤEVB and

γ̂EVB
h = 0 for h = ĤEVB + 1, . . . , H . Then we have the following theorem:

Theorem 4 ĤEVB is upper-bounded as

ĤEVB ≤ H = min
(⌈

L
1+α

⌉
− 1, H

)
, (22)

and the noise variance estimator σ̂2 EVB is bounded as follows:

max

(
σ2
H+1

,
∑L

h=H+1
γ2
h

M(L−H(1+α))

)
< σ̂2 EVB ≤ 1

LM

∑L
h=1 γ

2
h, (23)

where σ2
h =






∞ for h = 0,
γ2
h

Mx for h = 1, . . . , L,

0 for h = L+ 1.

(24)

(Sketch of proof) First, we show that a global minimizer w.r.t. σ2 exists in (γ2L/M, γ21/M), and it
is a stationary point. Given a hypothetic Ĥ , the derivative of Ω w.r.t. σ−2 is written as

Θ(σ−2) ≡ 1
L

∂Ω
∂σ−2 = −σ2 +

∑Ĥ
h=1 γh(γh−γ̆EVB

h )+
∑L

h=Ĥ+1
γ2
h

LM . (25)
Eq.(15) implies the following bounds:

(M + L)σ2 < γh
(
γh − γ̆EVB

h

)
< (

√
M +

√
L)2σ2 for γh > γEVB, (26)

which allows us to bound Θ by simple inequalities. Finding a condition prohibiting Θ to be zero
proves the theorem. !

Theorem 4 states that EVB discards the (L−/L/(1+α)0+1) ≥ 1 smallest components, regardless
of the observed values {γh}. For example, the half components are always discarded when the
matrix is square (i.e., α = L/M = 1). The smallest singular value γL is always discarded, and
σ̂2 EVB > γ2L/(M(L− (L− 1)(1 + α)) > γ2L/M always holds.
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Figure 5: Success rate of dimensionality recovery in numerical simulation for M = 200. The
threshold for the guaranteed recovery (the second inequality in Eq.(28)) is depicted with a vertical
bar with the same color and line style.

4.2 Perfect Recovery Condition

Here, we derive a sufficient condition for perfect recovery of the true PCA dimensionality in the
large-scale limit.

Assume that the observation matrix V is generated as
V = U∗ + E , (27)

where U∗ is a true signal matrix with rank H∗ and the singular values {γ∗h}, and each element of
the noise matrix E is subject to a distribution with mean zero and variance σ2∗. We rely on a result
[2, 5] on the eigenvalue distribution of the spiked covariance model [8]. The following theorem
guarantees the accuracy of VB-PCA:

Theorem 5 Assume H ≥ H∗ (i.e., we set the rank of the MF model sufficiently large), and denote
the relevant rank (dimensionality) ratio by

ξ = H∗

L .

In the large-scale limit with finite α and H∗, EVB implemented with a local search algorithm for
the noise variance σ2 estimation almost surely recovers the true rank, i.e., ĤEVB = H∗, if ξ = 0 or

ξ < 1
x and γ∗2H∗ >

(
x−1
1−xξ − α

)
·Mσ2∗, (28)

where x is defined in Eq.(19).

(Sketch of proof) We first show that, in the large-scale limit and when ξ = 0, Eq.(25) is equal to
zero if and only if σ2 = σ2∗. This means the perfect recovery in the no-signal case. σ2

h defined in
Eq.(24) is actually the thresholding point of estimated σ̂2 for the h-th component to be discarded.
Therefore, ĤEVB = H∗ if and only if σ2

H∗+1 < σ̂2 < σ2
H∗ . Using Eq.(26), we can obtain a

sufficient condition that a local minimum exists only in this range, which proves the theorem. !

Note that ξ → 0 in the large scale limit. However, we treated ξ as a positive value in Theorem 5,
hoping that the obtained result can approximately hold in a practical situation when L and M are
large but finite. The obtained result well explains the dependency on ξ in the numerical simulation
below.

Theorem 5 guarantees that, if the true rank H∗ is small enough compared with L and the smallest
signal γ∗H∗ is large enough compared with σ2∗, VB-PCA works perfectly. It is important to note
that, although the objective function (18) is non-convex and possibly multimodal in general, perfect
recovery does not require global search, but only a local search, of the objective function for noise
variance estimation.

Fig. 5 shows numerical results for M = 200 and α = 1, 0.5, 0.1. E was drawn from the Gaussian
distribution with variance σ2∗ = 1, and signal singular values were drawn from the uniform distri-
bution on [yMσ2∗, 10M ] for different y (the horizontal axis of the graphs indicates y). The vertical
axis indicates the success rate of dimensionality recovery, i.e., ĤEVB = H∗, over 100 trials. If the
condition for ξ (the first inequality in Eq.(28)) is violated, the corresponding line is depicted with
markers. Otherwise, the threshold of y for the guaranteed recovery (the second inequality in Eq.(28))
is indicated by a vertical bar with the same color and line style. We can see that the guarantee by
Theorem 5 approximately holds even in this small matrix size, although it is slightly conservative.
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5 Discussion

Here, we discuss implementation of VB-PCA, and the origin of sparsity of VB.

5.1 Implementation

Implementation of VB-PCA (VB-MF) based on the result given in [16] involves a quartic equation.
This means that we need to use a highly complicated analytic-form solution, derived by, e.g., Fer-
rari’s method, of a quartic equation, or rely on a numerical quartic solver, which is computationally
less efficient. The theorems we gave in this paper can actually simplify the implementation greatly.

A table of κ defined in Theorem 2 should be prepared beforehand. Given an observed matrix V ,
we perform SVD and obtain the singular values. After that, in our new implementation, we first
directly estimate the noise variance based on Theorem 3, using any 1-D local search algorithm—
Theorem 4 helps restrict the search range. Then we obtain the noise variance estimator σ̂2 EVB. For
a dimensionality reduction purpose, simply discarding all the components such that σ2

h < σ̂2 EVB

gives the result (here σ2
h is defined by Eq.(24)). When the estimator ÛEVB is needed, Theorem 2

gives the result for σ2 = σ̂2 EVB. The VB posterior is also easily computed (its description is
omitted). In this way, we can perform VB-PCA, whose performance is guaranteed, very easily.

5.2 Origin of Exact Sparsity

Sparsity is regarded as a practical advantage of VB. Nevertheless, as discussed in Section 1, it is
not necessarily a property inherent in the rigorous Bayesian estimation. Actually, at least in MF,
the sparsity is induced by the independence assumption between A and B. Let us go back to Fig.1,
where the Bayes posterior for V = 1 is shown in the left graph. In this scalar factorization model, the
probability mass in the first and the third quadrants pulls the estimator Û = BA toward the positive
direction, and the mass in the second and the fourth quadrants toward the negative direction. Since
the Bayes posterior is skewed and more mass is put in the first and the third quadrants, it is natural
that the Bayesian estimator γ̂ = 〈BA〉p(A,B|V ) is positive. This is true even if V > 0 is very small.
On the other hand, the VB posterior (the middle graph) is prohibited to be skewed because of the
independent assumption, and thus it has to wait until V grows so that one of the modes has a enough
probability mass. This is the cause of sparsity in VBMF. The Bayes posterior (left graph) implies
that, if we restrict the posterior to be Gaussian, but allow to have correlation between A and B, exact
sparsity will not be observed.

It is observed that the Bayesian estimation gives a sparse solution when the hyper parameters
(CA, CB) are optimized. This estimator is also depicted as blue diamonds labeled as EFB (em-
pirical fully-Bayesian) in the right graph of Fig.1. Note that, in this case, the independence between
A and C−1/2

A (as well as B and C−1/2
B ), which are strongly correlated in the prior (2) and hence in

the Bayes posterior, is forced—the point estimation of CA (as well as CB) breaks the correlation
because approximating by the delta function induces the independence from all other parameters.
Further investigation on the relation between the independence constraint and the sparsity induction
is our future work.

6 Conclusion

In this paper, we considered the variational Bayesian PCA (VB-PCA) when the noise variance is
unknown. Analyzing the behavior of the noise variance estimator, we derived a sufficient condition
for VB-PCA to perfectly recover the true dimensionality. Our result theoretically supports the use-
fulness of VB-PCA. In our theoretical analysis, we obtained bounds for a noise variance estimator
and simple closed-form solutions for other parameters, which were shown to be useful for better
implementation of VB-PCA.
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