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Abstract

We consider the composite log-determinant optimization problem, arising from
the `1 regularized Gaussian maximum likelihood estimator of a sparse inverse
covariance matrix, in a high-dimensional setting with a very large number of vari-
ables. Recent work has shown this estimator to have strong statistical guarantees
in recovering the true structure of the sparse inverse covariance matrix, or alter-
natively the underlying graph structure of the corresponding Gaussian Markov
Random Field, even in very high-dimensional regimes with a limited number of
samples. In this paper, we are concerned with the computational cost in solving
the above optimization problem. Our proposed algorithm partitions the problem
into smaller sub-problems, and uses the solutions of the sub-problems to build a
good approximation for the original problem. Our key idea for the divide step to
obtain a sub-problem partition is as follows: we first derive a tractable bound on
the quality of the approximate solution obtained from solving the corresponding
sub-divided problems. Based on this bound, we propose a clustering algorithm
that attempts to minimize this bound, in order to find effective partitions of the
variables. For the conquer step, we use the approximate solution, i.e., solution
resulting from solving the sub-problems, as an initial point to solve the original
problem, and thereby achieve a much faster computational procedure.

1 Introduction
Let {x1,x2, . . . ,xn} be n sample points drawn from a p-dimensional Gaussian distribution
N (µ,Σ), also known as a Gaussian Markov Random Field (GMRF), where each xi is a p-
dimensional vector. An important problem is that of recovering the covariance matrix, or its inverse,
given the samples in a high-dimensional regime where n � p, and p could number in the tens of
thousands. In such settings, the computational efficiency of any estimator becomes very important.

A popular approach for such high-dimensional inverse covariance matrix estimation is to impose the
structure of sparsity on the inverse covariance matrix (which can be shown to encourage conditional
independences among the Gaussian variables), and to solve the following `1 regularized maximum
likelihood problem:

arg min
Θ�0
{− log det Θ + tr(SΘ) + λ‖Θ‖1} = arg min

Θ�0
f(Θ), (1)

where S = 1
n

∑n
i=1(xi − µ̃)(xi − µ̃)T is the sample covariance matrix and µ̃ = 1

n

∑n
i=1 xi is the

sample mean. The key focus in this paper is on developing computationally efficient methods to
solve this composite log-determinant optimization problem.
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Due in part to its importance, many optimization methods [4, 1, 9, 7, 6] have been developed in
recent years for solving (1). However, these methods have a computational complexity of at least
O(p3) (typically this is the complexity per iteration). It is therefore hard to scale these procedures
to problems with tens of thousands of variables. For instance, in a climate application, if we are
modeling a GMRF over random variables corresponding to each Earth grid point, the number of
nodes can easily number in the tens of thousands. For this data, a recently proposed state-of-the-art
method QUIC [6], that uses a Newton-like method to solve (1), for instance takes more than 10
hours to converge.

A natural strategy when the computational complexity of a procedure scales poorly with the problem
size is a divide and conquer strategy: Given a partition of the set of nodes, we can first solve the
`1 regularized MLE over the sub-problems invidually, and than in the second step, aggregate the
solutions together to get Θ̄. But how do we come up with a suitable partition? The main contribution
of this paper is to provide a principled answer to this question. As we show, our resulting divide and
conquer procedure produces overwhelming improvements in computational efficiency.

Interestingly, [8] recently proposed a decomposition-based method for GMRFs. They first observe
the following useful property of the composite log-determinant optimization problem in (1): if we
threshold the off-diagonal elements of the sample covariance matrix S, and the resulting thresholded
matrix is block-diagonal, then the corresponding inverse covariance matrix has the same block-
diagonal sparsity structure as well. Using this property, they decomposed the problem along these
block-diagonal components and solved these separately, thus achieving a sharp computational gain.
A major drawback to this approach of [8] however is that often the decomposition of the thresholded
sample covariance matrix can be very unbalanced — indeed, in many of our real-life examples, we
found that the decomposition resulted in one giant component and several very small components.
In these cases, the approach in [8] is only a bit faster than directly solving the entire problem.

In this paper, we propose a different strategy based on the following simple idea. Suppose we are
given a particular partitioning, and solve the sub-problems specified by the partition components.
The resulting decomposed estimator Θ̄ clearly need not be equal to `1 regularized MLE (1). How-
ever, can we use bounds on the deviation to propose a clustering criterion? We first derive a bound
on ‖Θ̄ − Θ∗‖F based on the off-diagonal error of the partition. Based on this bound, we propose
a normalized-cut spectral clustering algorithm to minimize the off-diagonal error, which is able to
find a balanced partition such that Θ̄ is very close to Θ∗. Interestingly, we show that this clustering
criterion can also be motivated as leveraging a property more general than that in [8] of the `1 reg-
ularized MLE (1). In the “conquering” step, we then use Θ̄ to initialize an iterative solver for the
original problem (1). As we show, the resulting algorithm is much faster than other state-of-the-art
methods. For example, our algorithm can achieve an accurate solution for the climate data problem
in 1 hour, whereas directly solving it takes 10 hours.

In section 2, we outline the standard skeleton of a divide and conquer framework for GMRF es-
timation. The key step in such a framework is to come up with a suitable and efficient clustering
criterion. In the next section 3, we then outline our clustering criteria. Finally, in Section 4 we show
that in practice, our method achieves impressive improvements in computational efficiency.

2 The Proposed Divide and Conquer Framework
We first set up some notation. In this paper, we will consider each p × p matrix X as an adjacency
matrix, where V = {1, . . . , p} is the node set, Xij is the weighted link between node i and node j.
We will use {Vc}kc=1 to denote a disjoint partitioning of the node set V , and each Vc will be called a
partition or a cluster.

Given a partition {Vc}kc=1, our divide and conquer algorithm first solves GMRF for all node parti-
tions to get the inverse covariance matrices {Θ(c)}kc=1, and then uses the following matrix

Θ̄ =


Θ(1) 0 . . . 0

0 Θ(2) . . . 0
...

...
...

...
0 0 0 Θ(k)

 , (2)

to initialize the solver for the whole GMRF. In this paper we use X(c) to denote the submatrix
XVc,Vc for any matrix X . Notice that in our framework any sparse inverse covariance solver can
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be used, however, in this paper we will focus on using the state-of-the-art method QUIC [6] as the
base solver, which was shown to have super-linear convergence when close to the solution. Using a
better starting point enables QUIC to more quickly reach this region of super-linear convergence, as
we will show later in our experiments.

The skeleton of the divide and conquer framework is quite simple and is summarized in Algorithm 1.
In order that Algorithm 1 be efficient, we require that Θ̄ defined in (2) should be close to the optimal
solution of the original problem Θ∗. In the following, we will derive a bound for ‖Θ∗−Θ̄‖F . Based
on this bound, we propose a spectral clustering algorithm to find an effective partitioning of the
nodes.

Algorithm 1: Divide and Conquer method for Sparse Inverse Covariance Estimation
Input : Empirical covariance matrix S, scalar λ
Output: Θ∗, the solution of (1)
Obtain a partition of the nodes {Vc}kc=1 ;1
for c = 1, . . . , k do2

Solve (1) on S(c) and subset of variables in Vc to get Θ(c);3
end4

Form Θ̄ by Θ(1),Θ(2), . . . ,Θ(k) as in (2) ;5

Use Θ̄ as an initial point to solve the whole problem (1) ;6

2.1 Hierarchical Divide and Conquer Algorithm

Assume we conduct a k-way clustering, then the initial time for solving sub-problems is at least
O(k(p/k)3) = O(p3/k2) where p denotes the dimensionality, When we consider k = 2, the divide
and conquer algorithm can be at most 4 times faster than the original one. One can increase k,
however, a larger k entails a worse initial point for training the whole problem.

Based on this observation, we consider the hierarchical version of our divide-and-conquer algorithm.
For solving subproblems we can again apply a divide and conquer algorithm. In this way, the initial
time can be much less than O(p3/k2) if we use divide and conquer algorithm hierarchically for
each level. In the experiments, we will see that this hierarchical method can further improve the
performance of the divide-and-conquer algorithm.

3 Main Results: Clustering Criteria for GMRF
This section outlines the main contribution of this paper; in coming up with suitable efficient clus-
tering criteria for use within the divide and framework structure in the previous section.

3.1 Bounding the distance between Θ∗ and Θ̄

To start, we discuss the following result from [8], which we reproduce using the notation in this
paper for convenience. Specifically, [8] shows that when all the between cluster edges in S have
absolute values smaller than λ, Θ∗ will have a block-diagonal structure.
Theorem 1 ([8]). For any λ > 0 and a given partition {Vc}kc=1, if |Sij | ≤ λ for all i, j in different
partitions, then Θ∗ = Θ̄, where Θ∗ is the optimal solution of (1) and Θ̄ is as defined in (2).

As a consequence, if a partition {Vc}kc=1 satisfies the assumption of Theorem 1, Θ̄ and Θ∗ will be
the same, and the last step of Algorithm 1 is not needed anymore. Therefore the result in [8] may be
viewed as a special case of our Divide-and-Conquer Algorithm 1.

However, in most real examples, a perfect partitioning as in Theorem 1 does not exist, which moti-
vates a divide and conquer framework that does not need as stringent assumptions as in Theorem 1.
To allow a more general relationship between Θ∗ and Θ̄, we first prove a similar property for the
following generalized inverse covariance problem:

Θ∗ = arg min
Θ�0
{− log det Θ + tr(SΘ) +

∑
i,j

Λij |Θij |} = arg min
Θ�0

fΛ(Θ). (3)
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In the following, we use 1λ to denote a matrix with all elements equal to λ. Therefore (1) is a special
case of (3) with Λ = 1λ. In (3), the regularization parameter Λ is a p×pmatrix, where each element
corresponds to a weighted regularization of each element of Θ. We can then prove the following
theorem, as a generalization of Theorem 1.

Theorem 2. For any matrix regularization parameter Λ (Λij > 0 ∀i, j) and a given partition
{Vc}kc=1, if |Sij | ≤ Λij for all i, j in different partitions, then the solution of (3) will be the block
diagonal matrix Θ̄ defined in (2), where Θ(c) is the solution for (3) with sample covariance S(c) and
regularization parameter Λ(c).

Proof. Consider the dual problem of (3):

max
W�0

log detW s.t. |Wij − Sij | ≤ Λij ∀i, j, (4)

based on the condition stated in the theorem, we can easily verify W̄ = Θ̄−1 is a feasible so-
lution of (4) with the objective function value

∑k
c=1 log det W̄ (c). To show that W̄ is the op-

timal solution of (4), we consider an arbitrary feasible solution Ŵ . From Fischer’s inequal-
ity [2], det Ŵ ≤

∏k
c=1 det Ŵ (c) for Ŵ � 0. Since W̄ (c) is the optimizer of the c-th block,

det W̄ (c) ≥ det Ŵ (c) for all c, which implies log det Ŵ ≤ log det W̄ . Therefore Θ̄ is the primal
optimal solution.

Next we apply Theorem 2 to develop a decomposition method. Assume our goal is to solve (1) and
we have clusters {Vc}kc=1 which may not satisfy the assumption in Theorem 1. We start by choosing
a matrix regularization weight Λ̄ such that

Λ̄ij =

{
λ if i, j are in the same cluster,
max(|Sij |, λ) if i, j are in different clusters.

(5)

Now consider the generalized inverse covariance problem (3) with this specified Λ̄. By construction,
the assumption in Theorem 2 holds for Λ̄, so we can decompose this problem into k sub-problems;
for each cluster c ∈ {1, . . . , k}, the subproblem has the following form:

Θ(c) = arg min
Θ�0
{− log det Θ + tr(S(c)Θ) + λ‖Θ‖1},

where S(c) is the sample covariance matrix of cluster c. Therefore, Θ̄ is the optimal solution of
problem (3) with Λ̄ as the regularization parameter.

Based on this observation, we will now provide another view of our divide and conquer algorithm as
follows. Considering the dual problem of the sparse inverse covariance estimation with the weighted
regularization defined in (4), Algorithm 1 can be seen to solve (4) with Λ = Λ̄ defined in (5) to get
the initial point W̄ , and then solve (4) with Λ = 1λ for all elements. Therefore we initially solve
the problem with looser bounded constraints to get an initial guess, and then solve the problem with
tighter constraints. Intuitively, if the relaxed constraints Λ̄ are close to the real constraint 1λ, the
solutions W̄ and W ∗ will be close to each other. So in the following we derive a bound based on
this observation.

For convenience, we use Pλ to denote the original dual problem (4) with Λ = 1λ, and P Λ̄ to denote
the relaxed dual problem with different edge weights across edges as defined in (5). Based on the
above discussions, W ∗ = (Θ∗)−1 is the solution of Pλ and W̄ = Θ̄−1 is the solution of P Λ̄. We
define E as the following matrix:

Eij =

{
0 if i, j are in the same cluster,
max(|Sij | − λ, 0) otherwise.

(6)

If E = 0, all the off-diagonal elements are below the threshold λ, so W ∗ = W̄ by Theorem 2. In
the following we consider a more interesting case where E 6= 0. In this case ‖E‖F measures how
much the off-diagonal elements exceed the threshold λ, and a good clustering algorithm should be
able to find a partition to minimize ‖E‖F . In the following theorem we show that ‖W ∗− W̄‖F can
be bounded by ‖E‖F , therefore ‖Θ∗ − Θ̄‖F can also be bounded by ‖E‖F :

4



Theorem 3. If there exists a γ > 0 such that ‖E‖2 ≤ (1− γ) 1
‖W̄‖2

, then

‖W ∗−W̄‖F <
pmax(σmax(W̄ ), σmax(W ∗))

γσmin(W̄ )
‖E‖F , (7)

‖Θ∗ − Θ̄‖F ≤
pmax(σmax(Θ̄), σmax(Θ∗))2σmax(Θ̄)

γmin(σmin(Θ∗), σmin(Θ̄))
‖E‖F , (8)

where σmin(·), σmax(·) denote the minimum/maximum singular values.

Proof. To prove Theorem 3, we need the following Lemma, which is proved in the Appendix:

Lemma 1. If A is a positive definite matrix and there exists a γ > 0 such that ‖A−1B‖2 ≤ 1− γ,
then

log det(A+B) ≥ log detA− p/(γσmin(A))‖B‖F . (9)

Since P Λ̄ has a relaxed bounded constraint than Pλ, W̄ may not be a feasible solution of Pλ.
However, we can construct a feasible solution Ŵ = W̄ − G ◦ E, where Gij = sign(Wij) and
◦ indicates the entrywise product of two matrices. The assumption of this theorem implies that
‖G ◦ E‖2 ≤ (1− γ)/‖W̄‖2, so ‖W̄−1(G ◦ E)‖ ≤ (1− γ). From Lemma 1 we have log det Ŵ ≥
log det W̄ − p

γσmin(W̄ )
‖E‖F . Since W ∗ is the optimal solution of Pλ and Ŵ is a feasible solution

of Pλ, log detW ∗ ≥ log det Ŵ ≥ log det W̄ − p
γσmin(W̄ )

‖E‖F . Also, since W̄ is the optimal

solution of P Λ̄ and W ∗ is a feasible solution of P Λ̄, we have log detW ∗ < log det W̄ . Therefore,
| log det W̄ − log detW ∗| < p

γσmin(W̄ )
‖E‖F .

By the mean value theorem and some calculations, we have |f(W ∗) − f(W̄ )| >
‖W̄−W∗‖F

max(σmax(W̄ ),σmax(W∗))
, which implies (7).

To establish the bound on Θ, we use the mean value theorem again with g(W ) = W−1 = Θ,
∇g(W ) = Θ ⊗ Θ where ⊗ is kronecker product. Moreover, σmax(Θ ⊗ Θ) = (σmax(Θ))2, so we
can combine with (7) to prove (8).

3.2 Clustering algorithm

In order to obtain computational savings, the clustering algorithm for the divide-and-conquer algo-
rithm (Algorithm 1) should satisfy three conditions: (1) minimize the distance between the approx-
imate and the true solution ‖Θ̄ − Θ∗‖F , (2) be cheap to compute, and (3) partition the nodes into
balanced clusters.

Assume the real inverse covariance matrix Θ∗ is block-diagonal, then it is easy to show that W ∗
is also block-diagonal. This is the case considered in [8]. Now let us assume Θ∗ has almost a
block-diagonal structure but a few off-diagonal entries are not zero. Assume Θ∗ = Θbd + veie

T
j

where Θbd is the block-diagonal part of Θ∗ and ei denotes the i-th standard basis vector, then from
Sherman-Morrison formula,

W ∗ = (Θ∗)−1 = (Θbd)−1 − v

1 + v(Θbd)ij
θbdi (θbdj )T ,

where θbdi is the ith column vector of Θbd. Therefore adding one off-diagonal element to Θbd will
introduce at most one nonzero off-diagonal block in W . Moreover, if block (i, j) of W is already
nonzero, adding more elements in block (i, j) of Θ will not introduce any more nonzero blocks in
W . As long as just a few entries in off-diagonal blocks of Θ∗ are nonzero,W will be block-diagonal
with a few nonzero off-diagonal blocks. Since ‖W ∗−S∗‖∞ ≤ λ, we are able to use the thresholding
matrix Sλ to guess the clustering structure of Θ∗.

In the following, we show this observation is consistent with the bound we get in Theorem 3. From
(8), ideally we want to find a partition to minimize ‖E‖∗ =

∑
i |σi(E)|. Since it is computationally

difficult to optimize this directly, we can use the bound ‖E‖∗ ≤
√
p‖E‖F , so that minimizing ‖E‖F

can be cast as a relaxation of the problem of minimizing ‖Θ̄−Θ∗‖F .
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To find a partition minimizing ‖E‖F , we want to find a partition {Vc}kc=1 such that the sum of
off-diagonal block entries of Sλ is minimized, where Sλ is defined as

(Sλ)ij = max(|Sij | − λ, 0)2 ∀ i 6= j and Sλij = 0 ∀i = j. (10)

At the same time, we want to have balanced clusters. Therefore, we minimize the following normal-
ized cut objective value [10]:

NCut(Sλ, {Vc}kc=1) =

k∑
c=1

∑
i∈Vc,j /∈Vc S

λ
ij

d(Vc)
where d(Vc) =

∑
i∈Vc

p∑
j=1

Sλij . (11)

In (11), d(Vc) is the volume of the vertex set Vc for balancing cluster sizes, and the numerator is
the sum of off-diagonal entries, which corresponds to ‖E‖2F . As shown in [10, 3], minimizing the
normalized cut is equivalent to finding cluster indicators x1, . . . ,xc to maximize

min
x

k∑
c=1

xTc (D − Sλ)xc
xTc Dx

= trace(Y T (I −D−1/2SλD−1/2)Y ), (12)

where D is a diagonal matrix with Dii =
∑p
j=1 S

λ
ij , Y = D1/2X and X = [x1 . . .xc]. There-

fore, a common way for getting cluster indicators is to compute the leading k eigenvectors of
D−1/2SλD−1/2 and then conduct kmeans on these eigenvectors.

The time complexity of normalized cut on Sλ is mainly from computing the leading k eigenvectors
of D−1/2SλD−1/2, which is at most O(p3). Since most state-of-the-art methods for solving (1)
require O(p3) per iteration, the cost for clustering is no more than one iteration for the original
solver. If Sλ is sparse, as is common in real situations, we could speed up the clustering phase by
using the Graclus multilevel algorithm, which is a faster heuristic to minimize normalized cut [3].

4 Experimental Results
In this section, we first show that the normalized cut criterion for the thresholded matrix Sλ in (10)
can capture the block diagonal structure of the inverse covariance matrix before solving (1). Using
the clustering results, we show that our divide and conquer algorithm significantly reduces the time
needed for solving the sparse inverse covariance estimation problem.

We use the following datasets:

1. Leukemia: Gene expression data — originally provided by [5], we use the data after the
pre-processing done in [7].

2. Climate: This dataset is generated from NCEP/NCAR Reanalysis data 1, with focus on
the daily temperature at several grid points on earth. We treat each grid point as a random
variable, and use daily temperature in year 2001 as features.

3. Stock: Financial dataset downloaded from Yahoo Finance 2. We collected 3724 stocks,
each with daily closing price recorded in latest 300 days before May 15, 2012.

4. Synthetic: We generated synthetic data containing 20, 000 nodes with 100 randomly gen-
erated group centers µ1, . . . , µ100, each of dimension 200, such that each group c has half
of its nodes with feature µc and the other half with features −µc. We then add Gaussian
noise to the features.

The data statistics are summarized in Table 1.

4.1 Clustering quality on real datasets

Given a clustering partition {Vc}kc=1, we use the following “within-cluster ratio” to determine its
performance on Θ∗:

R({Vc}kc=1) =

∑k
c=1

∑
i,j:i 6=j and i,j∈Vc(Θ∗ij)

2∑
i 6=j(Θ

∗
ij)

2
. (13)

1www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surface.html
2http://finance.yahoo.com/
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Table 1: Dataset Statistics
Leukemia Climate Stock Synthetic

p 1255 10512 3724 20000
n 72 1464 300 200

Table 2: Within-cluster ratios (see (13)) on real datasets. We can see that our proposed clustering
method Spectral Sλ is very close to the clustering based on Θ̂ = Θ∗ ◦ Θ∗, which we cannot see
before solving (1).

Leukemia Climate Stock Synthetic
λ=0.5 λ=0.3 λ=0.005 λ=0.001 λ=0.0005 λ=0.0001 λ=0.005 λ=0.001

random clustering 0.26 0.24 0.24 0.25 0.24 0.24 0.25 0.24
spectral on Sλ 0.91 0.84 0.87 0.65 0.96 0.87 0.98 0.93
spectral on Θ̂ 0.93 0.84 0.90 0.71 0.97 0.85 0.99 0.93

Higher values ofR({Vc}kc=1) are indicative of better performance of the clustering algorithm.

In section 3.1, we presented theoretical justification for using normalized cut on the thresholded
matrix Sλ. Here we show that this strategy shows great promise on real datasets. Table 2 shows the
within-cluster ratios (13) of the inverse covariance matrix using different clustering methods. We
include the following methods in our comparison:

• Random partition: partition the nodes randomly into k clusters. We use this as a baseline.
• Spectral clustering on thresholded matrix Sλ: Our proposed method.

• Spectral clustering on Θ̂ = Θ∗ ◦ Θ∗, which is the element-wise square of Θ∗: This is the
best clustering method we can conduct, which directly minimizes within-cluster ratio of
the Θ∗ matrix. However, practically we cannot use this method as we do not know Θ∗.

We can observe in Table 2 that our proposed spectral clustering on Sλ achieves almost the same
performance as spectral clustering on Θ∗ ◦Θ∗ even though we do not know Θ∗.

Also, Figure 1 gives a pictorial view of how our clustering results help in recovering the sparse
inverse covariance matrix at different levels. We run a hierarchical 2-way clustering on the Leukemia
dataset, and plot the original Θ∗ (solution of (1)), Θ̄ with 1-level clustering and Θ̄ with 2-level
clustering. We can see that although our clustering method does not look at Θ∗, the clustering result
matches the nonzero pattern of Θ∗ pretty well.

4.2 The performance of our divide and conquer algorithm

Next, we investigate the time taken by our divide and conquer algorithm on large real and synthetic
datasets. We include the following methods in our comparisons:

• DC-QUIC-1: Divide and Conquer framework with QUIC and with 1 level clustering.

(a) The inverse covariance ma-
trix Θ∗.

(b) The recovered Θ̄ from level-1
clusters.

(c) The recovered Θ̄ from level 2
clusters.

Figure 1: The clustering results and the nonzero patterns of inverse covariance matrix Θ∗ on
Leukemia dataset. Although our clustering method does not look at Θ∗, the clustering results
match the nonzero pattern in Θ∗ pretty well.
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(a) Leukemia (b) Stock

(c) Climate (d) Synthetic

Figure 2: Comparison of algorithms on real datasets. The results show that DC-QUIC is much faster
than other state-of-the-art solvers.

• DC-QUIC-3: Divide and Conquer QUIC with 3 levels of hierarchical clustering.
• QUIC: The original QUIC, which is a state-of-the-art second order solver for sparse inverse

estimation [6].
• QUIC-conn: Using the decomposition method described in [8] and using QUIC to solve

each smaller sub-problem.
• Glasso: The block coordinate descent algorithm proposed in [4].
• ALM: The alternating linearization algorithm proposed and implemented by [9].

All of our experiments are run on an Intel Xeon E5440 2.83GHz CPU with 32GB main memory.
Figure 2 shows the results. For DC-QUIC and QUIC-conn, we show the run time of the whole
process, including the preprocessing time. We can see that in the largest synthetic dataset, DC-
QUIC is more than 10 times faster than QUIC, and thus also faster than Glasso and ALM. For the
largest real dataset: Climate with more than 10,000 points, QUIC takes more than 10 hours to get a
reasonable solution (relative error=0), while DC-QUIC-3 converges in 1 hour. Moreover, on these
4 datasets QUIC-conn using the decomposition method of [8] provides limited savings, in part
because the connected components for the thresholded covariance matrix for each dataset turned
out to have a giant component, and multiple smaller components. DC-QUIC however was able to
leverage a reasonably good clustered decomposition, which dramatically reduced the inference time.
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