
6 Supplementary Material

6.1 Gradient Derivation

For ease of reference in this section we give a brief outline of the derivation for the derivative of
(1). As in the rest of the paper we focus on the case of an infinite planning horizon with discounted
rewards, where other frameworks follow similarly. The first point to note is that for any t ∈ N we
have the following identity, often referred to as the ‘log-trick’,

∇wp(z1:t;w) = p(z1:t;w)∇w log p(z1:t;w),

where the usual limit arguments are made in the case p(z1:t;w) = 0. Upon interchanging the order
of integration and differentiation the gradient takes the form

∇wU(w) =

∞∑
t=1

Ep(z1:t;w)

[
γt−1R(zt)∇w log p(z1:t;w)

]
.

Due to the Markovian structure of the trajectory distribution (2) this derivative can be written in the
equivalent form

∇wU(w) =

∞∑
t=1

t∑
τ=1

Ep(zτ ,zt;w)

[
γt−1R(zt)∇w log p(aτ |sτ ;w)

]
,

=

∞∑
τ=1

∞∑
t=τ

Ep(zτ ,zt;w)

[
γt−1R(zt)∇w log p(aτ |sτ ;w)

]
,

where the second line follows from the first through an interchange of the summations. The chain
structure of the trajectory distribution allows the expectation over the marginals of the two time-
points of the trajectory distribution to be written as follows

∇wU(w) =

∞∑
τ=1

Epτ (z;w)

[∞∑
t=τ

Ept(z′;w)

[
γt−1R(z′)

∣∣zτ = z

]
∇w log p(a|s;w)

]
, (15)

where we have used the notation pτ (z;w) ≡ p(zτ = z;w), for τ ∈ N. The summation over the
inner expectation in (15) can be seen to be equal to the state-action value function scaled by γτ−1 ,
i.e.

γτ−1Q(z;w) =

∞∑
t=τ

Ept(z′;w)

[
γt−1R(z′)

∣∣zτ = z

]
.

Inserting this form for this inner expectation into (15) gives

∇wU(w) =

∞∑
τ=1

Epτ (z;w)

[
γτ−1Q(z;w)∇w log p(a|s;w)

]
,

= Epγ(z;w)Q(z;w)

[
∇w log p(a|s;w)

]
,

where the second line follows from the definition of pγ(z;w). This completes the derivation of (4).
This derivation is different, but equivalent, to the standard derivation in [27].

6.2 Hessian Derivation

Following similar calculations to those used section(6.1) it is simple to see that the Hessian takes
the form

H(w) =

∞∑
t=1

Ep(z1:t;w)

[
γt−1R(zt)

(
∇w log p(z1:t;w)∇Tw log p(z1:t;w)+∇w∇Tw log p(z1:t;w)

)]
,

where the first term is obtained by a second application of the ‘log-trick’. This is the form of the
Hessian given in (5). The form of H2(w) given in (9) follows from analogous calculations to those
performed in section(6.1) of the supplementary material.

10

6.3 Expectation Maximisation Derivation

For ease of reference in this section we give a brief derivation of the application of Expectation
Maximisation to Markov Decision Processes. As in the rest of the paper we focus on the case of
an infinite planning horizon with discounted rewards, where other frameworks follow similarly. A
quantity of central importance in this derivation is the following non-negative function

p̃(z1:t, t;w) = γt−1R(zt)p(z1:t;w).

This function is non-negative because the reward function is considered as non-negative. Note that
this function is trans-dimensional, i.e. it is a function of both t ∈ N and the state-action variables
up until the tth time-point. It can be seen from (1) and (2) that the ‘normalisation constant’ of
p̃(z1:t, t;w) is equal to U(w), i.e. U(w) =

∑∞
t=1

∑
z1:t

p̃(z1:t, t;w). We denote the normalised
version of this function by p̂(z1:t, t;w).

To obtain the lower-bound on the log-objective we note that the Kullback-Leibler divergence be-
tween any two distributions is always non-negative and so calculating the Kullback-Leibler diver-
gence between the variational distribution, q(z1:t, t), and p̂(z1:t, t;w) gives

KL(q||p̂) = logU(w)−Hentropy(q(z1:t, t))− Eq(z1:t,t)

[
log p̃(z1:t, t;w)

]
≥ 0.

The lower-bound (10) is now immediately obtained from the definition of p̃(z1:t, t;w).

An EM-algorithm is obtained through coordinate-wise optimisation of the bound (10) w.r.t. the
variational distribution (the E-step) and the policy parameters (the M-step). In the E-step the lower-
bound (10) is optimised when the Kullback-Leibler divergence is zero, namely when q(z1:t, t) ≡
p̂(z1:t, t;wk), where wk are the current policy parameters. In the E-step the lower-bound is opti-
mised w.r.t. w, which is equivalent to optimising the quantity

Ep̃(z1:t,t;wk)

[
log p̃(z1:t, t;w)

]
= Ep̃(z1:t,t;wk)

[t∑
τ=1

log π(aτ |sτ ;w)

]
+ terms independent of w.

Using the definition of p̃(z1:t, t;wk) we have

Ep̃(z1:t,t;wk)

[t∑
τ=1

log π(aτ |sτ ;w)

]
=

∞∑
t=1

t∑
τ=1

Ep(zτ ,zt;wk)
[
γt−1R(zt) log π(aτ |sτ ;w)

]
,

so that using the same manipulations as those used in section(6.1) of the supplementary material we
have that the E-step is equivalent to maximising the function

Q(w,wk) = Epγ(z;wk)Q(z;wk)

[
log π(a|s;w)

]
,

w.r.t. to the first parameter, w. This completes the derivation of the EM-algorithm for Markov
Decision Processes with an infinite planning horizon and discounted rewards.

6.4 Affine Invariance of Approximate Newton Method

To show that the use of H2(w) in place of the true Hessian maintains the linear (affine) invariance
of the Newton method we use the following formulae

∇wf̃(w) = T T∇vf(v), ∇w∇Twf̃(w) = T T∇v∇Tv f(v)T ,

where f is some twice differentiable function of w, f̃(w) = f(T w) and v = T w. Using these
formulae we have the following two identities

∇w log p(a|s; T w) = T T∇v log p(a|s;v),

∇w∇Tw log p(a|s; T w) = T T∇v∇Tv log p(a|s;v)T ,

which hold for each (s,a) ∈ S × A. Defining Ũ(w) = U(T w), we have ∇wŨ(w) = T TU(v).
Following calculations almost identical to those in section(6.2) it can be shown that H̃2(w) takes
the form

H̃2(w) = Epγ(z;Tw)Q(z;Tw)

[
∇w∇Tw log p(a|s; T w)

]
,

11

which gives the following

H̃2(w) = Epγ(z;Tw)Q(z;Tw)

[
∇w∇Tw log p(a|s; T w)

]
,

= Epγ(z;Tw)Q(z;Tw)

[
T T∇v∇Tv log p(a|s;v)T

]
,

= T TEpγ(z;Tw)Q(z;Tw)

[
∇v∇Tv log p(a|s;v)

]
T ,

= T TH2(v)T .

Using these two expressions we have that the parameter updates, under the approximate Newton
method, of the objective functions U and Ũ are related as follows

vnew = v + αH2(v)−1∇vU(v),

= T
(
w + αH̃2(w)−1∇vŨ(w)

)
,

where α is some step-size parameter. This shows that the approximate Newton method is affine
invariant. The invariance of the diagonal approximate Newton method to rescaling of the parameters
follows similarly.

6.5 Recurrent State Search Direction Evaluation for Approximate Newton Method

In [31] a sampling algorithm was provided for estimating the gradient of an infinite horizon MDP
with average rewards. This algorithm makes use of a recurrent state, which we denote by s∗. In
algorithm(1) we detail a straightforward extension of this algorithm to the estimation the approxi-
mate Hessian, H2(w), in this MDP framework. The analogous algorithm for the estimation of the
diagonal matrix, D2(w), follows similarly. In algorithm(1) we make use of an eligibility trace for
both the gradient and the approximate Hessian, which we denote by Φ1 and Φ2 respectively. The
estimates (up to a positive scalar) of the gradient and the approximate Hessian are denoted by ∆1

and ∆2 respectively.

6.6 Tetris Experiment Specification

In this section we give a detailed specification of the procedure used for each of the algorithms in
the tetris experiment. The same general procedure was used for all the algorithms considered in the
experiments. We modelled the environment through with an infinite planning horizon with average
rewards. The reward at each time-point is equal to the number of lines deleted. We used a recurrent
state formulation [31] of the gradient of the average reward framework to perform the gradient evalu-
ation. We used analogous versions of this recurrent state formulation for natural gradient ascent, the
diagonal approximate Newton method and the full approximate Newton method. See section(6.5)
of the supplementary material for more details. As in [16] we used the sample trajectories obtained
during the gradient evaluation to estimate the Fisher information matrix. Irrespective of the policy
a game of tetris is guaranteed to terminate after a finite number of turns, see e.g. [7]. As we are
considering the average reward framework a new game starts when the previous one terminates. We
used the empty board as a recurrent state where, because a new game starts with an empty board,
this state is recurrent.1 During each training iteration the (approximation of the) search direction
was obtained by sampling 1000 games, where these games were sampled using the current policy
parameters. Given the current approximate search direction the following basic line search method
was used to obtain a step-size: For every step-size in a given finite set of step-sizes sample a set
number of games and then return the step-size with the maximal score over these games. In prac-
tice, in order to reduce the susceptibility to random noise, we used the same simulator seed for each
possible step-size in the set. To avoid over-fitting a different simulator seed was used during each
training iteration. In this line search procedure we sampled 1000 games for each of the possible

1This is actually an approximation because it doesn’t take into account that the state is given by the config-
uration of the board and the current piece, so this particular ‘recurrent state’ ignores the current piece. Empiri-
cally we found that this approximation gave better results, presumably due to reduced variance in the estimands,
and there is no reason to believe that it is unfairly biasing the comparison between the various parametric policy
search methods.

12

Algorithm 1 Recurrent state sampling algorithm to estimate the search direction of the approximate
Newton method when applied to a MDP with an infinite planning horizon with average rewards.

Sample a state from the initial state distribution:

s1 ∼ p1(·).

for t = 1,, N , for some N ∈ N, do
Given the current state, sample an action from the policy:

at ∼ π(·|st;w).

if st 6= s∗ then
Update the eligibility traces:

Φ1 ← Φ1 +∇w log π(at|st;w) Φ2 ← Φ2 +∇w∇Tw log π(at|st;w)

else
reset the eligibility traces:

Φ1 = 0, Φ2 = 0.

end if

Update the estimates of the gradient and the approximate Hessian:

∆1 ←∆1 +R(at, st)Φ
1, ∆2 ←∆2 +R(at, st)Φ

2.

Sample state from the transition dynamics:

st+1 ∼ p(·|at, st).

end for

Return the estimated gradient and approximate Hessian, which up to a positive scaling are given
by ∆1 and ∆2 respectively.

step-sizes. The same set of step-sizes was used in all of the different training algorithms considered
in section(4), where we used the set{

0.1, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 128.0
}
.

To reduce the amount of noise in the results we used the same set of simulator seeds in the search
direction evaluation for each of the algorithms considered in section(4). In particular, we generated
a nexperiments × niterations matrix of simulator seeds, where nexperiments was the number of repetitions
of the experiment and niterations was the number of training iterations in each experiment. We then
used this one matrix in all of the different training algorithms, where the element in the jth column
and ith row corresponds to the simulator seed used in the jth training iteration of the ith experiment.
In a similar manner the set of simulator seeds used for the line search procedure was the same for
all of the different training algorithms. Finally, to make the line search consistent among all of the
different training algorithms the search direction was normlised and the resulting unit vector was the
vector used in the line search procedure.

6.7 Linear System Specification

The N -link rigid robot arm manipulator is a standard continuous MDP model, consisting of an end
effector connected to an N -linked rigid body [17]. A typical continuous control problem for such
systems is to apply appropriate torque forces to the joints of the manipulator so as to move the end
effector into a desired position. The state of the system is given by q, q̇, q̈ ∈ RN , where q, q̇ and q̈
denote the angles, velocities and accelerations of the joints respectively, while the control variables

13

are the torques applied to the joints τ ∈ RN . The nonlinear state equations of the system are given
by, see e.g. [17],

M(q)q̈ + C(q̇, q)q̇ + g(q) = τ (16)

where M(q) is the inertia matrix, C(q̇, q) denotes the Coriolis and centripetal forces and g(q) is
the gravitational force. While this system is highly nonlinear it is possible to define an appropriate
control function τ̂ (q, q̇) that results in linear dynamics in a different state-action space. This process
is called feedback linearisation, see e.g. [17], and in the case of an N -link rigid manipulator recasts
the torque action space into the acceleration action space. This means that the state of the system
is now given by q and q̇, while the control is a = q̈. Ordinarily in such problems the reward
would be a function of the generalised co-ordinates of the end effector, which results in a non-trivial
reward function in terms of q, q̇ and q̈. While this reward function can be modelled as a mixture of
Gaussians for simplicity we consider the simpler problem where the reward is a function of q, q̇ and
q̈ directly.

In the experiments we considered a 3-link rigid manipulator, which results in a 9-dimensional state-
action space and a 22-dimensional policy. In the experiment we discretised the continuous time dy-
namics into time-steps of ∆t = 0.1 and considered a finite planning horizon of H = 100. The mean
of the initial state distribution was set to zero. The elements of the policy parametersm and πσ were
initialised randomly from the interval [−2, 2] and [1, 2] respectively. The matrix K was initialised
to be zero on inter-link entries, while intra-link entries were initialised using rejection sampling. We
sampled the parameters for each link independently from the set [−400, 40]× [−50, 10] and rejected
the sample if the corresponding link was unstable. In the reward function the desired angle of each
joint was randomly sampled from the interval [π/4, 3π/4]. The covariance matrices of the initial
state distribution and state transition dynamics were set to diagonals, where the diagonal elements
were initialised randomly from the interval [0, 0.05]. The covariance matrix of the reward function
was set to be a diagonal with all entries equal to 0.1.

We used the minFunc2 optimisation library in all of the gradient-based algorithms. We found that
both the line search algorithm and the step-size initialisation had an effect on the performance of all
the algorithms. We therefore tried various combinations of these settings for each algorithm and se-
lected the one that gave the best performance. We tried bracketing line search algorithms with: step-
size halving; quadratic/cubic interpolation from new function values; cubic interpolation from new
function and gradient values; step-size doubling and bisection; cubic interpolation/extrapolation
with function and gradient values. We tried the following step-size initialisations: quadratic initial-
ization using previous function value and new function value/gradient; twice the previous step-size.
To handle situations where the initial policy parameterisation was in a ‘flat’ area of the parameter
space far from any optima we set the function and point toleration of minFunc to zero for all al-
gorithms. To handle the large number of training iterations required by steepest gradient ascent we
increased the maximum number of function evaluations and training iterations to 10, 000.

6.8 Non-Linear System Specification

In section we detail the implementation of the experiment on the synthetic two-dimensional non-
linear MDP considered in [29]. The state-space of the problem is two-dimensional, s = (s1, s2),
where s1 is the agent’s position and s2 is the agent’s velocity. The control is one-dimensional and
the dynamics of the system is given as follows

s1t+1 = s1t +
1

1 + e−ut
− 0.5 + κ,

s2t+1 = s2t − 0.1s1t+1 + κ,

where κ is a zero-mean Gaussian random variable with standard deviation σκ = 0.02. The agent
starts in the state s = (0, 1), with the addition of Gaussian noise with standard deviation 0.001,
and the objective is to transport the agent to the state (0, 0). We use the same policy as in [29],
which is given by at = (w + εt)

Tst, where w are the control parameters and εt ∼ N (εt; 0, σ
2
ε I).

The objective function is non-trivial for w ∈ [0, 60] × [−8, 0]. In the experiment the initial control
parameters were sampled from the region w0 ∈ [0, 60] × [−8, 0]. We considered a finite planning

2This software library is freely available at http://www.di.ens.fr/˜mschmidt/Software/
minFunc.html.

14

horizon with a planning horizon of H = 80. We used forward sampling to perform the inference,
where in all algorithms 50 trajectories were sampled during each training iteration.

We also detail the procedure used for the step-size tuning for the approximate Newton method and
natural gradient ascent. The tuning of the step-size sequence in steepest gradient ascent was similar
in nature to natural gradient ascent and so is omitted from the discussion. Using the intuition that
the approximate Newton method has a natural step-size of one, which corresponds to an EM-step in
this problem because the log-policy is quadratic in the control parameters, we considered step-size
sequences of the form αk = (1 − k

N)α + k
N , where N is the total number of training iterations

considered and α ∈ R+. In the experiment we considered the values α = 1, 6, 12, 18 and 24.
The intuition used in this selection was that, provided that the steps were not so large as to cause
overshooting in the parameter space, larger steps will increase performance. In steepest and natural
gradient ascent we used step-size sequences that satisfied the Robbins-Munro conditions. In both of
these methods it was necessary to obtain a gauge of a reasonable scale of a good step-size sequence.
For this reason in the experiment we considered step-size sequences of the form αk = α√

k
with

α = 0.0001, 0.001, 0.01, 0.1, 1, 2 and 4. It was found that the sequence α = 18 gave the best results
for the approximate Newton method, while the sequence α = 0.001 gave the best results for natural
gradient ascent.

15

