
Supplementary Material

A Proof of Proposition 1

To show that (1) and (2) have equivalent solutions we exploit some developments from [27]. Let
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First consider (1). Its solution can be characterized by the maximal solutions to the generalized
eigenvalue problem [3]:
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which, under the change of variables u=Na and v=Mb and then shifting the eigenvalues by 1, is
equivalent to
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By setting
h

A
B

i

to the top k eigenvectors of ˜Z ˜Z 0 one can show that U = NA and V = MB provides
an optimal solution to (1) [3].

By comparison, for (2), an optimal H is given by H = C†
˜Z, where C† denotes pseudo-inverse.

Hence

min

C,H
k

˜Z � CHk

2

F = min

C
k(I � CC†

)

˜Zk

2

F

=tr(

˜Z ˜Z 0
)� max

{C:C0C=I}
tr(C 0

˜Z ˜Z 0C).

Here again the solution is given by the top k eigenvectors of ˜Z ˜Z 0 [28].1

B Proof for Lemma 3

First, observe that

(3) = min

{C:C:,i2C}
min

H
L(CH;Z) + ↵kHk

2,1 = min

ˆZ
L( ˆZ;Z) + ↵ min

{C:C:,i2C}
min

{H:CH=

ˆZ}
kHk

2,1

= min

ˆZ
L( ˆZ;Z) + ↵||| ˆZ|||

⇤,

where the last step follows from Proposition 2.

It only remains to show |||

ˆZ|||

⇤
= max⇢�0

kD�1

⇢
ˆZk

tr

, which was established in [11]. We reproduce
the proof in [11] for the convenience of the reader.

We will use two diagonal matrices, IX = diag([1n;0m]) and IY = diag([0n;1m]) such that IX +

IY = Im+n. Similarly, for c 2 Rm+n, we use cX (respectively cY ) to denote c
1:m (respectively

cm+1:m+n).

The first stage is to prove that the dual norm is characterized by

|||�||| = min

⇢�0

kD⇢�ksp. (16)

1 [29] gave a similar but not equivalent formulation to (2), due to the lack of normalization.
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where the spectral norm kXk

sp

= �
max

(X) is the dual of the trace norm, kXk

tr

. To this end, recall
that

|||�||| = max

c2C,khk21

c

0
�h = max

c2C
kc

0
�k

2

= max

{c:kcXk2=�, kcY k2=�}
kc

0
�k

2

giving

|||�|||

2

= max

{c:kcXk2=�, kcY k2=�}
c

0
��

0
c = max

{�:�⌫0, tr(�IX
)�2, tr(�IY

)�2}
tr(���

0
), (17)

using the fact that when maximizing a convex function, one of the extreme points in the constraint
set {� :�⌫0, tr(�In)�2, tr(�Im)�2

} must be optimal. Furthermore, since the extreme points
have rank at most one in this case [30], the rank constraint rank(�) = 1 can be dropped.

Next, form the Lagrangian L(�;�, ⌫,⇤) = tr(���

0
) + tr(�⇤) + �(�2

� tr(�IX)) + ⌫(�2

�

tr(�IY )) where � � 0, ⌫ � 0 and ⇤ ⌫ 0. Note that the primal variable � can be eliminated
by formulating the equilibrium condition @L/@� = ��

0
+ ⇤ � �IX � ⌫IY = 0, which implies

��

0
� �IX � ⌫IY � 0. Therefore, we achieve the equivalent dual formulation

(17) = min

{�,⌫:��0, ⌫�0,�IX
+⌫IY ⌫��

0}
�2�+ �2⌫. (18)

Now observe that for � � 0 and ⌫ � 0, the relation ��

0
� �IX + ⌫IY holds if and only if

D⌫/���
0D⌫/��D⌫/�(�I

X
+⌫IY )D⌫/� = (�2�+�2⌫)In+m, hence

(18) = min

{�,⌫:��0, ⌫�0, kD⌫/��k2
sp�2�+�2⌫}

�2�+�2⌫ (19)

The third constraint must be met with equality at the optimum due to continuity, for otherwise we
would be able to further decrease the objective, a contradiction to optimality. Note that a standard
compactness argument would establish the existence of minimizers. So

(19) = min

��0,⌫�0

kD⌫/��k
2

sp

= min

⇢�0

kD⇢�k
2

sp

.

Finally, for the second stage, we characterize the target norm by observing that

|||

ˆZ|||

⇤
= max

�:|||�|||1

tr(�

0
ˆZ)

= max

⇢�0

max

�:kD⇢�ksp1

tr(�

0
ˆZ) (20)

= max

⇢�0

max

˜

�:k˜�ksp1

tr(

˜

�

0D�1

⇢
ˆZ)

= max

⇢�0

kD�1

⇢
ˆZk

tr

. (21)

where (20) uses (16), and (21) exploits the conjugacy of the spectral and trace norms. The lemma
follows.

C Proof for Theorem 6 and Details of Recovery

Once an optimal reconstruction ˆZ is obtained, we need to recover the optimal factors C and H that
satisfy

CH =

ˆZ, , kHk

2,1 = |||

ˆZ|||

⇤, and C
:,i 2 C for all i. (22)

Note that by Proposition 2 and Lemma 3, the recovery problem (22) can be re-expressed as

min

{C,H:C:,i2C 8i, CH=

ˆZ}
kHk

2,1 = max

{�:|||�|||1}
tr(�

0
ˆZ). (23)

Our strategy will be to first recover the optimal dual solution � given ˆZ, then use � to recover H
and C.

First, to recover � one can simply trace back from (21) to (20). Let U⌃V 0 be the SVD of D�1

⇢
ˆZ.

Then ˜

� = UV 0 and � = D�1

⇢ UV 0 automatically satisfies |||�||| = 1 while achieving the optimal
trace in (23) because tr(

˜

�

0D�1

⇢
ˆZ) = tr(⌃) = kD�1

⇢
ˆZk

tr

.
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Given such an optimal �, we are then able to characterize an optimal solution (C,H). Introduce the
set

C(�) := argmax

c2C
k�

0
ck =

⇢

c =



a

b

�

: kak = �, kbk = �, k�0
ck = 1

�

. (24)

Theorem 6. For a dual optimal �, (C,H) solves recovery problem (22) if and only if C
:,i 2 C(�)

and Hi,: = kHi,:k2C 0
:,i�, such that CH =

ˆZ.

Proof. By (23), if ˆZ = CH , then

|||

ˆZ|||

⇤
= tr(�

0
ˆZ) = tr(�

0CH) =

X

i

Hi,:�
0C

:,i. (25)

Note that 8C
:,i 2 C, k�0C

:,ik2  1 since |||�|||  1 and Hi,:�
0C

:,i = kHi,:�
0C

:,ik2 

kHi,:k2k�
0C

:,ik2  kHi,:k2. If (C,H) is optimal, then (25) =

P

i kHi,:k2, hence implying
k�

0C
:,ik2 = 1 and Hi,: = kHi,:k2C 0

:,i�.

On the other hand, if k�0C
:,ik2 = 1 and Hi,: = kHi,:k2C 0

:,i�, then we have |||

ˆZ|||

⇤
=

P

i kHi,:k2,
implying the optimality of (C,H). ⌅

Therefore, given �, the recovery problem (22) has been reduced to finding a vector µ and matrix C
such that µ � 0, C

:,i 2 C(�) for all i, and C diag(µ)C 0
� =

ˆZ.

Next we demonstrate how to incrementally recover µ and C. Denote the range of C diag(µ)C 0 by
the set

S := {

P

i µicic
0
i : ci 2 C(�),µ � 0} .

Note that S is the conic hull of (possibly infinitely many) rank one matrices {cc

0
: c 2 C(�)}.

However, by Carathéodory’s theorem [31, §17], any matrix K 2 S can be written as the conic com-
bination of finitely many rank one matrices of the form {cc

0
: c 2 C(�)}. Therefore, conceptually,

the recovery problem has been reduced to finding a sparse set of non-negative weights, µ, over the
set of feasible basis vectors, c 2 C(�).

To find these weights, we use a totally corrective “boosting” procedure [21] that is guaranteed to
converge to a feasible solution. Consider the following objective function for boosting

f(K) = kK��

ˆZk

2

F , where K 2 S.

Note that f is clearly a convex function in K with a Lipschitz continuous gradient. Theorem 6
implies that an optimal solution of (22) corresponds precisely to those K 2 S such that f(K) = 0.
The idea behind totally corrective boosting [21] is to find a minimizer of f (hence optimal solution
of (22)) incrementally. After initializing K

0

= 0, we iterate between two steps:

1. Weak learning step: find

ct 2 argmin

c2C(�)

hrf(Kt�1

), cc0i = argmax

c2C(�)

c

0Qc, (26)

where Q = �rf(Kt�1

) = 2(

ˆZ �Kt�1

�)�

0.

2. “Totally corrective” step:

µ(t)
= argmin

µ:µi�0

f
⇣

Pt
i=1

µicic
0
i

⌘

, (27)

Kt =

Pt
i=1

µ(t)
i cic

0
i.

Three key facts can be established about this boosting procedure: (i) each weak learning step can
be solved efficiently; (ii) each totally corrective weight update can be solved efficiently; and (iii)
f(Kt) & 0, hence a feasible solution can be arbitrarily well approximated. (iii) has been proved in
[21], while (ii) is immediate because (27) is a standard quadratic program. Only (i) deserves some
explanation. We show in the next subsection that C(�), defined in (24), can be much simplified, and
consequently we give in the last subsection an efficient algorithm for the oracle problem (26) (the
idea is similar to the one inherent in the proof of Lemma 3).
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C.1 Simplification of C(�)

Since C(�) is the set of optimal solutions to
max

c2C
k�

0
ck , (28)

our idea is to first obtain an optimal solution to its dual problem, and then use it to recover the
optimal c via the KKT conditions. In fact, its dual problem has been stated in (18). Once we obtain
the optimal ⇢ in (21) by solving (8), it is straightforward to backtrack and recover the optimal � and
⌫ in (18). Then by KKT condition [31, §28], c is an optimal solution to (28) if and only if

�

�

c

X
�

�

= �,
�

�

c

Y
�

�

= �, (29)

hR, cc0i = 0, where R = �IX + ⌫IY � ��

0
⌫ 0. (30)

Since (30) holds iff c is in the null space of R, we find an orthonormal basis {n
1

, . . . ,nk} for this
null space. Assume

c = N↵, where N = [n

1

, . . . ,nk] =



NX

NY

�

, ↵ = (↵
1

, . . . ,↵k)
0. (31)

By (29), we have

0 = �2

�

�

c

X
�

�

2

� �2

�

�

c

Y
�

�

2

= ↵0 ��2

(NX
)

0NX
� �2

(NY
)

0NY
�

↵. (32)

The idea is to go through some linear transformations for simplification. Perform eigen-
decomposition U⌃U 0

= �2

(NX
)

0NX
� �2

(NY
)

0NY , where ⌃ = diag(�
1

, . . . ,�k), and U 2

Rk⇥k is orthonormal. Let v = U 0↵. Then by (31),
c = NUv, (33)

and (32) is satisfied if and only if

v

0
⌃v =

X

i

�iv
2

i = 0. (34)

Finally, (29) implies
�2

+ �2

= kck

2

= v

0U 0N 0NUv = v

0
v. (35)

In summary, by (33) we have
C(�) = {NUv : v satisfies (34) and (35)}

=

n

NUv : v

0
⌃v = 0, kvk2 = �2

+ �2

o

. (36)

C.2 Solving the weak oracle problem (26)

The weak oracle needs to solve
max

c2C(�)

c

0Qc,

where Q = �rf(Kt�1

) = 2(

ˆZ �Kt�1

�)�

0. By (36), this optimization is equivalent to
max

v:v

0
⌃v=0, kvk2

=�2
+�2

v

0Tv,

where T = U 0N 0QNU . Using the same technique as in the proof of Lemma 3, we have
max

v:v

0
v=1,v0

⌃v=0

v

0Tv

(let H = vv

0
) = max

H⌫0,tr(H)=1,tr(⌃H)=0

tr(TH)

(Lagrange dual) = min

⌧,!:⌧⌃+!I�T⌫0

!

=min

⌧2R
�
max

(T � ⌧⌃),

where �
max

stands for the maximum eigenvalue. Since �
max

is a convex function over real symmet-
ric matrices, the last line search problem is convex in ⌧ , hence can be solved globally and efficiently.

Given the optimal ⌧ and the optimal objective value !, the optimal v can be recovered using a similar
trick as in Appendix C.1. Let the null space of !I + ⌧⌃ � T be spanned by ˆN = {

ˆ

n

1

, . . . , ˆns}.
Then find any ˆ↵ 2 Rs such that v :=

ˆN ˆ↵ satisfies kvk2 = �2

+ �2 and v

0
⌃v = 0.
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