
6 Proof of Proposition 2

The proof follows the development in [7], where they consider the case with k = 2. Denote Q(x)
as

Q(x) = log(P (x)/P (0)),

for any x = (x1, . . . , xp) ∈ X p. Given any x, also denote x̄s := (x1, . . . , xs−1, 0, xs+1, . . . , xp).

Now, consider the following general form for Q(x):

Q(x) =
∑
t1∈V

xt1Gt1(xt1) + . . .+
∑

t1,...,tk∈V

xt1 . . .xtkGt1,...,tk(xt1 , . . . ,xtk), (14)

since the joint distribution has atmost factors of size k. It can then be seen that

exp(Q(x)−Q(x̄s)) = P (x)/P (x̄s)

= P (xs|x1, . . . , xs−1, xs+1, . . . , xp)/P (0|x1, . . . , xs−1, xs+1, . . . , xp),
(15)

where the first equality follows from the definition of Q, and the second equality follows from some
algebra (See for instance Section 2 in [7]). Now, consider simplifications of both sides of (15).
Given the form of Q(x) in (14), we have

Q(x)−Q(x̄1) =

x1

G1(x1) +

p∑
t=2

xtG1t(x1, xt) +
∑

t2,...,tk∈{2,...,p}

xt2 . . . xtkG1,t2,...,tk(x1, . . . , xtk)

 . (16)

Also, given the exponential family form of the node-conditional distribution specified in the theorem,

log
P (xi|x1, . . . , xs−1, xs+1, . . . , xp)

P (0|x1, . . . , xs−1, xs+1, . . . , xp)
= E(xV \s)(B(xs)−B(0)) + (C(xs)− C(0)). (17)

Setting xt = 0 for all t 6= s in (15), and using the expressions for the left and right hand sides in
(16) and (17), we obtain,

xsGs(xs) = E(0)(B(xs)−B(0)) + (C(xs)− C(0)). (18)

Setting xr = 0 for all r 6∈ {s, t},

xsGs(xs) + xsxtGst(xs, xt) = E(0, . . . , xt, . . . , 0)(B(xs)−B(0)) + (C(xs)− C(0)). (19)

Similarly,

xtGt(xt) + xsxtGst(xs, xt) = E(0, . . . , xs, . . . , 0)(B(xt)−B(0)) + (C(xt)− C(0)). (20)

From the above three equations, we obtain:

xsxtGst(xs, xt) = θst(B(xs)−B(0))(B(xt)−B(0)).

More generally, by considering non-zero triplets, and setting xr = 0 for all r 6∈ {s, t, u}, we obtain,

xsGs(xs) + xsxtGst(xs, xt) + xsxuGsu(xs, xu) + xsxtxuGstu(xs, xt, xu) =

E(0, . . . , xt, . . . , xu, . . . , 0)(B(xs)−B(0)) + (C(xs)− C(0)), (21)

so that by a similar reasoning we can obtain

xsxtxuGstu(xs, xt, xu) = θstu(B(xs)−B(0))(B(xt)−B(0))(B(xu)−B(0)).

More generally, we can show that

xt1 . . . xtkGt1,...,tk(xt1 , . . . , xtk) = θt1,...,tk(B(xt1)−B(0)) . . . (B(xtk)−B(0)).

Thus, the k-th order factors in the joint distribution as specified in (14) are tensor products of
(B(xs)−B(0)), thus proving the statement of the theorem.

10



7 Proof of Proposition 3

Proof. The set of sufficient statistics in (10) do not include node-wise terms {Xs}; suppose we
consider the model with these terms added. Suppose we zero-pad the true parameter θ∗ ∈ R(p2) to
include zero weights over these node-wise terms; the resulting parameter would lie in R(p2)+p; we
will overload notation and denote this zero-padded parameter as θ∗. Similarly, given any v ∈ Rp,
we can treat these as weights over the node-wise terms, and zero-pad it to v̄ ∈ R(p2)+p. Suppose that
‖v‖2 = 1; a simple calculation then shows that

logE[exp(〈v,X〉)] = A(θ∗ + v̄)−A(θ∗).

By a Taylor Series expansion, we have for some r ∈ [0, 1],

A(θ∗ + v̄)−A(θ∗) = ∇A(θ∗) · v̄ +
1

2
v̄T∇2A(θ∗ + rv̄)v̄

≤ ‖µ∗‖2‖v̄‖2 +
1

2
‖|∇2A(θ∗ + rv̄)‖|‖v̄‖22

≤ κm +
1

2
κh,

where we use the bounds in Assumption 3: noting that ‖rv̄‖2 ≤ 1, Assumption 3 yields ‖|∇2A(θ∗+
rv̄)‖| ≤ κh.

Thus, by the standard Chernoff bounding technique, for a unit norm vector v,

P (〈v, x〉 > a′) ≤ exp(−a′ + κm +
1

2
κh).

This can be extended for a non-unit norm vector u with norm ‖u‖2 ≤ c′,

P (〈u, x〉 > a) ≤ exp(− a
c′

+ κm +
1

2
κh).

Thus, the statement in the proposition follows by setting a = δ log η:

P (〈u, x〉 > δ log η) ≤ exp(− δ
c′

log η + κm +
1

2
κh) ≤ cη−δ/c

′
.

where c = exp(κm + 1
2κh).

8 Proof of Proposition 4

Proof. The proof follows along similar lines as that of Proposition 3. Suppose we zero-pad the
edge-weights in the true parameter θ∗ ∈ R(p2) to include a zero weight for sufficient statistic X2

s ;
we will overload notation and denote this zero-padded parameter in R(p2)+1 as θ∗. Similarly, let
v̄ ∈ R(p2)+1 be the zero-padded parameter with its last coordinate equal to t ∈ R, so that ‖v‖2 = t.
We then have A simple calculation shows that

logE[exp(tX2
s )] = A(θ∗ + v̄)−A(θ∗).

By a Taylor Series expansion, we have for some r ∈ [0, 1],

A(θ∗ + v̄)−A(θ∗) = ∇A(θ∗) · v̄ +
1

2
v̄T∇2A(θ∗ + rv̄)v̄

≤ E[X2
t ]‖v̄‖2 +

1

2
‖|∇2A(θ∗ + rv̄)‖|‖v̄‖22

≤ κvt+
1

2
κht

2,

where we use the bounds in Assumption 3. Note that ‖rv̄‖2 ≤ t ≤ 1, Assumption 3 yields
‖|∇2A(θ∗ + rv̄)‖| ≤ κh.

11



Thus, again by the standard Chernoff bounding technique, for t ≤ 1,

P

(
1

n

n∑
i=1

(
X(i)
s

)2 ≥ δ) ≤ exp(−nδt+ nκvt+
n

2
κht

2)

≤ exp(−n (δ − κv)2

2κ2h
) ≤ exp(−n δ2

4κ2h
),

for δ ≤ min{2κv/3, κh + κv}.

9 Proof of Theorem 1

Following the development in [3], we use the primal-dual witness method to prove the successful
graph structure recovery. From the sub-gradient optimality condition of convex program (13), we
have

∇`(θ̂;Xn
1 ) + λnẐ = 0 (22)

where each entry of sub-gradient vector Ẑ satisfies the following property: Ẑst = sign(θ̂st) if θ̂st 6=
0, and |Ẑst| ≤ 1 other wise.

Note that, for the regime p � n, the convex program (13) is not necessarily strictly convex, as a
result there may be multiple optimal solutions. However, the following lemma presented in [3], is
the key motivation of the primal-dual witness method:

Lemma 1. Suppose that there exits an primal optimal solution θ̂ with associated dual optimal
solution Ẑ s.t. ‖ẐSc‖ < 1. Then, any optimal solution θ̃ should have θ̃Sc = 0.

Based on this lemma, we prove the statement by the following steps: (see [3] for details)

(a) We set θ̂S s.t. θ̂S = arg min(θS ,0)∈Rp−1{`(θ;Xn
1 ) + λn‖θ‖1}, and ẐS = sign(θ̂S).

(b) We set θ̂Sc = 0.

(c) We get ẐSc to satisfy the condition (22) with θ̂ and ẐS .
(d) We check the dual feasibility condition and the sign consistency condition with high probability.

From now, we are going to show that ‖ẐS‖∞ < 1 with high probability. By some algebra the sub-
gradient optimality condition (22) can be represented as∇2`(θ∗;Xn

1 )(θ̂−θ∗) = −λnẐ+Wn+Rn,
where Wn := −∇`(θ∗;Xn

1 ) is the sample score function (that we will show is small with high
probability), and Rn is the remainder term by applying coordinate-wise mean value theorem; Rnj =

[∇2`(θ∗;Xn
1 )−∇2`(θ̄(j);Xn

1 )]Tj (θ̂ − θ∗). Note that θ̄(j) is some vector on the line between θ̂ and
θ∗, and [·]Tj is j-th row of matrix.

Using the notation for the Fisher Information matrix, we then have

Q∗(θ̂ − θ∗) = −λnẐ +Wn +Rn.

We will need the following lemmas that respectively control various terms in the above expression:
the score term Wn, the deviation θ̂S − θ∗S , and the remainder term Rn.

Lemma 2. Suppose that we set λn to satisfy 8(2−α)
α

√
κ3

√
log p
n1−κ2 ≤ λn ≤ 4nκ2κ3

2−α
α ‖θ

∗‖2 for

some constant κ3 ≤ min{2κv/3, 2κh+κv}. Suppose also that n ≥ 8κ2
h

κ2
3

log p. Then, for the mutual
incoherence parameter α ∈ (0, 1],

P

(
2− α
λn
‖Wn‖∞ ≤

α

4

)
≥ 1− exp(−c1n)− c2p′−5/4 − exp(−c3n)

where p′ := max{n, p}.

12



Lemma 3. Suppose that λnd ≤ λ2
min

40λmaxnκ2 log p′ and ‖Wn‖∞ ≤ λn
4 . Then, we have

P

(
‖θ̂S − θ∗S‖2 ≤

5

λmin

√
dλn

)
≥ 1− c1p′−5/4 − c2n−2. (23)

for some constants c1, c2 > 0.

Lemma 4. If λnd ≤ λ2
min

400λmaxnκ2 log p′
α

2−α , and ‖Wn‖∞ ≤ λn
4 , then we have

P

(
‖Rn‖∞
λn

≤ α

4(2− α)

)
≥ 1− c1p′−5/4 − c2p′−2. (24)

for some constants c1, c2 > 0.

The proof then follows from Lemmas 2-4 in a straightforward fashion, following [3]. Consider the

choice of regularization parameter λn = 8(2−α)
α

√
κ3

√
log p
n1−κ2 . For a sample size greater than or

equal to
(

4 log p
κ3‖θ∗‖22

) 1
1+κ2 , we satisfy the condition of Lemma 2, so that we may conclude, with high

probability, ‖Wn‖∞ ≤ λn
4 . Moreover, for a sample size n ≥ L′

[(
2−α
α

)4
d2(log p′)3

]1/(1−3κ2)

,
and for some constant L′ > 0, the conditions for Lemma 3 and 4 are satisfied and hence equations
(24) and (23) holds with high probability.

Strict dual feasibility. Some algebra introduced in [3] yields that

‖ẐSc‖∞ ≤ |||Q∗ScS(Q∗ScS)−1|||∞
[‖Wn

S ‖∞
λn

+
‖RnS‖∞
λn

+ 1
]

+
‖Wn

S ‖∞
λn

+
‖RnS‖∞
λn

≤ (1− α) + (2− α)
[‖Wn‖∞

λn
+
‖Rn‖∞
λn

]
≤ (1− α) +

α

4
+
α

4
= 1− α

2
< 1.

Correct sign recovery. For the successful sign recovery, it suffices to show that ‖θ̂S−θ∗S‖∞ ≤
θ∗min

2 .
From Lemma 3, we have ‖θ̂S − θ∗S‖∞ ≤ ‖θ̂S − θ∗S‖2 ≤ 5

λmin

√
dλn ≤ θ∗min

2 as long as θ∗min ≥
10
λmin

√
dλn. This completes the proof.

10 Proof of Lemma 2

Proof. For a fixed t ∈ {1, ..., p− 1}, we define V (i)
t for notational convenience so that

Wn
t =

1

n

n∑
i=1

X(i)
s X

(i)
t −X

(i)
t D′(〈θ∗, X(i)

\s 〉) =
1

n

n∑
i=1

V
(i)
t

Consider the upper bound on the moment generating function of V (i)
t , conditioned on X(i)

\s ,

E[exp(t′V
(i)
t |X

(i)
\s )]

=
∑
X

(i)
s

exp
{
t′
[
X(i)
s X

(i)
t −X

(i)
t D′(〈θ∗, X(i)

\s 〉)
]

+ (C(X(i)
s ) +X(i)

s 〈θ∗, X
(i)
\s 〉 −D(〈θ∗, X(i)

\s 〉))
}

= exp
{
D(〈θ∗, X(i)

\s 〉+ t′X
(i)
t )−D(〈θ∗, X(i)

\s 〉)− t
′X

(i)
t D′(〈θ∗, X(i)

\s 〉)
}

= exp
{ t′2

2
X

(i)
t

2
D′′(〈θ∗, X(i)

\s 〉+ vit
′X

(i)
t )
}

for some vi ∈ [0, 1]

where the last equality holds by the second-order Taylor series expansion. Consequently, we have

1

n

n∑
i=1

logE[exp(t′V
(i)
t )|X(i)

\s ] ≤ 1

n

n∑
i=1

t′2

2

(
X

(i)
t

)2
D′′(〈θ∗, X(i)

\s 〉+ vit
′X

(i)
t ).
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Now, we define the event:

ξ1 := {max
i
|〈θ∗, X(i)

\s 〉+ vit
′X

(i)
t | ≤ κ1 log p′} (25)

where κ1 is the exponential family dependent constant in Assumption 5. Then, noting that
〈θ∗, X(i)

\s 〉+ vit
′X

(i)
t is of the form 〈u,X〉 where ‖u‖2 ≤ 2‖θ∗‖2, provided that t′ ≤ ‖θ∗‖2,

P [ξc1] ≤ c2n p′−κ1/(2‖θ∗‖2) ≤ c2p′−5/4, (26)

for some constant c2 > 0, from the Proposition 3 and the union bound. By combining (26) with the
Assumption 5, we obtain

1

n

n∑
i=1

logE[exp(t′V
(i)
t )|X(i)

\s ] ≤ nκ2t′2

2

1

n

n∑
i=1

(
X

(i)
t

)2
for t′ ≤ ‖θ∗‖2

with probability at least 1− c2p′−5/4.

For each index t, the variables 1
n

{(
X

(i)
t

)2}n
i=1

satisfy the tail bound in Proposition 4. Let us define

the event ξ2 :=
{

max
t=1,...,p−1

1
n

∑n
i=1

(
X

(i)
t

)2 ≤ κ3

}
for some constant κ3 ≤ min{2κv/3, 2κh +

κv}. Then, we can establish the upper bound of probability P [ξc2] by a union bound,

P [ξc2] ≤ 2 exp(− κ23
4κ2h

n+ log p) ≤ exp(−c3n)

as long as n ≥ 8κ2
h

κ2
3

log p. Therefore, conditioned on ξ1, ξ2, the moment generating function is
bounded as follows:

1

n

n∑
i=1

logE[exp(t′V
(i)
t )|X(i)

\s , ξ1, ξ2] ≤ nκ2κ3 t
′2

2
for t′ ≤ ‖θ∗‖2.

The standard Chernoff bound technique implies that for any δ > 0,

P
[ 1

n

n∑
i=1

|V (i)
t | > δ | ξ1, ξ2

]
≤ 2 exp

(
n
(nκ2κ3 t

′2

2
− t′δ

))
for t′ ≤ ‖θ∗‖2.

Setting t′ = δ
nκ2κ3

:

P
[ 1

n

n∑
i=1

|V (i)
t | > δ | ξ1, ξ2

]
≤ 2 exp

(
− nδ2

2nκ2κ3

)
for δ ≤ nκ2κ3‖θ∗‖2.

Given the setting of the regularization parameter λn, we have α
2−α

λn
4 ≤ nκ2κ3‖θ∗‖2 for n large

enough; thus setting δ = α
2−α

λn
4 :

P
[ 1

n

n∑
i=1

|V (i)
t | >

α

2− α
λn
4
| ξ1, ξ2

]
≤ 2 exp

(
− α2

(2− α)2
nλ2n

32nκ2κ3

)
,

and by a union bound, we obtain

P
[
‖Wn‖∞ >

α

2− α
λn
4
| ξ1, ξ2

]
≤ 2 exp

(
− α2

(2− α)2
nλ2n

32nκ2κ3
+ log p

)
.

Finally, provided that λn ≥ 8(2−α)
α

√
κ3

√
log p
n1−κ2 , we obtain

P
[
‖Wn‖∞ >

α

2− α
λn
4

]
≤ exp(−c1n) + c2p

′−5/4 + exp(−c3n),

where we use the fact that P (X) ≤ P (X|ξ1, ξ2) + P (ξc1) + P (ξc2).
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11 Proof of Lemma 3

Proof. In order to establish the error bound ‖θ̂S − θ∗S‖2 ≤ B for some radius B, several works (e.g.
[12, 3]) proved that it suffices to show F (uS) > 0 for all uS := θ̂S − θ∗S s.t. ‖uS‖2 = B where

F (uS) := `(θ∗S + uS ;Xn
1 )− `(θ∗S ;Xn

1 ) + λn(‖θ∗S + uS‖2 − ‖θ∗S‖2).

Note that for ûS := θ̂S − θ∗S , F (ûS) = 0. From now on, we show that F (us) is strictly positive on
the boundary of the ball with radius B = Mλn

√
d where M > 0 is a parameter that we will choose

later in this proof. Some algebra yields

F (us) ≥ (λn
√
d)2
{
− 1

4
M + q∗M2 −M

}
(27)

where q∗ is the minimum eigenvalue of∇2`(θ∗S + vuS ;Xn
1 ) for some v ∈ [0, 1]. Moreover,

q∗ := Λmin

(
∇2`(θ∗S + vuS)

)
≥ min
v∈[0,1]

Λmin

(
∇2`(θ∗S + vuS)

)
≥ Λmin

[ 1

n

n∑
i=1

D′′(〈θ∗S , X
(i)
S 〉)X

(i)
S

(
X

(i)
S

)T ]
− max
v∈[0,1]

||| 1
n

n∑
i=1

D′′′(〈θ∗S + vuS , X
(i)
S 〉)

(
uTSX

(i)
S

)
X

(i)
S

(
X

(i)
S

)T |||2
≥ λmin − max

v∈[0,1]
max
y

1

n

n∑
i=1

|D′′′(〈θ∗S + vuS , X
(i)
S 〉)| |〈uS , X

(i)
S 〉|

(
〈X(i)

S , y〉
)2

where y ∈ Rd s.t ‖y‖2 = 1.

Now define the events

ξ3 := { max
i=1,...,n

|〈θ∗S + vuS , X
(i)
S 〉| ≤ κ1}, and (28)

ξ4 := {max
i,s
|X(i)

s | ≤ 4 log p′}. (29)

Given the setting of B ≤ ‖θ∗‖2, we have P
[
εc3
]
≤ c1 p′−5/4, and again, for all sample i, D′′′(〈θ∗S +

vuS , X
(i)
S 〉) ≤ nκ2 with high probability, similar as ξ1 in the previous chapter. At the same time,

by the Proposition 3, we obtain P [εc4] ≤ c2 npp
′−4 ≤ c2p

′−2. Note that since all the elements
in vector X(i)

S is smaller than 4 log p′, |〈uS , X(i)
S 〉| ≤ 4 log p′

√
d‖uS‖2 = 4 log p′Mλnd for all i.

Then, conditioned on ξ3 and ξ4,

q∗ ≥ λmin − 4λmaxMλndn
κ2 log p′,

As a result, assuming that λn ≤ λmin

8λmaxMdnκ2 log p′ , q
∗ ≥ λmin

2 . Finally, from (27), we obtain

F (us) ≥ (λn
√
d)2
{
− 1

4
M +

λmin

2
M2 −M

}
,

which is strictly positive for M = 5
λmin

.

Therefore, if λn ≤ λmin

8λmaxMdnκ2 log p′ ≤
λ2
min

40λmaxnκ2 log p′ , then

‖θ̂S − θ∗S‖2 ≤
5

λmin

√
dλn,

which completes the proof.

15



12 Proof of Lemma 4

Proof. In the proof, we are going to show that ‖Rn‖∞ ≤ 4nκ2 log p′λmax‖θ̂S − θ∗S‖22. Then, since
the conditions of Lemma 4 are stronger than those of Lemma 3, from the result of Lemma 3, we can
conclude that

‖Rn‖∞ ≤
100nκ2λmax log p′

λ2min

λ2nd,

as claimed in Lemma 4.

From the definition of Rn, for a fixed t ∈ {1, ..., p− 1}, Rnt can be written as

1

n

n∑
i=1

[
D′′(〈θ∗, X(i)

\s 〉)−D
′′(〈θ̄(t), X(i)

\s 〉)
][
X

(i)
\s
(
X

(i)
\s
)T ]T

t
[θ̂ − θ∗]

where θ̄(t) is some point in the line between θ̂ and θ∗, i.e., θ̄(t) = vtθ̂ + (1 − vt)θ∗ for vt ∈ [0, 1].
By another application of the mean value theorem, we have

Rnt = − 1

n

n∑
i=1

{
D′′′(〈 ¯̄θ(t), X(i)

\s 〉)X
(i)
t

}{
vt[θ̂ − θ∗]TX(i)

\s
(
X

(i)
\s
)T

[θ̂ − θ∗]
}

for a some point ¯̄θ(t) between θ̄(t) and θ∗. Similarly in previous proofs, conditioned on the event ξ3
and ξ4 we obtain

|Rnt | ≤
4nκ2 log p′

n

n∑
i=1

{
vt[θ̂ − θ∗]TX(i)

\s
(
X

(i)
\s
)T

[θ̂ − θ∗]
}
.

Performing some algebra yields

|Rnt | ≤ 4nκ2λmax log p′ ‖θ̂S − θ∗S‖22, for all t ∈ {1, ..., p− 1}

with probability at least 1 − c1p′−5/4 − c2n−2 for some constants c1 and c2, which completes the
proof.

13 Data and Pre-processing for Genomic Network Examples

Our GLM graphical models were applied to two examples of non-Gaussian high-throughput ge-
nomic data to learn a Glioblastoma aberration network and a breast cancer meta-miRNA expression
network. For the former, Level III array CGH Glioblastoma data [14] was downloaded from the
Cancer Genomic Atlas (TCGA) portal (http://tcga-data.nci.nih.gov/tcga/). Array CGH data mea-
sures copy number variation, or the number of copies of a particular genomic region in a sample;
there are normally two copies of a gene, maternal and paternal. The Bioconductor package
CNTools [20] was used to convert the copy number information into a matrix structure with rows
as overlapping genomic segments and columns as the subjects (n = 461). Each matrix element
is categorized in one of three groups: amplified, normal, or deleted using defaults in CNTools.
A sliding window algorithm was then applied across the genomic segments, merging segments in
which the categories differed by less than 10% across all the subjects [21]. This resulted in a matrix
of genomic regions by subjects. All genomic regions were ordered by their percentage of aberrations
across all samples and the top 10% of these regions, 101 in total, were used in our analysis. Our
processed data matrix was checked for batch effects by fitting a multinomial ANOVA model to each
genomic region [22]; no significant batch effects were detected.

For the miRNA network, level III breast cancer miRNA expression [13] as measured by next gen-
eration sequencing was downloaded from the TCGA portal (http://tcga-data.nci.nih.gov/tcga/). Mi-
croRNAs (miRNA) are short RNA fragments that are thought to be post-transcriptional regulators,
enhancing or inhibiting gene expression. Measuring miRNA expression by high-throughput se-
quencing results in count data that is zero-inflated, highly skewed, and whose total count volume
depends on experimental conditions [23]. Data was processed to be approximately Poisson by fol-
lowing the steps in [24]. In brief, the data was quantile corrected to adjust for sequencing depth [25],
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the miRNAs with little variation across the samples, the bottom 50%, were filtered out, and the data
was adjusted for possible overdispersion using a power transform and a goodness of fit test [23, 24].
The resulting data matrix consisting of 544 subjects and 262 miRNAs was tested for batch effects
by fitting a Poisson ANOVA model [22]; only 4% of miRNAs were found to be associated with
batch labels, and thus no significant batch association was detected. As Poisson graphical models
are restricted to capture negative conditional relationships, we study the inhibitory effect of miR-
NAs through a meta-miRNA network. Meta-miRNAs were formed by clustering the miRNAs into
tightly positively correlated groups, 32 in total, by using hierarchical cluster with average linkage.
The mediod, or median centroid of each cluster, was taken to by the driver miRNA and formed the
nodes of our meta-miRNA network.

17


