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A Proofs

A.1 Proof of Lemma 2.2

Proof. h is convex so for t ∈ (0, 1], we have

f(x+)− f(x) = g(x+)− g(x) + h(x+)− h(x)

≤ g(x+)− g(x) + th(x+Δx) + (1− t)h(x)− h(x)

= g(x+)− g(x) + t(h(x+Δx)− h(x))

= ∇g(x)T (tΔx) + t(h(x+Δx)− h(x)) +O(t2),

which proves (8).

Δx steps to the minimizer of h plus our quadratic approximation to g so tΔx satisfies

∇g(x)TΔx+
1

2
ΔxTHΔx+ h(x+Δx)

≤ ∇g(x)T (tΔx) +
t2

2
ΔxTHΔx+ h(x+)

≤ t∇g(x)TΔx+
t2

2
ΔxTHΔx+ th(x+Δx) + (1− t)h(x).

We can rearrange and then simplify to obtain

(1− t)∇g(x)TΔx+
1

2
(1− t2)ΔxTHΔx+ (1− t)(h(x+Δx)− h(x)) ≤ 0

∇g(x)TΔx+
1

2
(1 + t)ΔxTHΔx+ h(x+Δx)− h(x) ≤ 0

∇g(x)TΔx+ h(x+Δx)− h(x) ≤ 1

2
(1 + t)ΔxTHΔx.

Finally, we let t → 1 and rearrange to obtain (9).
∗Equal contributors
†Equal contributors
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A.2 Proof of Lemma 2.3

Proof. We can bound the decrease at each iteration by

f(x+)− f(x) = g(x+)− g(x) + h(x+)− h(x)

≤
� 1

0

∇g(x+ s(tΔx))T (tΔx)ds+ th(x+Δx) + (1− t)h(x)− h(x)

= ∇g(x)T (tΔx) + t(h(x+Δx)− h(x))

+

� 1

0

(∇g(x+ s(tΔx))−∇g(x))T (tΔx)ds

≤ t
�
∇g(x)T (tΔx) + h(x+Δx)− h(x)

+

� 1

0

�∇g(x+ s(Δx))−∇g(x)��Δx�ds
�
.

∇g is Lipschitz continuous so

f(x+)− f(x) ≤ t

�
∇g(x)TΔx+ h(x+Δx)− h(x) +

L1t
2

2
�Δx�2

�

= t

�
Δ+

L1t

2
�Δx�2

�
. (18)

If we choose t ≤ 2m
L1

(1− α), then

L1t

2
�Δx�2 ≤ m(1− α)�Δx�2 ≤ (1− α)ΔxTHΔx ≤ −(1− α)Δ. (19)

We can substitute (19) into (18) to obtain

f(x+)− f(x) ≤ t (Δ− (1− α)Δ) = t(αΔ).

A.3 Proof of Theorem 3.2

Proof. {f(xk)} is a nonincreasing sequence because because Δx is a descent direction, and there
exist step lengths that satisfy (10) (Lemma 2.3). f is also bounded below so {f(xk)}must converge;
i.e.

f(xk)− f(xk+1) = αtkΔk → 0.

The step lengths tk are bounded away from zero because sufficiently small step lengths satisfy the
sufficient descent condition so Δk must decay to zero. Δk satisfies

Δk = ∇g(xk)
TΔxk + h(xk +Δxk)− h(xk)

≤ −ΔxT
kHkΔxk ≤ −m�Δxk�2,

where first inequality follows from (9). We reverse this inequality to obtain

�Δxk�2 ≤ 1

m
ΔxT

kHkΔxk ≤ − 1

m
Δk

so the search directions Δxk must also converge to zero. This is sufficient the sequence {xk}
converges to be a minimizer of f (Lemma 3.1).

A.4 Proof of Lemma 3.4

Proof. h is convex, so ∂h is monotone. H is a symmetric, positive definite matrix so we have

(∂h(x)− ∂h(y))T (x− y) ≥ 0

(x− y)TH(x− y) ≥ m�x− y�2.
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We add the two equations above and divide bym to obtain

1

m
(Hx+ ∂h(x)−Hy + ∂h(y))T (x− y) ≥ �x− y�2

��
1

m
(H + ∂h)

�
(x)−

�
1

m
(H + ∂h)

�
(y)

�T

(x− y) ≥ �x− y�2.

Let u and v denote
�
1
m (H + ∂h)

�
(x) and

�
1
m (H + ∂h)

�
(y) respectively. Then, after simplifying,

(u− v)T (R(u)−R(v)) ≥ �R(u)−R(v)�2.

A.5 Proof of Theorem 3.5

Proof. The assumptions of Lemma 3.3 are satisfied so step lengths of unity satisfy the sufficient
descent condition after sufficiently many iterations. Hence, for k sufficiently large, we have

xk+1 = proxHk

h

�
xk −Hk

−1∇g(xk)
�
.

Let ∇Sk(x) denote
�
1
m

�
Hk −∇2g(x)

��
. R is nonexpansive (Lemma 3.4) so

�xk+1 − x�� ≤ �Rk ◦ Sk(xk)−Rk ◦ Sk(x
�)�

≤ �Sk(xk)− Sk(x
�)�

≤ �Sk(xk)− Sk(x
�)−∇Sk(x

�)(xk − x�)�
+ �∇Sk(x

�)(xk − x�)�. (20)

We choose Hk = ∇2g(xk) and ∇2g is Lipschitz continuous; hence

�∇Sk(x
�)(xk − x�)� ≤ 1

m
�∇2g(xk)−∇2g(x�)��xk − x��

≤ L2

m
�xk − x��2. (21)

{xk} → x� and ∇g is continuous, so for k sufficiently large,

�Sk(xk)− Sk(x
�)−∇Sk(x

�)(xk − x�)�

=

����
� 1

0

(∇Sk(x
� + t(xk − x�))−∇Sk(x

�)) (xk − x�)dt

����

≤
� 1

0

�(∇Sk(x
� + t(xk − x�))−∇Sk(x

�))� �xk − x��dt

≤
� 1

0

1

m

��∇2g(x�)−∇2g(x� + t(xk − x�))
�� �xk − x��dt

≤
� 1

0

L2

m
t�xk − x��2dt ≤ L2

2m
�xk − x��2. (22)

Substituting (21) and (22) into (20), we have

�xk+1 − x�� ≤ 3L2

2m
�xk − x��2.

A.6 Proof of Lemma 3.6

Proof. The Lipschitz continuity of ∇2g imposes a cubic upper bound on g:

g(x+ tΔx) ≤ g(x) + t∇g(x)TΔx+
1

2
t2ΔxT∇2g(x)Δx+

1

6
L2t

3�Δx�3.
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We set t = 1 and add h(x+Δx) to both sides to obtain

f(x+Δx) ≤ g(x) +∇g(x)TΔx+
1

2
ΔxT∇2g(x)Δx

+
1

6
L2�Δx�3 + h(x+Δx).

We then add and subtract h(x) and 1
2ΔxTHΔx from the right hand side and simplify to obtain

f(x+Δx) ≤ f(x) + Δ +
1

2
ΔxT (∇2g(x)−H)Δx

+
1

2
ΔxTHΔx+

1

6
L2�Δx�3. (23)

1
2ΔxT (∇2g(x)−H)Δx can be split into two terms that can be bounded using the Lipschitz conti-
nuity of ∇2g and the Dennis-Moré criterion:

1

2
ΔxT (∇2g(x)−H)Δx

=
1

2
ΔxT (∇2g(x)−∇2g(x�))Δx+

1

2
ΔxT (∇2g(x�)−H)Δx

≤ L2�x− x���Δx�2 +
1

2
�Δx�

���∇2g(x�)−H
�
Δx

��

= o
�
�Δx�2

�
+ o

�
�Δx�2

�
.

ΔxTHΔx can also be bounded using ΔxTHΔx ≤ −Δ. We substitute these expressions into (23)
and rearrange to obtain

f(x+Δx)− f(x) ≤ Δ− 1

2
Δ +

1

2
ΔxT (∇2g(x)−H)Δx+

1

6
L2�Δx�2�Δx�

≤ 1

2
Δ +

1

6
L2�Δx�2Δ+ o

�
�Δx�2

�
.

{Δxk} → 0 (see the proof of Theorem 3.2) so f(xk+Δxk)−f(xk) ≤ 1
2Δk after sufficiently many

iterations and thus the unit step length shall eventually satisfy the sufficient descent condition.

A.7 Proof of Lemma 3.7

Proof. Δx andΔx̂ are the solutions to their respective subproblems so they are also the solutions to

Δx = argmin
d

∇g(x)T d+ΔxTHd+ h(x+ d),

Δx̂ = argmin
d

∇g(x)T d+Δx̂T Ĥd+ h(x+ d).

Hence Δx and Δx̂ satisfy

∇g(x)TΔx+ΔxTHΔx+ h(x+Δx)

≤ ∇g(x)TΔx̂+Δx̂THΔx̂+ h(x+Δx̂)

and

∇g(x)TΔx̂+Δx̂T ĤΔx̂+ h(x+Δx̂)

≤ ∇g(x)TΔx+ΔxT ĤΔx+ h(x+Δx).

We sum these two inequalities and rearrange to obtain

ΔxTHΔx−ΔxT (H + Ĥ)Δx̂+Δx̂T ĤΔx̂ ≤ 0.

We can complete the square on the left hand side and rearrange to obtain

ΔxTHΔx− 2ΔxTHΔx̂+Δx̂THΔx̂

≤ ΔxT (Ĥ −H)Δx̂+Δx̂T (H − Ĥ)Δx̂.
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The left hand side is �Δx−Δx̂�2H and the eigenvalues of H are bounded so

�Δx−Δx̂� ≤ 1√
m

�
ΔxT (Ĥ −H)Δx+Δx̂T (H − Ĥ)Δx̂

�1/2

≤ 1√
m

���(Ĥ −H)Δx̂
���
1/2

(�Δx�+ �Δx̂�)1/2 . (24)

We use a result due to Tseng and Yun (Lemma 3 in [21]) to bound (�Δx�+ �Δx̂�). Let P =

Ĥ−1/2HĤ−1/2, then �Δx� and �Δx̂� satisfy

�Δx� ≤



M̂

�
1 + λmax(P ) +

�
1− 2λmin(P ) + λmax(P )2

�

2m


 �Δx̂�.

We denote this constant using c and conclude that

�Δx�+ �Δx̂� ≤ (1 + c)�Δx̂�. (25)

We substitute this inequality into (24) to obtain

�Δx−Δx̂�2 ≤
�

1 + c

m

���(Ĥ −H)Δx̂
���
1/2

�Δx̂�1/2.

A.8 Proof of Theorem 3.8

Proof. We select unit step lengths after sufficiently many iterations (Lemma 3.6) so for large k, we
have

xk+1 = proxHk

h

�
xk −∇2g(xk)

−1∇g(xk)
�
.

We can split �xk+1 − x�� into two terms:
�xk+1 − x�� ≤

��xk +Δxnt
k − x�

��+
��Δxk −Δxnt

k

�� .
The first term decays to zero quadratically because because the proximal Newton method converges
to x� quadratically; i.e. ��xk +Δxnt

k − x�
�� = O

���xnt
k − x�

��2
�
.

The second term �Δxk −Δxnt
k � = O

���(∇2g(xk)−Hk)Δxk

��1/2 �Δxk�1/2
�
� (Lemma 3.7).

We can show that
���∇2g(xk)−Hk

�
Δxk

�� = o(�Δxk�):
���∇2g(xk)−Hk

�
Δxk

��
≤

���∇2g(xk)−∇2g(x�)
�
Δxk

��+
���∇2g(x�)−Hk

�
Δxk

��
≤ L2�xk − x���Δxk�+ o(�Δxk�).

thus �Δxnt
k � = o(�Δxk�).

�Δxk� is within a factor ck of �Δxnt
k � (Lemma 3 in [21]) so

�Δxk� ≤ ck
��Δxnt

k

�� = ck
��xnt

k+1 − xk

��
≤ ck

���xnt
k+1 − x�

��+ �x� − xk�
�

≤ O
�
�xk − x��2

�
+O(�xk − x��).

The second inequality follows from ck = O(1), due to the bounded eigenvalues ofHk and∇2g(xk).
Hence �Δxk� = O(�xk − x��) and �xk+1 − x�� ≤ o(�xk − x��).
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