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A Gamma and polygamma functional identities

As an aid to the reader, we provide a brief review of the gamma polygamma functions.
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A.1 Beta integrals

If X ⇠ Beta(a, b), then (1�X) ⇠ Beta(b, a).
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Although a matter of straightforward computation, as we will require it below and we did not find it in standard
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B Proof of Theorem 1

In this Appendix we give a proof for Theorem 1.

Proof. PYM is given by
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C Finite Dirichlet distribution

For the aid of the reader, we provide a summary of well-known properties of the finite Dirichlet distribution
which employ elsewhere. The Dirichlet distribution is a distribution over discrete probability distributions.
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tz�1e�tdt is the gamma function.
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Lemma 3 (Decimative property). If,
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where X ? Y denotes independence of two random variables X and Y .

Dirichlet distribution is conjugate to multinomial distribution.
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D Derivations of Dirichlet and PY moments

In this Appendix we present as propositions a number of technical moment derivations used in the text.

D.1 Mean entropy of finite Dirichlet
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Proof. First, let c be the normalizer of Dirichlet, c =
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D.2 Variance of entropy of finite Dirichlet distribution

We derive E[H2

(⇡)|~↵]. The variance of entropy is then given by var[H(⇡)|~↵] = E[H2
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Proof. We can evaluate the second moment in a manner similar to the mean entropy above. First, we will split
second moment into square and cross terms. To evaluate the integral over the cross terms, we apply the “replica
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Assuming i 6= k, these will be the cross terms.
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Summing over all terms and adding the cross and square terms, we recover the desired expression for
E[H2

(⇡)|~↵].

D.3 Prior entropy mean and variance under PY

We derive the prior entropy mean and variance of a PY distribution with fixed parameters ↵ and d,
E⇡[H(⇡)|d,↵] and var⇡[H(⇡)|d,↵]. We first prove our Proposition 1 (mentioned in [7]), which allows us
to compute expectations over PY using the first size biased sample, ⇡̃
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Proof of Proposition 1. First we validate eq. 7. Writing out the general form of the size-biased sample,
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i

),

we see that

E
⇡̃1


f(⇡̃
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where the interchange of sums and integrals is justified by Fubini’s theorem.

A similar method validates eq. 8. We will need the second size-biased sample in addition to the first. We begin
with the sum on the left side of eq. 8,
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= ⇡
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= ⇡
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= ⇡
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= ⇡
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= ⇡
i

, ⇡̃
2

= ⇡
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where the joint distribution of size biased samples is given by,
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2

= ⇡
j
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1

= ⇡
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= ⇡
j

|⇡̃
1

= ⇡
i

) = ⇡
i

· ⇡
j

1� ⇡
i

.

As this identity is defined for any additive, integrable functional f of ⇡; we can employ it to compute the first
two moments of entropy. For PY (and DP when d = 0), the first size-biased sample is distributed according
to:

⇡̃
1

⇠ Beta(1� d,↵+ d) (23)

Proposition 1 gives the mean entropy directly. Taking f(x) = �x log(x) we have,

E[H(⇡)|d,↵] = �E
↵

[log(⇡
1

)] =  
0

(1 + ↵)�  
0

(1� d),

The same method may be used to obtain the prior variance, although the computation is more involved. For the
variance, we will need the second size-biased sample in addition to the first. The second size-biased sample is
given by,

⇡̃
2

= (1� ⇡̃
1

)v
2

, v
2

⇠ Beta(1� d,↵+ 2d) (24)
We will compute the second moment explicitly, splitting H(⇡)2 into square and cross terms,
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The first term follows directly from eq. 7,
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The second term of eq. 25, requires the first two size biased samples, and follows from eq. 8 with g(x, y) =

log(x) log(y). For the PY prior, it is easier to integrate on V
1

and V
2

, rather than the size biased samples. The
second term is then,
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Finally combining the terms, the variance of the entropy under PYP prior is

var[H(⇡)|d,↵] = 1� d
1 + ↵

⇥
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(2� d)�  
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(2 + ↵))2 +  
1
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+
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⇥
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1
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� ( 
0
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(1� d))2

=

↵+ d
(1 + ↵)2(1� d)

+

1� d
1 + ↵

 
1

(2� d)�  
1

(2 + ↵) (26)

We note that the expectations over the finite Dirichlet may also be derived using this formula by letting the ˜⇡
be the first size-biased sample of a finite Dirichlet on �A.

D.4 Posterior Moments of PY

First, we discuss the form of the PY posterior, and introduce independence properties that will be important in
our derivation of the mean. We recall that the PY posterior, ⇡

post

, of eq. 9 has three stochastically independent
components: Bernoulli p⇤, PY ⇡, and Dirichlet p.

Component expectations: From the above derivations for expectations under the PY and Dirichlet dis-
tributions as well as the Beta integral identities of Appendix A, we find expressions for Ep [H(p)|d,↵],
E⇡ [H(⇡)|d,↵], and E

p⇤ [H(p⇤)].
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n
i

� d
N �Kd

 
0

(n
i

� d+ 1)

where by a slight abuse of notation we define the entropy of p⇤ as H(p⇤) = �(1�p⇤) log(1�p⇤)�p⇤ log p⇤.
We use these expectations below in our computation of the final posterior integral.

Derivation of posterior mean: We now derive the analytic form of the posterior mean, eq. 15.
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post

)|d,↵] = E
"
�

KX

i=1

p
i

log p
i

� p⇤

1X

i=1

⇡
i

log p⇤⇡i

���d,↵
#

= E
"
�(1� p⇤)

KX

i=1

p
i

1� p⇤
log

✓
p
i

1� p⇤

◆
� p⇤

1X

i=1

⇡
i

log ⇡
i

+H(p⇤)
���d,↵

#

= E
"
E
"
�(1� p⇤)

KX

i=1

p
i

1� p⇤
log

✓
p
i

1� p⇤

◆
� p⇤

1X

i=1

⇡
i

log ⇡
i

+H(p⇤)
��� p⇤

# ���d,↵
#

= E
h
E
h
(1� p⇤)H(p) + p⇤H(⇡) +H(p⇤)

��� p⇤
i ���d,↵

i

= E
p⇤ [(1� p⇤)Ep [H(p)|d,↵] + p⇤E⇡ [H(⇡)|d,↵] +H(p⇤)]

using the formulae for Ep [H(p)|d,↵], E⇡ [H(⇡)|d,↵], and E
p⇤ [H(p⇤)] and rearranging terms, we obtain

eq. 15,
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Derivation of posterior variance: We continue the notation from the subsection above. In order to exploit the
independence properties of ⇡

post

we first apply the law of total variance to obtain eq. 27,

var[H(⇡
post

)|d,↵] = var

p⇤

h
E⇡,p[H(⇡

post

)]

���d,↵
i
+ E

p⇤


var

⇡,p
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post

)]

���d,↵
�

(27)

We now seek expressions for each term in eq. 27 in terms of the expectations already derived.

Step 1: For the right-hand term of eq. 27, we use the independence properties of ⇡
post

to express the variance
in terms of PY, Dirichlet, and Beta variances,
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var

⇡
[H(⇡)] (28)

Step 2: In the left-hand term of eq. 27 the variance is with respect to the Beta distribution, while the inner
expectation is precisely the posterior mean we derived above. Expanding, we obtain,
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���d,↵
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(29)

To evaluate this integral, we introduce some new notation,

A := Ep [H(p)]

B := E⇡ [H(⇡)]

⌦(p⇤) := (1� p⇤)Ep [H(p)] + p⇤E⇡ [H(⇡)] + h(p⇤)

= (1� p⇤)A+ p⇤B+ h(p⇤)

so that

⌦

2

(p⇤) = 2p⇤h(p⇤)[B�A] + 2Ah(p⇤) + h2

(p⇤) + p2⇤[B
2 � 2AB] + 2p⇤AB+ (1� p⇤)

2A2 (30)

and we note that
var

p⇤

h
E⇡,p[H(⇡
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)|p⇤]
���d,↵

i
= E

p⇤ [⌦
2

(p⇤)]� E
p⇤ [⌦(p⇤)]

2 (31)

In Appendix A we derive expressions for the components composing E
p⇤ [⌦(p⇤)], as well as each term of

eq. 30. Although less elegant than the posterior mean, the expressions derived above permit us to compute
eq. 27 numerically from its component expectations, without sampling.
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