The Fixed Points of Off-Policy TD

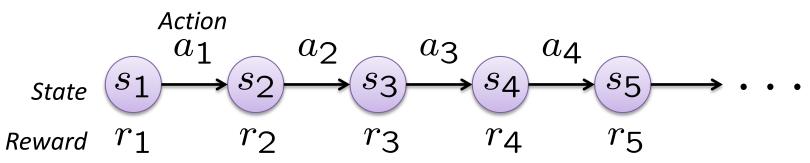
J. Zico Kolter

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Poster T6

• Given sequence of experience:



• For an *arbitrary* policy, determine value (expected sum of discounted rewards) for acting under that policy

• Can be solved, in principle, by Temporal Difference learning:

$$\pi: S \to A \xrightarrow{s_1 \\ r_1 \\ r_2 \\ r_3 \\ r_4 \\ r_5} \xrightarrow{s_1 \\ r_4 \\ r_5 \\ r_5 \\ r_4 \\ r_5 \\ r_5 \\ r_4 \\ r_5 \\ r$$

 Works when values are represented explicitly, but might not work with value function approximation

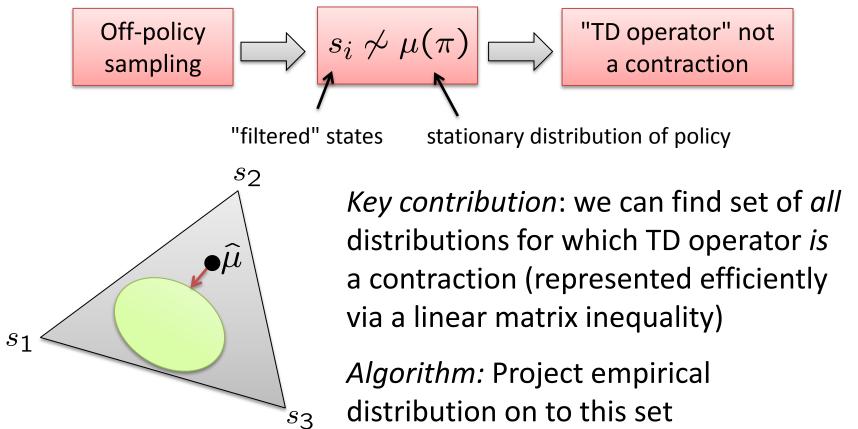
$$\hat{V}(s) = \theta^T \phi(s)$$

On-Policy	Off-Policy
TD converges	TD can fail to converge [Boyan, 1994]
[Tsitsiklis and Van Roy, 1997]	fixed! [Sutton et al., 2008]
TD solution close to true value function	TD solution can be arbitrarily poor
[Tsitsiklis and Van Roy, 1997]	[example in paper]

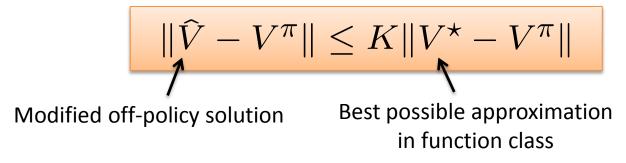
• This work is about fixing off-policy TD

Basic idea: reweight samples so that TD solution has quality guarantees (and so that TD converges)

Technical idea



Guarantees on resulting solution quality



- Efficient projection via low-rank optimization of dual problem
- Provides much better solutions in practice

